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Abstract 
Spatially Resolved Transcriptomics (SRT) serves as a cornerstone in biomedical research, revealing the heterogeneity of tissue 
microenvironments. Integrating multimodal data including gene expression, spatial coordinates, and morphological information poses 
significant challenges for accurate spatial domain identification. Herein, we present the Multi-view Contrastive Graph Autoencoder 
(MCGAE), a cutting-edge deep computational framework specifically designed for the intricate analysis of spatial transcriptomics 
(ST) data. MCGAE advances the field by creating multi-view representations from gene expression and spatial adjacency matrices. 
Utilizing modular modeling, contrastive graph convolutional networks, and attention mechanisms, it generates modality-specific 
spatial representations and integrates them into a unified embedding. This integration process is further enriched by the inclusion of 
morphological image features, markedly enhancing the framework’s capability to process multimodal data. Applied to both simulated 
and real SRT datasets, MCGAE demonstrates superior performance in spatial domain detection, data denoising, trajectory inference, and 
3D feature extraction, outperforming existing methods. Specifically, in colorectal cancer liver metastases, MCGAE integrates histological 
and gene expression data to identify tumor invasion regions and characterize cellular molecular regulation. This breakthrough extends 
ST analysis and offers new tools for cancer and complex disease research. 

Keywords: spatially transcriptomics; multi-view integration; multimodal integration; tumor microenvironment analysis 

Introduction 
In the study of multicellular organism tissues, a nuanced 
comprehension of biological processes and molecular dynamics 
within spatial context, necessitates the employment of advanced 
biotechnologies characterized by high spatial resolution [1, 2]. 
Recent advancements in spatial transcriptomics (ST), including 
in situ hybridization (ISH) techniques such as osmFISH [3], 
MERFISH [4, 5], and seqFISH [6], alongside in situ sequencing 
technologies like FISSEQ [7] and  STARmap [8], have facilitated the 
precise identification of cells with high sensitivity and resolution. 
Barcode-based ST, as exemplified by 10× Visium [9], Slide-seq [10], 
and Stereo-seq [11], capture cDNA sequences in situ and perform 
high-throughput sequencing post-elution, thus determining all 
expressed genes in a spatially resolved manner. For certain 
tumor ST data, image information provides essential modality 
information for more accurately delineating tumor domains 
[12]. Hence, integrating multimodal information is essential for 
a holistic cellular landscape, given the diversity of information 
derived from ST. 

In ST, identifying spatial domains is crucial, involving clus-
tering to assign structural labels to spots or cells. Traditional 
non-spatial algorithms like Seurat [13] use linear dimensionality 
reduction for clustering based on expression data alone. Spatial-
aware algorithms introduce advanced methods: Giotto [14] uses  
a Hidden Markov Random Field model with spatial priors, and 
BayesSpace [15] applies Bayesian methods to optimize rela-
tionships between adjacent points, improving spatial structure 
detection. STAGATE [16] incorporate graph-based and attention 
mechanisms, respectively, to enhance spatial domain identifi-
cation. SGCAST [17] adopts a symmetric graph convolutional 
autoencoder to learn latent embeddings via integrating the gene 
expression similarity and the spatial proximity of the spots. 
SpaceFlow [18], GraphST [19], and conST [20] combine graph 
neural networks (GNNs)/variational graph autoencoders and 
contrastive learning framework for clustering. STMGCN [21] 
employ GNNs with contrastive learning and multiple adjacency 
matrices to detect spatial domains effectively. SpaGCN [22] 
integrates image data into a neighborhood graph using graph

https://orcid.org/0009-0004-3231-7448
https://orcid.org/0000-0001-8764-2521
https://orcid.org/0000-0003-0690-613X

 11666 23669 a 11666 23669 a
 
mailto:wuwei@lglab.ac.cn
mailto:wuwei@lglab.ac.cn
mailto:wuwei@lglab.ac.cn

 26289 23669 a 26289 23669
a
 
mailto:lnchen@sibcb.ac.cn
mailto:lnchen@sibcb.ac.cn
mailto:lnchen@sibcb.ac.cn

 42874 23669 a 42874
23669 a
 
mailto:chuanchaozhang@ucas.ac.cn
mailto:chuanchaozhang@ucas.ac.cn
mailto:chuanchaozhang@ucas.ac.cn


2 | Yang et al.

convolutional networks (GCNs). stLearn [23] introduces a within-
tissue normalization technique that normalizes gene expression 
using morphological distance, derived from characteristics 
collected from morphology images [e.g. by hematoxylin and eosin 
(H&E) staining] and spatial locations. DeepST [24], similar to 
stLearn, enhances gene expression by leveraging the similarity 
between morphological features, spatial location, and gene 
expression, and then employs a GNN autoencoder and a denoising 
autoencoder to generate a latent representation. TIST [25] 
constructs modality-specific networks from histopathology, gene 
expression, and spatial data, then subsequently fuses them into 
a multimodality similarity network (TIST-net) for cell cluster 
identification and gene expression enhancement. 

In general, non-spatial clustering algorithms often overlook 
vital spatial relationships. In contrast, GNN-based methods 
enhance data analysis by converting spatial positions into 
adjacency matrices, thereby improving algorithmic adaptability 
to diverse datasets across various sequencing platforms. However, 
these methods tend to rely on predefined specific similarity 
metrics, creating challenges in selecting the most effective 
metric due to the resultant variation in graph structures [21]. 
Additionally, most of these methods do not efficiently utilize 
spatial image information, resulting in a lack of a comprehensive 
description of the cellular landscape from multiple viewpoints. 
[26]. This oversight is particularly critical in medical imaging, 
where the complexity of histological features, such as lesions 
and microvessels, offers invaluable insights that can significantly 
enhance the spatial domain identification process. 

