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Abstract 
Machine learning (ML) methods offer opportunities for gaining insights into the intricate workings of complex biological systems, 
and their applications are increasingly prominent in the analysis of omics data to facilitate tasks, such as the identification of novel 
biomarkers and predictive modeling of phenotypes. For scientists and domain experts, leveraging user-friendly ML pipelines can be 
incredibly valuable, enabling them to run sophisticated, robust, and interpretable models without requiring in-depth expertise in coding 
or algorithmic optimization. By streamlining the process of model development and training, researchers can devote their time and 
energies to the critical tasks of biological interpretation and validation, thereby maximizing the scientific impact of ML-driven insights. 
Here, we present an entirely automated open-source explainable AI tool, AutoXAI4Omics, that performs classification and regression 
tasks from omics and tabular numerical data. AutoXAI4Omics accelerates scientific discovery by automating processes and decisions 
made by AI experts, e.g. selection of the best feature set, hyper-tuning of different ML algorithms and selection of the best ML model 
for a specific task and dataset. Prior to ML analysis AutoXAI4Omics incorporates feature filtering options that are tailored to specific 
omic data types. Moreover, the insights into the predictions that are provided by the tool through explainability analysis highlight 
associations between omic feature values and the targets under investigation, e.g. predicted phenotypes, facilitating the identification 
of novel actionable insights. AutoXAI4Omics is available at: https://github.com/IBM/AutoXAI4Omics.
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Introduction 
In recent years, there has been an increase in utilizing artifi-
cial intelligence (AI) and machine learning (ML) within scientific 
discovery and pipeline development for the analysis of health-
care and life science datasets [1]. AI represents the broader con-
cept of simulating human intelligence by machines, whereas 
ML is a branch of AI commonly involving a computer learning 
autonomously. In supervised ML, it is the provision of labels 
for the input data that enables the learning; algorithms parse 
the input data (feature sets), learn patterns from it relating to 
the label (or target), and can then make predictions about the 
labels for unseen data. ML algorithms are well suited to large, 
heterogeneous, and complex input data sets, such as omics (e.g. 
genomics, transcriptomics, proteomics, metabolomics, etc.), that 
are becoming increasingly common as the cost of sequencing 
decreases. In response to this, numerous open-source AI and 
ML tools have been specifically developed for analyzing omics 
data [2], addressing common analytical questions and challenges 
associated with large-scale datasets. Research scientists require 
efficient and automated ML methods to predict outcomes from 

omics data and to uncover the relationships between omic fea-
tures and target variables, such as phenotypes. However, despite 
this need, there is a surprising dearth of entirely automated, end-
to-end, open-source ML tools that can handle diverse types of 
omics data and perform generic classification or regression tasks. 

Current state of the art 
Focusing on open-source offerings for omics data, there are a wide 
range of notable AI and ML tools that have been developed for 
specific use cases, including genotype-to-phenotype prediction 
(e.g. DeepCOMBI [3], AutoML-GWAS [4], and Emedgene [5]), SNP 
calling (e.g. SNP-ML [6] and  DeepVariant [7]), radiogenomics [8] 
(e.g. ImaGene [9]), omic feature selection (e.g. [10]), predicting gene 
regulation (e.g. BioAutoMATED [11], EUGENe [12], and CRMnet 
[13]), single-cell RNA gene regulatory analysis (e.g. scGeneRAI 
[14]), circadian rhythm detection (e.g. ZeitZeiger [15]), and protein 
folding prediction (e.g. Alphafold [16]). Many of these tools present 
a single  ML method  and focus on a specific data type or a few  
selected data types (e.g. genomics and transcriptomics). Further-
more, most of these tools are tailored to a single application
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domain, e.g. for biomedical and drug discovery (summarized in 
the review by Gao et al. [2]) or plant science (summarized in the 
reviews by Mahood et al. [17] and Gardiner and Krishna [18]). 

It is not uncommon for both AI and ML models to be referred 
to as ‘black-boxes’, due to their complexity and lack of inter-
pretability. This lack of interpretability (or explainability) can 
create concern for the user of the model, the domain expert, since 
it may allow issues and biases to be overlooked [19]. Consequently, 
explainable AI (XAI) algorithms, such as LIME [20] and  SHAP  
(SHapley Additive exPlanations) [21], are applied to ML models 
to overcome these problems and improve trust in the models 
and their results by providing explanations of their predictions 
[22]. Our previous work has harnessed such interpretability and 
explainability of models to gain biological insights into the target 
variable being predicted, e.g. for the prioritization of key genes 
or markers associated with a predicted phenotype [23–25]. This 
explainability goes beyond the interpretability offered by the 
feature importance metrics used in existing workflows since it 
directly explains the decisions made by a ML model [26, 27]. 

SHAP is a powerful explainability method that can be applied 
to any ML or deep learning model, such as neural networks and 
convolutional neural networks. SHAP is a unifying framework that 
integrates multiple explainability methods, including LIME, Shap-
ley values, layer-wise relevance propagation, and quantitative 
input influence feature attributions. By combining game theory 
with local explanation, SHAP provides accurate interpretations of 
how the model predicts a particular value for a given sample. The 
local explanations reveal subtle changes and interrelations that 
are often missed when differences are averaged out. In addition 
to providing a ranked list of important features for an ML or deep 
learning model, SHAP offers several advantages over other feature 
importance methods. These include the ability to explain how 
each feature contributes positively or negatively to the prediction 
of specific phenotypic values. Finally, the problems of ‘black-
boxes’ can be accentuated by the lack of open-source pipelines, 
i.e. when a user is dependent on a model wrapped in a workflow 
that is also not transparent. 