To address these challenges, we propose a multi-view con-
trastive graph autoencoder (MCGAE) framework, named MCGAE, 
for spatial domain identification. MCGAE constructs varied 
enhanced gene expression representations and multiple topo-
logical graphs from spatial coordinates. Simultaneously, MCGAE 
segments images based on such spatial coordinates and utilizes 
deep convolutional networks to extract image features. Notably, 
MCGAE is capable of functioning effectively even in the absence 
of image information. By integrating gene expression, spatial 
positions, and image information through a self-attention mech-
anism, MCGAE generates a multimodal, multi-view biological 
representation that is robust to noise and variability. Furthermore, 
for continuous slices, MCGAE enhances the similarity between 
adjacent slices by calculating the adjacency distance of neighbor-
ing batches, ultimately reconstructing 3D spatial domains. 

MCGAE has been rigorously tested on diverse datasets, includ-
ing 10× Visium, Stereo-seq [11], and Slide-seq datasets, as well as 
simulated datasets. Consistently, MCGAE has demonstrated supe-
rior performances over nine existing algorithms, exhibiting high 
precision and robustness. Notably, when integrated with tumor 
imaging data, MCGAE has shown enhanced accuracy in identi-
fying spatial domains and achieving precise clustering. Through 
its capabilities in data denoising, identification of spatially vari-
able genes (SVGs), and extraction of 3D spatial domain features, 
MCGAE facilitates in-depth exploration of tumor invasion areas, 
thereby advancing research and treatment in medical oncology. 
This enhanced capability holds significant promise for clinical 
applications, bolstering confidence in decision-making and con-
tributing to improved clinical outcomes. 

Material and methods 
Overview of multi-view contrastive graph 
autoencoder approach 
MCGAE is a novel deep computational framework designed for 
comprehensive analysis of ST data across platforms, integrating 

morphological images. Given spatial multi-modal transcriptomics 
data, MCGAE commences by initially acquiring the original gene 
expression matrix alongside the adjacency matrix, which is com-
puted based on spatial coordinates. The framework’s multi-view 
construction is facilitated through a modular modeling approach, 
granting users the flexibility to select from a variety of enhance-
ment methods, including but not limited to simple autoencoders, 
for the purpose of obtaining enhanced views of gene expression 
matrix X. Furthermore, the construction of multiple views of 
adjacency matric A is achievable by employing diverse similarity 
metrics, thereby enriching the data analysis spectrum by captur-
ing a multitude of perspectives and relationships inherent within 
the ST data (Fig. 1A). 

In the ensuing phase, modality-specific spots representations 
are obtained through contrastive graph convolutional neural net-
works coupled with attention modules. Specifically, MCGAE keeps 
X fixed and uses it with different views of A, where each pair(
X1, Aj

)
is processed through a GCN to extract multi-view repre-

sentations that are specifically pertinent to X1. These represen-
tations are then fused into a comprehensive embedding ZX using 
an attention mechanism, which is utilized for the reconstruction 
of the original X1. Similarly, by keeping A1 constant and varying 
Xi, MCGAE follows the same process to garner view-specific repre-
sentations for A1, which are aggregated into ZA. The pair (X1, A1) is  
designated as the base graph, encapsulating the original expres-
sion data. The refinement of their biological representations is fur-
ther achieved through the adoption of self-supervised contrastive 
learning. In instances where morphological images are accessible, 
MCGAE leverages a pre-trained ResNet50 [27] for the extraction of 
image features, resulting in the image embedding Zmorph, thereby  
enhancing the model’s capability in processing multimodal data 
[24, 28] (Fig. 1B). 

During the terminal fusion phase, MCGAE employs an 
attention mechanism to combine ZX, ZA, and  Zmorph, creating 
the ultimate composite embedding Z (Fig. 1C). This embedding is 
further refined through an unsupervised deep iterative clustering 
strategy to enhance its compactness, which is then applied to 
downstream analytical tasks such as spatial domain identifi-
cation, data denoising, SVGs identification, trajectory inference 
and extraction of 3D spatial domain (Fig. 1D). By integrating 
multi-view contrastive GNNs, attention mechanisms, and deep 
iterative clustering, MCGAE achieves precise and customized 
embeddings, significantly enhancing the reconstruction of spatial 
structures and the representation of gene expression patterns. 
This approach adeptly handles the complexities of ST, providing 
essential insights into tissue heterogeneity and proving to be of 
immense value in advanced biomedical research. 

Multi-view graph construction 
Spatial transcriptomics revolutionizes our understanding of tis-
sue architecture by leveraging spatial information to correlate 
cellular states with their physical locations, thereby elucidating 
tissue substructures. The crux of ST lies in its capacity to employ 
spatial information for identifying similar cellular states situated 
in proximate locations, facilitating a nuanced delineation of tissue 
substructures. To fully leverage spatial information, the input 
gene expression matrix X and the similarity matrix A between 
spots are represented as an undirected graph G = (X, A), where  
X ∈ R

n×p represents the normalized gene expression matrix, 
A ∈ Rn×n is the spatial adjacency matrix for n spots, and p is the 
number of filtered genes. 