Our offering: AutoXAI4Omics 
In this manuscript, we introduce our open-source, explainable, 
end-to-end ML tool for omics data and other numerical tabular 
datasets, AutoXAI4Omics. Figure 1 provides a high-level repre-
sentation of the AutoXAI4Omics workflow. This software enables 
users to seamlessly navigate an automated workflow that begins 
with data ingestion and proceeds through a sequence of criti-
cal steps: data pre-processing, such as filtering, normalization, 
scaling (1-optional), automated feature selection (2-optional), and 
hyperparameter optimization (3) to generate a suite of optimal 
ML models tailored to the user’s specific task (classification or 
regression). AutoXAI4Omics then aids the user in the evaluation 
of these models (4), suggesting the best model (5) based on a 
range of key considerations (e.g. over-fitting and performance 
on held-out data) and generating a wide range of visualizations 
of the results (6). Finally, it facilitates interpretability of results 
(7), not only via feature importance inference, but using an XAI 
algorithm to provide the user with a detailed global explana-
tion of the most influential features contributing to each gen-
erated model. AutoXAI4Omics can process a large range of tab-
ular data types, including RNA-seq, microbiome-related data, 
metabolomics, genomics, and other numerical tabular data, e.g. 
clinical, environmental, and demographic data. These data types 
can span domains, such as human health and disease, drug 
discovery, plant phenotyping, and environmental studies. It also 

has pre-processing capability tailored to omic data, e.g. TMM nor-
malization for transcriptomics and common microbiome sample/ 
feature filtering. 

AutoXAI4Omics is available as a containerized command line 
tool where the intended audience is bioinformaticians or non-
expert ML users generally. To use it, the user provides an input 
tabular data set (samples × features table), metadata (typically 
the target to predict by the ML), and a configuration file (config, 
json file). Our workflow builds upon existing open-source ML 
tools by uniquely integrating an end-to-end workflow, tailored to 
omics-specific needs, with essential features, such as automated 
feature selection, best model recommendation, and XAI, prioritiz-
ing interpretability of the results. We ensure applicability across 
diverse data types and domains and provide a fully containerized 
solution for smooth installation and re-use. AutoXAI4Omics is 
available on Github at: https://github.com/IBM/AutoXAI4Omics. 

In this manuscript, we detail the options available to the user in 
AutoXAI4Omics, and using three distinct biological case studies, 
we will demonstrate its simplistic usage, predictive power, and 
application agnosticism. The various data sets and configura-
tion files that we use here are also provided as supplementary 
material to encourage ease of re-use, since they can act as a 
template for new users. Our first biological use case focuses on the 
plant science domain, where we use AutoXAI4Omics to perform 
a specific binary classification task. More precisely, we predict if 
Barley accessions are two-rowed or six-rowed (relating to spikelet 
fertility) from genomic data. Our second use case is derived from 
the biomedical domain, where we use human gene expression 
data to predict cell response to a series of infections (influenza, 
Escherichia coli, and control) as a multi-class classification task. 
Finally, our third use case focuses on environmental data, where 
we predict soil pH (a regression task) from normalized soil micro-
biome species abundance data. For each specific prediction task, 
we use algorithms including Random Forest (RF), XGBoost (XGB), 
AdaBoost, K-nearest neighbors (KNN), LightGBM (LGBM), and a 
neural network (Auto Keras) followed by an XAI algorithm to 
assess the biological validity of the ML model, i.e. to check if key 
predictors align with current biological know-how. We show that 
the XAI component of the workflow can act as an ML model 
validator and hypothesis generator to rank key omic features that 
are driving the predictions for a target or phenotype of interest, 
since these top features are candidates for further analysis or 
experimental testing. 

Results and discussion 
Binary classification using AutoXAI4Omics: a 
case study in plant genomics 
ML and high-throughput phenotyping within plant sciences can 
reduce laborious manual work and cost while improving the 
efficiency of data collection, e.g. via automated image collection 
and analysis [28]. ML has also been used to improve the time-
lines for plant breeding [29, 30]. Omics datasets can be utilized 
to select genes that underpin traits of interest to enable their 
incorporation into breeding programs [31]. ML can fine-tune the 
selection of SNPs or QTLs from genomic datasets within genome-
wide association studies and genomic selection. New ML tools are 
being continually developed for understanding traits of interest in 
plants, for investigating gene expression [17] and for integrating 
multi-omic datasets to predict phenotypes [32, 33]. 

We downloaded a genotyping matrix of global GBS (genotype-
by-sequencing) information plus related phenotype data for 1000 
core Barley (Hordeum vulgare L.) accessions published in [34]. In

https://github.com/IBM/AutoXAI4Omics
https://github.com/IBM/AutoXAI4Omics
https://github.com/IBM/AutoXAI4Omics
https://github.com/IBM/AutoXAI4Omics
https://github.com/IBM/AutoXAI4Omics
https://github.com/IBM/AutoXAI4Omics
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Figure 1. Overview of the AutoXAI4Omics XAI workflow from data input to results and interpretation. 

this data set, Barley accessions are categorized as two-rowed or 
six-rowed based on their lateral spikelets and floret sizes. Six-
rowed Barley has three spikelets, all of which are fertile and 
can produce grain. While two-rowed Barley has three spikelets, 
but only the central spikelet is fertile [ 35]. We converted phe-
notypic data into binary format: two-rowed (0) or six-rowed (1) 
and converted the features or SNPs into numerical format for 
usage in AutoXAI4Omics; homozygous for reference allele (2), het-
erozygous (1), homozygous for alternative allele (0), and NNs (3). 
The data set thus included 957 Barley accessions (after removing 
those with intermediate phenotypes or missing data) and 37 953 
features (SNPs), which were used to train ML models to perform 
classification for row-number. 