To fully exploit spatial information and enhance our under-
standing of cellular organization, we constructed a multi-view
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Figure 1. Overview of MCGAE. (A) Spatial transcriptomics techniques generate diverse data modalities, including gene expression profiles, cellular 
positioning, and morphological images. We process these modalities to create multiple views, denoted X_1,X_2, . . . ,X_v and a_1,a_2, . . . ,a_w. In the case 
of morphological images, we segment them based on cell coordinates, often H&E stained, to extract relevant features. (B) For each view, we use GCNs 
to integrate gene expression and spatial coordinates to learn spot representations. Simultaneously, we employ self-supervised contrastive learning on 
the base graph (G_1∧a = G_1∧X) to capture genuine biological signals (Z_1). For morphological images, we extract their representations using a ResNet50 
network and map them into a spot-like representation space with an MLP. (C) We fuse representations of multiple views invariant to X into Z∧X using  
selfattention, and representations fixed to a into Z∧A. These are fused with the Z∧morph view of the image into the final representation Z. We optimize 
the model with unsupervised iterative clustering loss. Additionally, we reconstruct A and X based on the fused representations (Z∧A,Z∧X). (D) The final 
representation Z generated by MCGAE, along with the reconstructed expression data, can be applied to various downstream analysis tasks, including 
spatial domain analysis, trajectory inference, identification of SVGs, data denoising, and the elucidation 3D spatial domains. 
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graph. This process entailed the generation of multi-view repre-
sentations for both X and A, where  X represents an augmented 
version of the original expression matrix, and A denotes the 
adjacency matrix between spots, inferred from a variety of met-
rics. This multi-view graph construction enables a comprehensive 
analysis of spatial context and cellular states. (See Supplementary 
Note 1 for detailed multi-view building methods). 

Contrastive graph convolutional neural networks 
GCNs excel in utilizing graph structures, enabling the process-
ing of the constructed graph G = (X, A) by integrating graph 
topology with node features. Framed within a multi-view learning 
approach, our model performs graph convolutions across each 
graph to derive view-specific embeddings seamlessly. 

Graph convolutional neural networks 
For simplicity, we omit the superscripts denoting views, represent-
ing the input data as G = (X, A). We  employ  a  GCN  [29] as the  
encoder, iteratively aggregating representations of neighbors to 
learn the latent representation zi for each spot i. The represen-
tation at the l-th layer in the encoder can be expressed as: 

H(l+1) = ReLU

(
∼ 
D 

− 1 
2 ∼ 
A

∼ 
D 

− 1 
2 
H(l) W(l)

)
, (1)  

where W(l) is the weight matrix for the l-th layer of spatial convo-
lution, with the initial H(0) = X, and ReLU represents the activation 

function. Specifically, we define 
∼ 
A = A + I, and  

∼ 
D is the diagonal 

degree matrix of 
∼ 
A. H(l) denotes the output representation of the 

l-th layer, with H(0) being the original input gene expression X. 
The final output of the encoder, denoted as Z, where each row 
zi represents the latent embedding of spot i. 

Self-supervised contrastive learning 
To enhance latent spot representations, we employ Deep Graph 
Infomax [30], an unsupervised contrastive learning method that 
maximizes mutual information between node representations 
and the graph’s global representation. We aggregate local neigh-
borhood representations into gi for each spot i, capturing its 
microenvironment. Following the strategy of GraphST, our read-
out function uses the sigmoid of neighbor representations’ aver-
age, focusing on local context similarity. In our model, a spot’s 
representation zi and its local information vector gi form positive 
pairs, while representations from perturbed graphs form negative 
pairs, aiming to maximize mutual information for positive pairs 
and minimize it for negative pairs. We apply binary cross-entropy 
for loss calculation: 

Lscl = 
1 
2n

(∑n 

i=1 
E(X,A)

[
log σ

(
hT 

i Mgi
)]

+
∑n 

i=1 
E(∼ 

X, 
∼ 
A

) [
log

(
1 − σ

(
h̃T 

i Mgi

))])
. (2)  

Here, hi and h̃i are the authentic and perturbed graph represen-
tations, respectively, gi is the local microenvironment summary, 
and M is a trainable matrix. Perturbed data is generated by 
randomizing gene expression profiles while keeping the network 
topology constant. 

Histological image embedding extraction 
For ST data with morphological information, we segment an 
image (H&E staining tiles) based on the coordinates of each spot 
to obtain its partial image. We then apply torchvision.transforms 
[31] for various transformations and augmentations on these par-
tial images, including normalization, rotation, sharpness adjust-
ment, and other operations. Subsequently, we extract the high-
level features of each spot tile using a pretrained convolutional 
neural network model, specifically ResNet50, capable of trans-
forming each spot image into 2048-dimensional latent variables. 
Furthermore, to enhance the representation of spot morphology, 
we conduct principal component analysis to extract the first 50 
principal components as latent characteristics. Finally, we map 
these features into a spot-like representation space Zmorph using a 
multilayer perceptron (MLP). 

Embedding fusion with attention mechanism 
By applying graph convolution operations on various graphs, we 
obtained multiple view-specific embeddings for spots. To adap-
tively fuse these embeddings into a unified representation based 
on their importance, we employed an attention mechanism to 
optimize the embedding fusion process. 

Given a series of embeddings z1, . . .  , zm for each spot, our 
goal is to use the attention mechanism to calculate the weight 
coefficients α for each embedding and fuse them accordingly. The 
attention mechanism is defined as follows: 

α = att (z1, . . . , zm) , (3)  

where α is the vector of self-attention coefficients, with αi repre-
senting the self-attention coefficient of the target spot in the i-th 
embedding. Specifically, we first perform a linear transformation 
on each spot embedding to obtain attention values, i.e., vi = 
qT.zi, where  q is a shared attention vector and zi represents the 
embedding of the i-th view. Then, we normalize these attention 
values using the softmax function to ensure comparability of 
coefficients across different spots. The attention coefficient for a 
given spot in the  i-th embedding is obtained as follows: 

αi = softmax (vi) = 
exp (vi)∑m 
i=1 exp (vi) 

. (4)  

Ultimately, through these attention coefficients, we can fuse all 
embeddings into a comprehensive embedding z for downstream 
analysis: 

z =
∑m 

i=1 
αi.zi. (5)  

In our framework, we first conduct a preliminary fusion of 
embeddings from different graphs, including those generated 
by varying A while keeping X constant

(
ZX 

1 , . . .  , ZX 
v

)
and those 

generated by varying X while keeping A constant
(
ZA 

1 , . . .  , ZA 
w

)
, 

before finally fusing them with Zmorph. Specifically, we use an 
attention mechanism to fuse ZX 

1 , . . . , ZX 
v into ZX, which  is  then  

used for the reconstruction of X: the latent representation ZX is 
input into a decoder to restore it to the original gene expression 
dimension. Unlike the encoder, the decoder employs an MLP for 

gene expression reconstruction, denoted as 
∼ 
X: 

LX 
rec =

∥∥∥∥∼ 
X − X

∥∥∥∥
2 

2 
, (6)

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae608#supplementary-data
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where 
∼ 
X denotes the reconstructed gene expression, the output 

of the decoder. Similarly, ZA 
1 , . . . , ZA 

w are fused into ZA for the 
reconstruction of the adjacency matrix A. 

LA 
rec =

∥∥∥ZA(
ZA)T − A

∥∥∥2 

2 
, (7)  

Lrec = LX 
recon + LA 

recon. (8)  

Here X and A refer to X1 and A1 of the base graph, respectively. 
Subsequently, we utilize the attention mechanism to adaptively 
fuse ZX, ZA, and  Zmorph into the final embedding Z for downstream 
analysis. 

Self-optimizing deep embedded clustering 
To effectively identify spatial domains, we employ an unsuper-
vised deep embedding clustering framework to iteratively assign 
spots to their respective domains (See Supplementary Note 2 for 
the detailed method of calculating qij and pij). After obtaining the 
soft assignment distribution qij and the auxiliary target distribu-
tion pij, we optimize the model based on the Kullback–Leibler (KL) 
divergence loss between the two distributions: 

Lcluster = KL
(
P
∥∥∥Q

)
=

∑
i

∑
j 
pij log

(
pij 

qij

)
(9) 

Post-training, the class assignment for spot i can be determined 
by arg max 

j 
qij. By identifying the index j corresponding to the 

maximum value in the qi vector, we assign spot i to class j. 

Optimization objectives and training of 
multi-view contrastive graph autoencoder 
During training, the contrastive loss Lscl, reconstruction loss Lrec 

and clustering loss Lcluster are jointly optimized. The final training 
objective of MCGAE is defined as: 

L = αLscl + βLrec + γLcluster, (10) 

where α, β, and  γ are weight factors used to balance the impact 
of different losses. Through ablation study, we demonstrated the 
necessity of each component in our model (Supplementary Note 3). 
Empirically, we set α = 0.1, β = 0.1, and γ = 1.  

The model was trained with the Adam optimizer [32]. The 
MCGAE architecture was implemented using PyTorch [33] 
(v.1.13.0) and run using a GPU running CUDA (v.11.6). 

Results 
Multi-view contrastive graph autoencoder 
improved spatial domain detection on human 
dorsolateral prefrontal cortex data with 10× 
Visium, enhancing known layer identification 
We initially assessed the spatial clustering performance of 
MCGAE using the LIBD human dorsolateral prefrontal cortex 
(DLPFC) dataset [34]. This dataset included spatially resolved 
transcriptomic profiles from 12 DLPFC slices, each depicting 
four to six layers of the cortex and white matter (WM). This 
evaluation focused on the unsupervised capacity of MCGAE 
and competing methods to recover annotated anatomical 
layers (Supplementary Note 4). MCGAE demonstrated superior 
performance across all slices, achieving a median score of 0.51 

and an average Adjusted Rand Index (ARI) of 0.52, surpassing 
all other methods (Supplementary Note 5). Notably, STAGATE 
also exhibited commendable performance, with a median score 
of 0.44 and an average ARI of 0.41 (Fig. 2A). We also evaluated 
the performance of MCGAE in the mouse forebrain, STARmap 
[8] (Supplementary Fig. S1), image-based technology (MERFISH 
[5]) (Supplementary Fig. S2) and two sets of simulated datasets 
(Supplementary Note 6 and Figs S3 and S4), achieving optimal 
results (Fig. 2G–I). 

Subsequently, we used one specific slice (#151669) to exem-
plify our results (Fig. 2B). Visual inspection revealed that most 
algorithms faced challenges in differentiating between layer 3 
and layer 4, as well as in demarcating the boundary between 
layer 4 and layer 5. MCGAE, however, distinguished itself by accu-
rately stratifying these layers and clearly identifying the boundary 
between them. A quantitative evaluation utilizing the ARI under-
scored MCGAE’s superior performance, with a leading score of 
0.63, followed by the BayesSpace algorithm at 0.46 (Fig. 2C and 
Supplementary Fig. S5). 

The low-dimensional embeddings and denoised expression 
data generated by MCGAE were instrumental for subsequent 
analysis. For trajectory inference (TI), we utilized the final 
representationz obtained from our model and performed TI using 
Scanpy’s ‘sc.tl.paga’ function. Although we did not explicitly 
constrain z for TI, the refinedz effectively preserved biological 
structures, leading to accurate visualization for TI. For the 
identification of SVGs, we employed a strategy similar to that 
used in SpaGCN, integrated within the MCGAE framework, which 
leveraged both the clusters derived from z and the original 
or denoised expression data (Fig. 2D and E and Supplementary 
Figs S4B and S5). Employing uniform manifold approximation and 
projection (UMAP) visualization of these embeddings, as an exam-
ple for slice #151669, highlighted the distinct manifold structures. 
Unlike most methods, which struggled to differentiate between 
WM and layer 3, MCGAE successfully depicted a clear pseudo-
trajectory from WM to layer 3 (Fig. 2D and Supplementary Fig. S5). 