AutoXAI4Omics was run for this data set using classifica-
tion mode, a random search, f1-scoring and a train:test split 
ratio of 80:20. The config file that was used to run this analysis 
is provided as File S1.json and the associated data/metadata 
files to run this config as File S2.csv and File S3.csv, respectively. 
Figure 2a shows the performance of a range of hyper-tuned ML 
models for the prediction of the target during cross validation. 
Several models perform well, though no two are identical. Our 
encoded algorithm within AutoXAI4Omics suggests the ‘best’ or 
‘recommended’ model for the user to focus on, XGBoost. Elements 
of this decision are visible in Fig. 2a, where XGBoost is generating 
a high accuracy coupled to a low performance variation across 
the different folds on cross-validation. What is not shown in 
Fig. 2a is additional information (considered by AutoXAI4Omics) 
regarding minimal overfitting observed when comparing training 
and test data performance (f1-score) and balanced performance 
across the predicted classes (i.e. performance was most balanced 
for XGBoost). Figure 2b depicts the confusion matrix, and Fig. 2c 
presents the ROC curve for the recommended model, XGBoost, 
with F1-scores of 1.0 on the training data and 0.98 on the test data 
(these values and others are reported as a results table for the 
user in Table S1). Finally, Fig. 2d shows the accuracy curve using 
an increasing number of selected input features using a random 
forest classifier. 

Figure 3 summarizes the XAI results as computed by SHAP 
algorithm for the Barley binary classification highlighting the top 
15 features and their relative importance’s for the classification 
via SHAP. The y-axis, in Fig. 3a–c, displays the results of the XAI 
analysis, which ranks the relative importance or SHAP impact 
of the input features (SNPs represented as chromosome:position) 
on the best ML model (XGBoost)—features are ranked from high 

impact to low impact from top to bottom of the y-axis. Figure 3a 
shows a bar plot summarizing the top 15 feature values for 
the best model (XGBoost) with their absolute average impact 
on the model predictive output; Fig. 3b and c are summary dot 
plots displaying the top 15 features (y-axis) against their SHAP 
impact values (x-axis). Rows are features, dots are samples, and 
the color of a dot represents the feature value (SNPs encoded 
as 0, 1, or 2) of that sample for the corresponding feature. A 
positive impact value of a feature for a sample represents a 
positive association with that feature value and the sample being 
assigned to a specific class, either six-rowed (Fig. 3b) or two-
rowed Barley Fig. 3c. Figure 3 allows us to interpret the results 
and validate the ML by linking predictive features to biological 
processes. For example, the two most predictive SNPs of row 
number in Barley from AutoXAI4Omics are within chromosome 2 
at position 2:651372029 and 2:651378029 in order of their relative 
importance. We searched for genes within a 20 kb region around 
these SNPs utilizing GrainGenes [36]. Two high-confidence genes 
were found within this region based on the Barley cv. Morex V3 
annotation [37]; HORVU.MOREX.r3.2HG0211880 (Exostosin fam-
ily protein); and HORVU.MOREX.r3.2HG0211900 (Phytol kinase 1). 
HORVU.MOREX.r3.2HG0211900 has been associated with the dif-
ferentiation of two-rowed and six-rowed Barley in prior research 
[38], utilizing Barlex [39]. This gene may also be linked to the loci 
six-rowed spike vrs, hexastichon (hex-v), or intermedium spike (int), 
which are heavily discussed in the literature due to their asso-
ciation with row number in Barley [35, 40–43]. Further evidence 
to support that the genes identified are linked to row number 
and spike development in Barley is from expression data, which 
suggests their expression during the seed development and within 
spike meristems [44, 45]. Finally, orthologues in wheat (Triticum 
aestivum) with over a 90% sequence match to the genes from 
Barley were found using ensembl [46]. The orthologues were then 
investigated further utilizing KnetMiner [47], which associated 
them to pathways within root and flower meristems and for seed 
development and germination. 

Multi-class classification using AutoXAI4Omics: 
a case study for human RNA-seq 
We downloaded and used the Series Matrix text file for study 
GSE53165 that is part of the NCBI Gene Expression Omnibus. 
This data set was generated as part of a prior publication [48] 
and is related to the variation in individuals’ responses to com-
plex diseases in humans. The authors generated transcriptional

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae593#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae593#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae593#supplementary-data
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Figure 2. Binary classification using AutoXAI4Omics: a case study in plant genomics. Figure summarises the predictive performance of AutoXAI4Omics 
in predicting either two-rowed (0) or six-rowed barley (1). (a) Box plots displaying the f1-score during cross validation, (b) confusion matrix for the best 
performing ML model (XGBoost), (c) ROC curve for the best performing model, and (d) feature selection accuracy curve. 

Figure 3. Binary classification using AutoXAI4Omics: a case study in plant genomics. Figure summarizes the XAI output relating to the best performing 
model from AutoXAI4Omics(XGBoost) to predict either two-rowed (0) or six-rowed barley (1). (a) Bar plot summarizing the top 15 feature values selected 
for the best model (XGBoost), (b) SHAP global view of explanations for six-rowed predictions, and (c) SHAP global view of explanations for two-rowed 
Barley predictions. 

profiles from dendritic cells (DCs), derived from the peripheral 
blood of healthy individuals that were subjected to different 
states. Here we compare three of these states: resting (unstim), 
E. coli lipopolysaccharide stimulated (LPS), and influenza-infected 
(dNS1). We used this data set, encompassing 2009 samples (that 

we reduced to 167 by removing serial replicates) and 414 fea-
tures (genes with expression information), to train several ML 
models implemented in AutoXAI4Omics to perform multi-class 
classification. The targets to predict were the three treatments: 
unstim, LPS, and dNS1. The config file used to run this analysis 



6 | Strudwick et al.