In an in-depth exploration of the identified spatial domains, 
our methodology paralleled that of SpaGCN [22] for SVGs detec-
tion and comparison. To better quantify the differences between 
the two methods, we employed Moran’s I, a measure of spatial 
autocorrelation that quantifies the degree to which a variable is 
similar to itself in nearby locations. This analysis indicated that 
the median Moran’s I values [35] of SVGs derived from the original 
gene expression data by MCGAE closely aligned with those identi-
fied by SpaGCN, with values of 0.13 and 0.12, respectively (Fig. 2E, 
Supplementary Fig. S6 and Supplementary Table 1). Remarkably, 
SVGs from denoised data demonstrated significantly higher spa-
tial correlation, with a median Moran’s I value of 0.76. Further-
more, spatial domain patterns identified from the denoised data 
were markedly more distinct and concentrated compared to those 
derived from the original expression data (Fig. 2F). 

To demonstrate the necessity of each component in our 
model, we conducted ablation studies (Supplementary Note 3 and 
Fig. S6A and B), which confirmed the benefits of incorporating 
multi-view learning strategies, attention mechanisms, and the 
spatial clustering module in MCGAE. Additionally, we developed 
a fine-tuned version of MCGAE for image feature extraction to 
better capture image information (Supplementary Note 7). We 
also compared the computational cost and memory usage of 
different methods. By sampling datasets, we evaluated runtime 
and RAM usage across varying numbers of spots, finding that 
MCGAE’s performance is moderate in both metrics. For example, 
processing 20 000 spots took under six minutes with a RAM
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Figure 2. MCGAE has shown improvements in spatial domain recognition on both DLPFC and mouse brain anterior datasets. (A) Boxplot displays the ARI 
scores of the twelve methods applied to the 12 DLPFC slices. In the boxplot, the central line represents the median score, the box boundaries represent 
the upper and lower quartiles, and the whiskers extend up to 1.5 times the interquartile range, similar to what is shown in (E) and (H). (B) H&E image 
and manual annotation from the original study. (C) The clustering results for slice 151,669 of the DLPFC dataset were obtained using MCGAE, GraphST, 
Spaceflow, ConST, SpaGCN, and STAGATE. Clustering results for other algorithms can be found in Supplementary Fig. S5. (D) Trajectory inference was 
generated using embeddings from MCGAE, GraphST, Spaceflow, ConST, SpaGCN, and STAGATE for the DLPFC section 151669. (E) Boxplot is used to 
display the Moran’s I values for SVGs detected by MCGAE, SpaGCN and raw (raw expression), and for slice 151,669. (F) the visualization of denoised and 
raw expression patterns of layer marker genes. (G) Spatial domain clustering based on the annotation labels. (H) Boxplot displays the ARI scores of the 
twelve methods applied to the mouse brain anterior dataset. (I) The clustering results of the mouse brain anterior dataset were obtained using MCGAE, 
BayesSpace, STAGATE, GraphST, ConST, SpaceFlow, Seurat, STMGCN. 

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae608#supplementary-data
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consumption of approximately 768.95 MB, which is comparable 
to SGCAST (Supplementary Fig. S7D and E). 

Multi-view contrastive graph autoencoder 
accurately delineates spatial domains within the 
human breast cancer and colorectal cancer 
datasets utilizing histological images 
In the Human Breast Cancer (HBC) dataset, we investigated 
MCGAE’s performance when incorporating image information 
and validated the advantages of denoised data. Importantly, 
integrating tumor images augments this analysis, markedly 
improving the precision in identifying spatial domains within 
the tumor microenvironment. Utilizing existing H&E stained 
images and annotation information (Fig. 3A), we assessed the 
performance of each algorithm using ARI. Notably, integrating 
H&E stained images with MCGAE resulted in a significant increase 
in the ARI score, rising from an average of 0.53–0.64, marking an 
improvement of 20.75%. Additionally, SpaGCN and STAGATE also 
demonstrated robust performance, with ARI averages of 0.56 and 
0.57, respectively (Fig. 3B and Supplementary Fig. S8). Domain 
clustering visualizations reveal MCGAE’s accurate identification 
of most tumor domains, while without image integration, the 
identification of tumor domains is less precise. The GraphST 
method accurately identifies tumor border regions, with correct 
identification of IDC_4 and DCIS/LCIS_4 (Fig. 3C). Subsequently, 
we visualized specific tumor domains characterized by marker 
genes, including the marker BMERB1 within the IDC_4 region. 
Through the reconstruction of the raw gene expression data, 
MCGAE achieved more precise domain patterns of marker genes 
(Fig. 3D). 

To assess MCGAE’s tumor data analysis capabilities, we com-
pared it with SpaGCN, GraphST, and STAGATE using data from 
colorectal cancer patients [36]. Annotations from an oncology 
pathologist highlighted a small tumor domain on an H&E stained 
slide with low-resolution issues in Region X, showing a clus-
tered distribution of darker-stained cells and vacuolar changes in 
tumor cells post-chemotherapy (Fig. 3E). MCGAE effectively iden-
tified tumor areas and grouped disputed regions with lymphatic 
clusters, suggesting their lymphatic nature. In contrast, STA-
GATE misidentified muscle tissue as lymphatic structures, and 
MCGAE without image data failed to distinguish tumor domains 
accurately. With image integration, MCGAE precisely separated 
lymphatic structures from tumor domains and showed superior 
accuracy in recognizing other tissue structures like vessels (Fig. 3F 
and Supplementary Fig. S9). 

By selecting three well-known tumor markers, we discerned 
that the denoised data more effectively unveiled domain patterns 
(Fig. 3G). In the context of the previously ambiguous region X, 
which demonstrates clustering affinity with lymphoid domains, 
our enrichment analysis of SVGs within this region underscored 
a pronounced engagement with immune system functionalities, 
notably those pertaining to lymphocytes and immune responses. 
Accordingly, by synthesizing insights from both clustering pat-
terns and pathway enrichment analyses, it becomes evident that 
this area is more aptly characterized as a lymphoid structural 
domain, thereby clarifying its biological identity and significance 
(Fig. 3H). 

In summary, the integration of MCGAE with tumor imaging 
data holds promising potential for advancing our understand-
ing of tumor biology. Through its precise identification of spa-
tial domain structures, MCGAE empowers clinicians to make 
informed decisions regarding treatment strategies, paving the way 
for more personalized and effective therapies for cancer patients. 

Multi-view contrastive graph autoencoder’s 
spatial clustering of colorectal cancer liver 
metastasis data elucidated the phenomenon of 
tumor invasion 
The spatial organization of tissue domains in tumors is complex, 
with lesions containing diverse cancer cells and pathological 
changes. Clinically, it’s crucial to evaluate tumor initiation and 
progression. Accurately delineating tumor margins and assessing 
the invasive status through the microenvironment is essential. 
Here, we applied MCGAE to a complex dataset derived from 
colorectal cancer liver metastasis using the 10× platform [36]. 
Through annotations by an oncology pathologist, we discovered 
that the primary tumor area of colorectal cancer was predomi-
nantly infiltrated by tumor cells (Fig. 4A). Initially, when applying 
various methods to perform spatial domain clustering on this 
dataset, we observed that MCGAE and STAGATE exhibited more 
defined clustering patterns (Fig. 4B and Supplementary Fig. S10). 
Interestingly, nearly all methods identify a domain Y that encom-
passes both connective tissue and tumor, as depicted by the black 
dashed box in domain of Fig. 2B. This prompts us to question 
whether it is due to tumor invasion that they are consistently 
grouped into a single domain. 

Initially, we performed t-SNE dimensionality reduction on all 
spots in the sample, colored by manual annotation and region 
Y (Fig. 4C and Supplementary Fig. S11). Interestingly, in the t-
SNE plot, we found that the spots of region Y predominantly 
located in the tumor category, although a considerable number 
of spots were scattered among the connective tissue category 
(Fig. 4C). Subsequent t-SNE analysis of the spots of region Y alone 
revealed three main clusters (Fig. 4D). Differential gene expression 
and enrichment analysis revealed that Cluster 0, the most popu-
lous, mainly consisted of tumor cells, with pathways related to 
the collagen-containing extracellular matrix and angiogenesis— 
key factors in the tumor microenvironment and cell invasion 
(Fig. 4D and E). Cluster 1, located within the tumor region, showed 
enrichment in pathways linked to energy metabolism and mito-
chondrial functions, aligning with its location. Cluster 2, found 
primarily in connective tissue, displayed genes linked to both nor-
mal tissue function and tumor development, including responses 
to topologically incorrect proteins and enhanced defense mech-
anisms (Fig. 4E and F). The analysis above confirms our initial 
hypothesis that the development and invasion of the tumor lead 
to the manifestation of tumor molecular characteristics in non-
tumor domains. Although these features are not conspicuously 
present in histological imaging, they can still be corroborated 
through various molecular characterizations. This further under-
scores the significance of integrating multiple modalities of ST 
information. 

As described previously, the primary lesion of the patient 
indeed underwent invasion and metastasis, particularly severe 
in the liver. Next, we explored the characteristics of tumor 
development and invasion within the liver metastatic lesions 
of the patient. Through annotations by an oncology pathologist, 
we observed that half of the colorectal cancer liver metastasis 
area consists of tumor tissue, while the other half consists of 
liver tissue, with clear boundaries (Fig. 4G). Various algorithms 
effectively distinguished the boundaries between liver and tumor 
domains, with MCGAE identifying domains located on both sides 
of the boundary (Fig. 4H and Supplementary Fig. S12). The recon-
structed expression data module facilitated the discernment of 
marker gene expression patterns (Fig. 4I). Hierarchical clustering 
analysis revealed that domains 2, 8, 16, and 17 exhibited clustering 
patterns distinct from both liver and tumor tissues (Fig. 4J).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae608#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae608#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae608#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae608#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae608#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae608#supplementary-data
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Figure 3. MCGAE accurately identifies spatial domains in the HBC and colorectal cancer datasets using histological images. (A) Morphological images and  
manual annotations for HBC data. (B) Boxplot displays the ARI scores of the twelve methods applied to the HBC dataset. In the boxplot, the central line 
represents the median score, the box boundaries represent the upper and lower quartiles, and the whiskers extend up to 1.5 times the interquartile range. 
(C) Clustering results for the HBC dataset were obtained using MCGAE, MCGAE without morphological information, GraphST, SpaGCN, and STAGATE, 
with additional algorithm results in Supplementary Fig. S8. (D) The spatial expression patterns of SVGs detected by MCGAE were visualized using both the 
denoised and original expression data. (E) Colorectal cancer morphological images with an oncology pathologist’ annotation. (F) The clustering results for 
the colorectal cancer dataset were obtained using MCGAE, MCGAE without morphological information, and STAGATE, with additional algorithm results 
presented in Supplementary Fig. S9. The additional contour lines in the figure represent the contours of the domains of interest for each method, with 
annotations consistent with those in (E) (G) Visualization of marker genes for tumor using denoised and original expression data from MCGAE. (H) the 
GO enrichment plot for SVGs in tumors located at the boundary between tumor and connective tissue depicts biological processes, cellular components, 
and molecular functions using different shading patterns to distinguish the categories. 