Figure 4. Multi-class classification using AutoXAI4Omics: a case study with human RNA-seq data. (a) Bar charts displaying the f1-score on the held-out 
test dataset, (b) confusion matrix for the best performing ML model (random forest), (c) bar chart displays feature rank from feature importance analysis 
with their average abundance, and (d) ROC curve for the best performing ML model. 

in AutoXAI4Omics is attached as File S4.json and the associated 
data/metadata files to run this config as File S5.csv and File S6.csv, 
respectively. Most notably for this analysis, we used classification 
mode, a random search, f1-scoring, automated feature selection, 
and automated filtering for samples more than 5 SD away from 
the mean and those with adjusted gene expression counts of 1 or 
less in 10 or less samples. Figure 4 summarizes the performance 
of the AutoXAI4Omics supervised ML workflow to predict three 
classes: unstim, LPS, and dNS1 from human transcriptomic data. 
Figure 4a shows the performance across all models (test data), 
and Fig. 4b–d focuses on our best performing model as identified 
by AutoXAI4Omics (Random Forest), where the confusion matrix 
(Fig. 4b) and ROC curves (Fig. 4d) highlight robust performance 
across all classes. The weighted F1-scores across the three classes 
for our best model were 0.99 on the training data and 0.97 on the 
held-out test data (Table S2). 

Figure 4c ranks the relative importance of the input features 
prior to ML model development (y-axis); the x-axis depicts the 
average abundance of the related features across the input sam-
ple set (average gene expression counts). Figure 4 gives insight 
into the relative importance’s of the input features to the model, 
but the advantage of our XAI workflow is a more comprehensive 
interpretation of the generated models via SHAP. Figure 5 shows 
the SHAP output for our best performing ML model (Random 
Forest) for each of the three classes: unstim, LPS, and dNS1. We 

often see features having a mirror image role in different classes 
(as per binary classification), e.g. for the most predictive gene 
(dNS1 class) Interleukin-29 (IL29), a higher abundance positively 
associates with a sample being linked to the dNS1 class, while 
a lower abundance positively associates with a sample being 
linked to the LPS class. Furthermore, we advocate using these XAI 
outputs to sanity check the biological validity of the ML model, 
i.e. to check if key predictors align with current biological know-
how. In support of this, the most predictive gene for class dNS1 
(also the fourth most predictive for class LPS) was IL29. IL29 is 
a cytokine that has been linked to antiviral activity, antibacterial 
activity, antiproliferative activity, and in vivo antitumour activity 
[49], and higher IL29 expression has been linked to influenza 
infection, i.e. the dNS1 class (which is the pattern reflected in 
Fig. 5b). Conversely, for LPS induction of IL29, previous work noted 
high expression of IL29 in DCs after initial LPS stimulation (0– 
2 h) and then a steep drop-off in IL29 expression after further 
LPS exposure (2–18 h) [50]; since the cells used in our ML analysis 
were exposed to LPS for more than 2 h (up to 5 h) this aligns with 
the low-mid expression of IL29 driving a prediction of class LPS 
(seen in Fig. 5a). Fittingly IL29 is not present in the most predictive 
features for the unstim class where no infective agent is present. 

Many other predictive genes align with common sense as to 
what might be relevant for response to disease or stress, e.g. Acti-
vating transcription factor 3 (ATF3) a stress-induced transcription

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae593#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae593#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae593#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae593#supplementary-data
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Figure 5. Multi-class classification using AutoXAI4Omics: a case study with human RNA-seq data. XAI output relating to the best ML model (random 
forest) to predict three classes unstim, LPS, and dNS1. (a) Global explanation for class LPS, (b) global explanation for class dNS1, and (c) global explanation 
for class unstim. 

factor, where high levels of this gene make a sample more likely to 
be assigned to the dNS1 class, mid-expression levels of the gene 
are associated with the LPS class, and low levels with the unstim 
class. Also, guanylate-binding protein 1 (GBP1) plays important 
roles in innate immunity against a diverse range of bacterial, viral, 
and protozoan pathogens and follows broadly the same predictive 
profile as ATF3, i.e. high levels make a sample more likely to be 
assigned to the dNS1 class, mid-expression levels are associated 
with the LPS class, and low levels with the unstim class. 

Regression using AutoXAI4Omics: a case study 
for environmental microbiome data 
We used a bioinformatics workflow (see Methods) to generate 
species abundance information for 189 environmental micro-
biome samples that were part of a study presented by Bahram 
et al. [51] comprising whole shotgun metagenomes from samples 
of topsoil collected from representative terrestrial regions and 
biomes across the world. Based on sample geo-locations, we 
gathered information for each sample regarding the pH of the 
soil at the sampled depth (0–5 cm) from SoilGrids [52]. We used 
this data set, encompassing 189 samples (that we reduced to 173 

by removing low-quality samples) and 91 837 features (species 
with normalized abundance information), to train a series of ML 
models to predict pH as a regression task. The config file used to 
run this analysis in AutoXAI4Omics is attached as File S7.json and 
the associated data/metadata files to run this config as File S8.csv 
and File S9.csv, respectively. To run this analysis, most notably, we 
used regression mode, a grid search, mean absolute error (MAE) 
scoring, automated feature selection, and automated filtering for 
samples more than 5 SD deviations away from the mean and 
those with abundances of 5 or less in 10 or less samples. 