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae608#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae608#supplementary-data


MCGAE | 9

Figure 4. MCGAE facilitates the study of tumor invasiveness in colorectal cancer liver metastasis cases. (A) Colorectal cancer morphological images with  
an oncology pathologist’s annotation. (B) Clustering results for the colorectal cancer dataset were obtained using MCGAE, GraphST, and STAGATE, with 
additional algorithm results in Supplementary Fig. S10. (C) A t-SNE plot of all spots in the sample, colored according to manual annotation and region 
Y. (D) A refined t-SNE plot of region Y, segmented into three distinct categories, highlighting the top DEGs for each category. (E) The three categories of  
region Y projected back onto the original ISH slides. (F) A GO enrichment plot for DEGs across the three categories in region Y, with colors corresponding 
to each category. (G) Liver cancer morphological images with an oncology pathologist’s annotation. (H) Clustering results for the liver cancer dataset 
were obtained using MCGAE, GraphST, and STAGATE, with additional algorithm results in Supplementary Fig. S12. (I) Denoised and original expression 
patterns of metabolism-related gene CYP3A4 in liver cancer dataset. (J) The heatmap of common marker genes in liver cancer and normal liver tissue. 
(K) A boxplot showing the expression differences of common SVGs across domains 5, 2, and 6. (L) Enrichment analysis for SVGs in domain 2 relative to 
domain 5 and 6, along with their shared SVGs. 

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae608#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae608#supplementary-data
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Histopathological examination revealed that domains 8, 16, and 
17 were situated within the fibrous tissue layer of the tumor 
domain, while domain 2 was positioned at the midpoint between 
tumor and liver tissues, with half of it consisting of fibrous tissue. 

We analyzed differential gene expression in Domain 2 ver-
sus its neighboring tumor Domain 5 and liver Domain 6, not-
ing distinct expression patterns among shared SVGs, suggesting 
tumor progression variations and liver function (Fig. 4K). Pathway 
enrichment analysis revealed that SVGs in Domain 2 compared 
to Domain 5 involve processes like vesicle formation and cellular 
engulfment, indicating interactions within the tumor microen-
vironment. Conversely, SVGs between Domain 2 and Domain 6 
primarily concern metabolic pathways, reflecting liver function. 
Common genes include those involved in tumor-relevant path-
ways like cell–cell junction organization and fibrous tissue pro-
cesses, matching the spatial characteristics of Domain 2 (Fig. 4L). 

In this intricate and detailed example of colorectal cancer liver 
metastasis, the utilization of MCGAE reveals a range of valuable 
functionalities. Firstly, MCGAE proves its effectiveness in extract-
ing essential tumor image information, enabling a comprehensive 
understanding of the spatial distribution and characteristics of 
the metastatic lesions within the liver. Secondly, MCGAE employs 
expression denoising techniques to refine and enhance the accu-
racy of gene expression data, ensuring reliable and robust analysis 
of molecular profiles. Lastly, MCGAE excels in identifying domain-
specific SVGs, shedding light on the unique molecular processes 
and interactions taking place within distinct tumor microenviron-
ments. Together, these functionalities of MCGAE contribute to a 
deeper comprehension of the intricate dynamics and heterogene-
ity of colorectal cancer liver metastasis. 

Multi-view contrastive graph autoencoder 
handles datasets from both stereo-seq and 
slide-seq technologies and constructs 3D spatial 
domains 
Leveraging the diversity of ST technologies, we used a Stereo-seq 
dataset to analyze coronal sections of the mouse olfactory bulb 
[11]. We began by utilizing established annotations to identify key 
layers such as the olfactory nerve layer and external plexiform 
layer, among others (Fig. 5A). Our evaluation found that while 
MCGAE, GraphST, and STAGATE all effectively distinguished the 
outer layers, GraphST confused the glomerular layer with the 
mitral cell layer, and STAGATE missed internal structures like the 
rostral migratory stream (Fig. 5B and Supplementary Fig. S13). In 
contrast, MCGAE accurately differentiated both outer and inner 
layers. Validation with marker genes confirmed MCGAE’s results, 
showing a strong match between identified clusters and known 
markers (Fig. 5C). 

Currently, various technologies capable of producing consecu-
tive sections, integrating and reconstructing their 3D expression 
domains, allow for the genuine spatial observation of biological 
developmental changes. We applied MCGAE to pseudo-3D spatial 
data from seven hippocampal datasets using Slide-seq [10], focus-
ing on ‘cord-like’ structures within the hippocampus (Fig. 5D). To 
adapt MCGAE for 3D identification, we constructed a large adja-
cency matrix for all batches, using adjacency distance between 
sections (Fig. 5E and Supplementary Note 8). Initially, MCGAE 
faced challenges in 3D domain identification due to continuous 
slices, although most spots were discernible on the 2D UMAP 
plot (Fig. 5F). By integrating adjacent edges between neighboring 
sections, we enhanced MCGAE’s ability to accurately delineate 
tissue structures and distinguish different regions on the UMAP 
plot (Fig. 5G). These adaptations demonstrate MCGAE’s utility 

in reconstructing 3D tissue models and extracting precise 3D 
expression patterns. 

These examples underline the flexibility and robustness of 
MCGAE in processing and analyze spatial genomics data across 
various dimensions and sequencing platforms. Its modular mod-
eling approach not only facilitates a deeper understanding of 
complex biological structures and processes but also positions 
MCGAE as a promising universal algorithm framework for ST. This 
versatility opens new avenues for research in tissue architecture 
and function, offering insights that could lead to novel discoveries 
in biology and medicine. 

Discussion 
Biological phenomena unfold within spatial contexts where cells 
interact within the three-dimensional structures of tissues, cru-
cial for disease and tissue functionality. Spatial transcriptomics 
captures diverse cell information, including gene expression, loca-
tions, and histological images. Yet, many methods have not fully 
utilized this multi-modal data. In tumor research, particularly, 
histological images are vital for accurately depicting tumor status 
and boundaries. 