Figure 6 summarizes the results from the AutoXAI4Omics 
analysis for the prediction of soil pH from soil microbiome data. 
Figure 6a is a bar plot showing the predictive performance, as 
MAE, across all models on the held-out test data. Figure 6b shows  
MAE on cross validation for each model, and Fig. 6c–d focuses 
on our best performing model as identified by AutoXAI4Omics 
(Random Forest), where the correlation plot (Fig. 6c) and joint plot 
(Fig. 6d) highlight the high degree of correlation between true and 
predicted values. The MAEs for our best model were 0.02 on the 
training data and 0.31 on the held-out test data. AutoXAI4Omics 
outputs additional evaluation metrics, and we found the metrics

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae593#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae593#supplementary-data
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Figure 6. Regression using AutoXAI4Omics: a case study with environmental microbiome data. Predictive performance of AutoXAI4Omics to predict soil 
pH from the soil microbiome. (a) Bar charts displaying the MAE on the held-out test data set across a range of ML models, (b) box plot displaying MAE 
on cross validation across a range of models, (c) correlation, and (d) joint plot to compare predicted values (y-axis) with true values (x-axis) for the best  
performing ML model (random forest). Diagonal dotted line is also shown. 

mean absolute percentage error (MAPE) and R2 can also be useful 
to assess performance. For this analysis, there was an MAPE of 
only 5.7% on the held-out test data and a relatively high R2 of 
0.64. 

Figure 7 shows the SHAP output of the top 15 most predictive 
species for our best-performing ML model (Random Forest) for 
soil pH. A global explanation is shown where a low feature value 
(blue) indicates a low species abundance, and a higher feature 
value (red) indicates a higher species abundance for a sample 
represented as a dot. If a higher feature value correlates with a 
higher SHAP value (the sample/dot is on right-hand side of the 
plot axis), then a higher species abundance tends to predict a 
higher pH value. Conversely, if a higher feature value correlates 
with a lower SHAP value (the sample/dot is on the left-hand 
side of the plot axis), then a higher species abundance tends to 
predict a lower pH value. Some full names have been shortened 
as follows: Gammaproteobacteria bacterium RIFCSPHIGHO2 12 FULL 
45 9 is shortened to Gammaproteobacteria bacterium RIF 12 45 9 and 
Acidobacteria bacterium RIFCSPHIGHO2 02 FULL 67 57 shortened to 
Acidobacteria bacterium RIF 02 67 57. Notably, the most predictive 
species include several acidophiles or acid-linked species, e.g. 
Acidocella sp. MX-AZ02, Ralstonia virus RSL1, and an Acidobacteria 
bacterium. As one might expect, these species show a positive 
association with the prediction of a low pH, i.e. higher species 
abundances tend to associate with lower or negative SHAP values 
that lower the model’s predicted pH for a sample. Additionally, 

the most predictive species, Candidatus nitrosotalea sp. FS has 
known associations with acidic soil that fit both its appearance 
as a predictor and also the directionality of its effect (i.e. higher 
abundance predictive of a lower pH). Moreover, species within its 
associated genus, Ca. nitrosotalea, are reportedly ammonia oxidiz-
ers abundant in acidic soil environments and obligate acidophiles, 
growing optimally around pH 5.0, which directly supports our 
observed importance and trends [53]. 

Comparison with state of art 
With the aim of explicitly distinguishing AutoXAI4Omics from 
existing alternatives, in the Section ‘Current State of Art’, we 
referenced a wide range of notable AI and ML tools developed for 
specific omics use cases (e.g. genotype-to-phenotype prediction, 
SNP calling, predicting gene regulation, single-cell RNA gene reg-
ulatory analysis, and protein folding prediction). However, these 
tools differ significantly from AutoXAI4Omics in terms of their 
functionalities, data types, and biological questions. 

Most of these tools are designed to address a single application 
domain or focus on a specific use case. Their input and output for-
mats also differ from those required by AutoXAI4Omics. An exam-
ple is GenoML [54], which is restricted to binary classification 
(0/1) and regression from SNPs inputted in standard PLINK files, 
without support for multi-class classification or interpretability/-
explainability methods. Some of these fundamental differences in
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Figure 7. Regression using AutoXAI4Omics: a case study with human 
RNA-seq data. Figure summarizes the XAI output from SHAP relating 
to the best ML model generated by AutoXAI4Omics (random forest) to 
predict soil pH. 

design and purpose render it impossible or invalid to numerically 
compare these tools with AutoXAI4Omics. 

The most similar tool to AutoXAI4Omics that we identified 
is OmicLearn [55], an ML pipeline specifically designed for 
proteomics data but also applicable to other types of omics 
data presented in tabular format. To further emphasize the 
unique features and capabilities of AutoXAI4Omics, in Table S3, 
we summarize the key differences when comparing OmicLearn 
to AutoXAI4Omics. A critical difference lies in their prediction 
capabilities: while AutoXAI4Omics supports binary, multi-class, 
and regression tasks, OmicLearn is limited to binary classification 
only. As demonstrated by our three use cases in plant genomics, 
human transcriptomics, and environmental microbiome samples, 
this limitation restricts the applicability of OmicLearn for a 
broader range of applications. In contrast, AutoXAI4Omics 
incorporates several key features that are not implemented in 
OmicLearn: omics-specific pre-processing to handle complex 
data, class balancing techniques (e.g. oversampling) to improve 
model performance, automated feature selection to identify 
the most informative variables, hyper-parameter tuning for 
optimal modeling capabilities, automated selection of the best 
performing model for a given task, and interpretability methods, 
such as SHAP and eli5, that enable researchers to understand the 
relationships between features and predictions. We believe that 
the comprehensive set of features in AutoXAI4Omics makes it a 
more versatile tool for omics data analysis. 

In terms of numerical comparisons, we evaluated predictive 
performance on our first use case (binary classification of two-
rowed versus six-rowed plants from SNPs) using both tools. Our 
dataset consisted of 956 samples and 37 953 features. Notably, the 
free deployment of OmicLearn (https://ol-v14.streamlit.app/) was  
unable to handle this data size, resulting in a server crash. When 
we downloaded the local dashboard, we were able to run the 
analysis, but it failed to return the full list of performance metrics 
as described in their manual, either in image or CSV formats. The 
only visualization provided was a ROC curve with an AUC of 0.98 

computed by XGBoost (Fig. S1), which matched our best model’s 
AUC (0.98) using AutoXAI4Omics (Fig. 2c). 

Conclusions 
In this study, we present our open-source end-to-end XAI tool, 
AutoXAI4Omics. We apply it to three use cases, and we provide a 
series of examples (including related data and configuration files) 
to showcase the utility and performance of the tool. Our use cases 
cover a wide range of omic data types (genomics, transcriptomics, 
and microbiome), application domains (plant science, environ-
ment, and human disease), tasks (multi-class/binary classifica-
tion and regression), and pre-processing options (automated fea-
ture selection, user-defined feature selection, and feature/sample 
filtering). We also focus on the advantage offered by the inclusion 
of XAI approaches alongside feature importance techniques. In 
doing so, we highlight the wide applicability of our tool to a wide 
range of research areas to help scientists answer a variety of 
life sciences questions. AutoXAI4Omics can be used by domain 
scientists that are not ML experts to quickly perform robust and 
trustworthy interpretable ML analysis and therefore focus on the 
insights generated by the tool, rather than in building and fine-
tuning ML models, hence accelerating scientific discovery. 

Methods 
AutoXAI4Omics workflow 
AutoXAI4Omics has four modes that can be invoked, which are: 

• Training: train, tune, and evaluate several ML algorithms to 
perform classification or regression tasks on a given dataset 
as specified in the configuration file. 

• Plotting: create (or re-create) plots and visualizations for a 
trained and optimized model or a set of models as specified 
in the config. 

• Holdout: apply the trained and tuned model(s) to a holdout 
separate dataset and evaluate their predictive performance 
on it. 

• Prediction: makes predictions on new, unlabeled data, using 
the best-trained model and gets its explanations. 

The flow that we describe below includes those steps that all 
belong to and run in the training mode. The other modes invoke 
the corresponding stages that are required for their individual 
tasks, e.g. plotting only or predicting only on a holdout dataset 
or new unlabeled data points. 

Load data and data specific processing 
The first step AutoXAI4Omics performs is to load the data into 
the system. At this point, if the user chooses, omic-specific pre-
processing is performed on the data. This is an optional step 
and is only done if the user sets the corresponding field in the 
configuration file, data_type. We enable this step to be optional 
as there are many ways that this pre-processing can be done, 
with users possibly having their own preferred method. If a user 
has already pre-processed their data, then they may delete the 
omic-specific entry from the config, and this will stop any pre-
processing from happening. Also, AutoXAI4Omics can accept and 
work with non-omic data, if a user wishes, and as before, the user 
only needs to remove the omic-specific pre-processing field from 
the config. AutoXAI4Omics includes pre-processing modules for 
gene expression data, microbiome data, metabolomic, and tabular 
numerical data.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae593#supplementary-data
https://ol-v14.streamlit.app/
https://ol-v14.streamlit.app/
https://ol-v14.streamlit.app/
https://ol-v14.streamlit.app/
https://ol-v14.streamlit.app/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae593#supplementary-data
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The gene expression pre-processing is designed to accept RNA-
seq read counts and microarray expression levels and is activated 
when the user specifies in the config data type = ‘gene expression’. 
The user needs to also specify the type of their expression data, 
e.g. ‘FPKM’, ‘RPKM’, ‘TMM’, ‘TPM’, ‘Log2FC’, ‘COUNTS’, ‘OTHER’, 
where ‘COUNTS’ invokes conversion of raw count data to normal-
ized trimmed mean of M-values (TMM) values. Other additional 
pre-processing capabilities that are popular for those using gene 
expression data have been added to allow filtering of unwanted or 
potentially problematic genes or samples. First, the function ‘filter 
sample’ removes samples if the number of genes with coverage 
is more than X standard deviations from the mean across all 
samples, i.e. the extremes of very sparse or high coverage samples. 
Second, the function ‘filter genes’ removes genes unless they have 
a gene expression value over X in Y or more samples, i.e. removing 
genes that never appear with sufficient expression across the 
sample and may be noise. 

The omic-specific pre-processing also includes several func-
tions specifically for microbiome data. These functions are avail-
able when the user specifies data type = ‘microbiome’ in the 
configuration file. Microbiome-specific pre-processing capabili-
ties include optional collapsing of taxonomy to kingdom, ‘k’; 
phylum, ‘p’; class, ‘c’; order, ‘o’; family, ‘f’; genus, ‘g’; or species, 
‘s’ levels, which is invoked by the user specifying the taxonomic 
rank letter in the ‘collapse tax’ option in the configuration file. 
Two read-based filtering options are available; ‘min reads’, which 
will remove samples with fewer reads than specified, and ‘norm 
reads’, which will rescale all samples to sum the number of reads 
specified. Both ‘min reads’ and ‘norm reads’ have default values of 
1000, which will be invoked if data type = ‘microbiome’ is selected 
and the user does not change the default values in the configu-
ration file. Taxon-based filtering is available with functions ‘filter 
abundance’, which will remove taxonomic features with a total 
count less than the specified number across all samples, and 
‘filter prevalence’, which will remove taxonomic features which 
occur in less than the specified proportion of samples. The default 
value for ‘filter abundance’ is 10. For ‘filter prevalence’ the default 
value is 0.01, which represents the decimal percentage of the 
samples, so using the default value here, any taxonomic features 
present in <1% of samples would be removed. Metadata-based 
filtering is also supported for microbiome data. The function 
‘filter microbiome samples’ allows for the removal of samples 
based on metadata categories. This function requires a dictionary 
(or list of dictionaries), where the key represents the metadata 
column (i.e. ‘COUNTRY’) and the value represents the metadata 
category in that column to be removed (i.e. ‘UK’). The default value 
for this function is ‘null’, invoking no metadata-based filtering. 
Two final functions are available that can manipulate the ‘target’ 
metadata category specifically. These include ‘remove classes’, 
which takes in a list of class labels to be removed from the ‘target’ 
column, and ‘merge classes’, which allows for merging of target 
classes by taking in a dictionary in the format ‘{“X”: [“A”,” B”]}’, 
which would convert class labels ‘A’ and ‘B’ to ‘X’. Both ‘remove 
classes’ and ‘merge classes’ have default values of ‘null’, invoking 
no manipulation of the ‘target’ column. 