In this study, we introduce the Multi-View Contrastive Graph 
Auto-Encoder (MCGAE), a model designed for spatial domain 
detection in ST. By integrating multi-modal information through 
multi-view processing, contrastive graph convolutional neural 
networks, and attention modules, MCGAE improves feature 
embeddings and data reconstruction accuracy. The model also 
utilizes a pre-trained ResNet50 network for image feature 
extraction, enhancing its capability to handle complex tumor 
data. In the methods employed by SpaGCN, ConST, DeepST, 
stLearn, and TIST, image data plays a crucial role in enhancing 
the analysis of ST. SpaGCN incorporates image information into 
the spatial location data, expanding it into a three-dimensional 
space, thereby influencing the similarity/adjacency matrix 
A for spots. ConST utilizes pre-trained neural networks to 
extract image features, which are then concatenated with 
the original gene expression matrix X, directly affecting the 
spot/node representations. DeepST and stLearn construct spot 
similarity matrices using image data, which are subsequently 
combined with gene expression and spatial similarity matrices 
to enhance the original gene expression, thus impacting the 
feature matrix X. TIST, on the other hand, directly fuses different 
modality-specific similarity matrices to create a multi-modality 
similarity network for downstream analysis. Our approach 
similarly influences gene expression X by integrating image 
representations extracted using a pre-trained ResNet with other 
modality-derived representations. 

To validate the performance of our model, we evaluated 
MCGAE on eight real datasets from five platforms and two 
simulated datasets from one platform. Experimental results 
demonstrate that our model exhibits competitive performance 
compared to existing methods. Additionally, our algorithm pro-
vides denoised expression data for downstream analysis, aiding 
in the identification of spatially differential genes and spatial 
domain expression patterns. Through multi-view modeling of 
expression data and spatial coordinates, MCGAE facilitates the 
capture of biological signals, enabling accurate identification of 
tumor regions even in complex medical tumor datasets. This 
advancement contributes to the study of tumor invasion by 
providing valuable insights. 

However, there are some spaces to improve for our methods. 
Primarily, the computation of the adjacency matrix for spatial

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae608#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae608#supplementary-data
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Figure 5. MCGAE handles datasets from both stereo-seq and slide-seq technologies and can construct 3D spatial domains. (A) Laminar organization of the 
mouse olfactory bulb annotated using the DAPI-stained image. (B) Spatial domains identified by MCGAE, GraphST and STAGATE in the mouse olfactory 
bulb Stereoseq data. (C) Visualization of the spatial domains identified by MCGAE and the corresponding marker gene expressions. The identified 
domains are aligned with the annotated laminar organization of the mouse olfactory bulb. (D) Visualization of the 3D hippocampal volume stacked by 
seven aligned consecutive sections profiled by slide-seq. (E) 3D spatial domain recognition is achieved by extending MCGAE, where we construct a large 
adjacency matrix covering all batches and focus on the adjacency distances between adjacent sections. (F) Cluster assignments using conventional 
adjacency matrix calculation in MCGAE and UMAP plots based on MCGAE embeddings. Spots are color-coded for identified spatial domains and section 
IDs. (G) Cluster assignments using extended adjacency matrix calculation in MCGAE-3D and UMAP plots based on MCGAE-3D embeddings. Spot colors 
represent spatial domains and section IDs. 
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position information incurs a computational complexity of O
(
n2

)
, 

which may rapidly exhaust computational resources with an 
increasing number of samples. To address this, we could consider 
using a neighbor sampling strategy, where a subset of spots is 
selected along with their neighbors to construct the adjacency 
matrix. This approach would reduce computational demands 
while preserving the global structure, making it more feasible 
to handle large-scale ST data with GCNs. Secondly, although we 
addressed batch effects in the 3D example by considering the dis-
tance between neighboring regions, this strategy may not suffice 
for other complex datasets, necessitating further refinement in 
future research. 

MCGAE stands out as a highly competitive method, and its 
modular modeling approach makes it scalable for future exten-
sions. It is foreseeable that the field of spatial genomics will 
evolve toward multiomics, 3D spatial genomics, and spatiotem-
poral genomics. As the number of samples is expected to rapidly 
increase in the future, MCGAE will also need to address the chal-
lenge of large-scale datasets. This can be achieved by employing 
subgraph sampling or deep multichannel GCN strategies in future 
developments. 

Key Points 
• Comprehensive Integration of Multimodal Data: MCGAE 

is adept at integrating diverse types of data, including 
gene expression, spatial coordinates, and morphological 
information. This integration is critical for accurately 
identifying spatial domains within complex tissue envi-
ronments, enhancing the understanding of tissue het-
erogeneity. 

• Advanced Computational Framework: The MCGAE uti-
lizes a sophisticated computational framework that 
employs multi-view representations, modular modeling, 
and contrastive graph convolutional networks. These 
features allow for the effective processing of spatial 
transcriptomics data and the generation of modality-
specific spatial representations. 

• Enhanced Data Processing Capabilities: By incorporating 
attention mechanisms and morphological image fea-
tures, MCGAE significantly improves its ability to process 
and interpret multimodal data. This enriched framework 
facilitates more accurate spatial domain detection, data 
denoising, trajectory inference, and 3D feature extrac-
tion, outperforming traditional methods.. 

• Applications in Cancer Research: Specifically applied to 
colorectal cancer liver metastases, MCGAE successfully 
integrates histological and gene expression data to iden-
tify regions of tumor invasion and characterize cellu-
lar molecular regulation. This capability demonstrates 
MCGAE’s potential as a powerful tool for advancing 
cancer research and understanding complex diseases. 

Supplementary Data 
Supplementary data is available at Briefings in Bioinformatics 
online. 
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