The omic-specific pre-processing also supports data types 
‘tabular’ and ‘metabolomic’ and these have associated filtering 
options, similar to the gene expression data, for (i) removing 
samples if the number of measures with measurements is more 
than X std from the mean across all samples, and (ii) for removing 
measures unless they have a value over X in Y or more samples. 

AutoXAI4Omics only loads and pre-processes one data type 
per run. For now, if a user has a data set that has non-omic and 

omic features, then they can do any pre-processing first, outside 
of the tool themselves, and then give it to AutoXAI4Omics as a 
‘non-omic’ data set. This ability to integrate multiple and different 
omic types automatically is a feature that we plan to bring to the 
tool in the future. One other feature that we plan to add later is 
the automated encoding of any categorical features. For now if 
the user has any categorical features, then they must manually 
convert them into one-hot encoded columns first. 

Split data 
Once the previous step has been completed, the data is split 
into train-test sets as characterized by the setting in the config 
that has been presented by the user. If not presented, then the 
testing size will default to 20%. The exact implementation is done 
by scikit learns’ train test split [56]. The split will depend on the 
random seed that has been set, which also impacts the initial 
model weights and performance. This can be set in the config 
provided by the user, but if not provided, it will be set to a default 
value. 

Standardize data 
Next the tool standardizes the columns of the training data, for 
which we use scikit-learns. 

QuantileTransformer [56]: ideally when training AI models data 
should be normally distributed, but in real-world situations, this 
is rarely the case, and even standard normalization is not com-
pletely immune to skewed datasets. This is the reason why we 
choose to use the  QuantileTransformer as it is more robust to 
skewed data. 

Feature selection (optional) 
Feature selection then follows this step and is completely 
optional; if the user does not wish feature selection to take 
place, then they need only remove the corresponding entry from 
the config. However, if the user does wish to perform feature 
selection on the training data, then there are several options that 
they can customize/set. The first step that occurs is variance 
thresholding (variance removal [56]), to remove constant or near-
constant columns. The value for this can be set by the user, but 
if not provided, it will default to 0. Once this is done, the tool can 
either search for a specified number of best features or it can 
automatically find the best number of features. 

In the case of finding a specified number of best features, then 
the tool will find them using the setting given by the user; if not 
present, it will default to using SelectKBest method with either the 
f classif or f regression metric as implemented by scikit learn [56]. 
SelectKBest works by taking the scoring metric provided to it and 
selecting the K best scoring features. If using f classif , this is the 
ANOVA F-value of the column in relation to the targets, and f 
regression works by running univariate linear regression tests with 
respect to the target. 

If the user then chooses to let the tool automatically find the 
best number of features, they can choose to set the minimum and 
maximum number of features the tool will search between. For 
efficiency, the tool creates several potential candidates that are 
logarithmically spaced between these two values. Then for each 
candidate number, a set of best feature features is found, and a 
default model is trained and evaluated on it. Once all candidates 
have been scored, we then use our own unique method to select 
the best candidate number of features to proceed through to the 
next step. To select the value for K, we look for a set of three 
consecutive values that are the best performing and the most 
stable; once we have that, then we choose the largest k in that
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set as the candidate to use. A stable set of three values has a low 
standard deviation, and we factor this in is to make sure that our 
selection is robust. Hypothetically, if an optimum K has terribly 
performing neighbors, making a ‘V’ shape, then this k should be 
treated with an abundance of caution as the addition or removal 
of a feature causes a drastic chance and could have been achieved 
because of any number of reasons. 

Class balancing (optional, problem specific) 
Class balancing is only available when performing classification 
problems and is also optional. If a user does not want to imple-
ment, then they just need to set the corresponding variable in 
the config. If, however, they do wish to perform class balancing, 
then there is the option to perform both over-sampling and under-
sampling, implemented by imblearn [57]. 

Train and evaluate models 
Now the training of the models can begin. Models available to 
train include those from scikit learn [54], Auto-scikitlearn [58], 
xgboost [59], lightgbm [60], and autokeras [61]. These can be 
trained with most standard metrics that are available, such as 
Accuracy, F1 score, and Precision for classification tasks; Mean 
squared error, MAPE, and R2 for regression tasks. In addition, these 
models can also be hypertuned on the training data with random 
or grid search, or without if so desired. A full explanation of all the 
possible combinations can be found in the code repository. The 
exact models that are trained are controlled by a corresponding 
entry in the config the user provides, along with what metric they 
want to fit according to and what hyper-tuning to use. 

Plotting 
Once training is complete, if the user desires, plots can be pro-
duced illustrating the model performance and explaining how 
the models work. These plots are optional, and the exact ones 
produced are controlled by a corresponding list in the users config, 
meaning it can be skipped if set to empty. 

But if plots are desired, these are produced using a combination 
of seaborn [62], matplotlib [63], and scikit learn [56]. The full 
range of plots is described in our code repository, but examples 
are bar and box plots of model performances plus ROC curves 
and confusion matrices if performing a classification task. Many 
of these are shown in the Results and Discussion section of this 
paper. 

Explainability 
For the explainability aspect, the two libraries we utilize are 
eli5, for permutation importance, and SHAP, for SHAP value 
bar and dot plots—again examples of these can be seen in 
Figs. 3–7. The user can also define and control the number of 
features that are calculated/plotted via the config file and also 
specify what data the SHAP values are to be calculated based 
on, i.e. the training set, test set, or both. In addition to generating 
SHAP and permutation importance plots, AutoXAI4Omics saves 
Shapley values and permutation importance values in samples 
x features tables that return as csv files (permutimp_Top 
Features_info_[NameOfModel].csv and shapley_values_all_[Name 
OfModelAndClassIfApplicable].csv, respectively). 

A Shapley value is a positive or negative contribution of a 
feature for a given sample prediction. The Shapley values table 
enables the end-user to explore these local explanations in more 
detail and potentially create additional visualizations. The local 

explanation generated by SHAP provides a nuanced understand-
ing of the relationships between features and predictions. 

Select best model 
The last step in the process is to select the best model out of 
those that were trained during the run of AutoXAI4Omics. This 
selection is done with respect to the metric that the user sets 
for the models to optimize. For both problem types, classification 
and regression, the training error and test error are collected and 
plotted. In the regression problem, the point that is closest to 
the y = x and the origin (0,0) is selected as the best model. For 
classification problems, it is the same, but we switch the origin 
for the unit point (1,1) as in classification problems, the higher 
performance value the better and values are bounded above by 1. 
Sometimes this may result in ties, in which case AutoXAI4Omics 
will pick one but make a point of noting this in their own text file. 
Once the best model is selected, all of the related content is copied 
to a dedicated folder, ‘best model’. 

Datasets 
In the Results and Discussion section, we showcase running 
AutoXAI4Omics with three types of data, including genomics, 
transcriptomics, and microbiome abundance data. For transcrip-
tomic data this tends to be numerical, and so by nature is com-
patible with most ML algorithms, but we recommend using nor-
malizations to optimize between sample comparisons, e.g. such 
as TMM, that we include in AutoXAI4Omics pre-processing. This 
numerical nature also applies to microbiome data, where users 
can input normalized or rarefied counts or relative abundance 
data. Here, we also recommend testing centered log-ratio transfor-
mation that removes compositional artifacts. In contrast, genomic 
data, such as SNPs, can commonly be encountered as a series 
of alleles; e.g. for diploid organisms, we might see homozygous 
reference allele calls, heterozygous calls, and homozygous alter-
nate allele calls. For such data, we recommend converting these 
calls to numerical representations. We have found increasing 
representative numbers from 0–2 as the presence of an alternate 
allele increases, i.e. moving from homozygous reference (0) to 
heterozygous (1) and then homozygous alternate calls (2), can 
be an intuitive way to represent this type of data, allowing more 
meaningful interpretation downstream, e.g. to assess as the alter-
nate allele increases what is the effect on the predicted target 
variable. 

Preparation of our three example types of data (genomic, tran-
scriptomic, and microbiome) for usage with AutoXAI4Omics is 
detailed in the main text. For the genomic and transcriptomic 
data processed, data was available from public sources that we 
state. However, we generated the microbiome abundance data 
from raw sequencing reads that were available as part of the study 
by Bahram et al. [51] at the European Bioinformatics Institute— 
Sequence Read Archive database under PRJEB24121. We used a 
bioinformatic analysis workflow for the taxonomic annotation 
of paired end reads. In our workflow, using Trimmomatic v2.9 
[64], reads were trimmed of adapter, and if the average quality 
across a 4 bp window was less than 15, reads below 40 bp were 
dropped from the analysis. Reads were then used as input into 
DIAMOND v2.0.11 [65] for read alignment in blastx mode using 
‘-b 25 -k 5 –index-chunks 4 –min-score 50 and –max-target-seqs 
2’ options. For these DIAMOND aligned reads, the suite of tools 
from the MEGAN community edition v6.21.12 [66] were used to  
run a last common ancestor analysis to allow binning of read 
pairs by taxon. MEGAN outputs were then processed to extract 
and compute species-level abundance (read counts).
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Key Points 
• AutoXAI4Omics: an easy-to-use, open-source, end-to-

end, command-line, automated, and XAI tool for omics 
and tabular data. 

• The novelty of AutoXAI4Omics lies in its seamless inte-
gration of ML capabilities, streamlined decision-making 
processes, and intuitive feature analysis. Specifically, it 
offers the following unique advantages: 
– Classification or regression tasks from omics data in 

tabular format using state-of-the-art ML algorithms, 
including neural networks, without requiring exten-
sive coding expertise an algorithmic optimization 
knowledge. 

– Automated decision making by AI experts, encom-
passing features such as: 

– + Feature selection to identify the most informative 
omics variables 

– + Model optimization for optimal performance 
– + Selection of the best-performing model from a 

suite of options 
– Comprehensive explainability analysis that links 

omics features to an endpoint, providing actionable 
insights into the underlying biology. 

– Optional pre-processing capabilities are stailored 
to specific omics data types, ensuring high-quality 
input for accurate and reliable results. 

• We showcase the versatility and predictive capability of 
our general-purpose tool, AutoXAI4Omics, through three 
exemplary use cases, which collectively demonstrate its 
ability to tackle specific prediction tasks by presenting 
three use cases that cover different omic data types 
(genomics, transcriptomics, microbiome) and applica-
tion domains (plant science, environment, and human 
disease). 
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Supplementary data is available at Briefings in Bioinformatics 
online. 
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