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A B S T R A C T

Purpose: Friedreich ataxia (FDRA) is a debilitating neurodegenerative disease that can have ophthalmological 
manifestations including visual dysfunction, nystagmus, and optic atrophy. However, severe photophobia has 
not been reported nor evaluated with functional magnetic resonance imaging (fMRI).
Methods: A 64-year-old white female with a 37-year history of FDRA presented to the eye clinic with worsening 
photophobia of 3 years. To measure her visual cortex activation and subjective responses during episodes of 
photophobia, she underwent event-related fMRI with light stimuli. In comparison, the same protocol was con
ducted in an individual with photophobia but without FDRA. After the fMRI, both patients were treated with 35 
units of BoNT-A applied to the forehead.
Results: Analysis of visual cortex activity in response to light stimulus in the FDRA patient showed no correlation 
between blood oxygen level dependent (BOLD) activation and light stimuli in the first (r = − 0.100, p = 0.235), 
and a weak negative correlation in the second half of the fMRI scan (r = − 0.236 p = 0.004). In notable contrast, 
significant positive correlations were noted between visual cortex activity and the light stimulus (1st half: r =
0.742, p < 0.001, vs. 2nd half: r = 0.614, p < 0.001) in the comparator. Six weeks later, no improvement in 
photophobia was noted in either patient.
Conclusion and importance: Our study highlights photophobia as one potential ocular manifestation of FDRA and 
suggests that one underlying contributor may be a decoupled cortical neurovascular response to light. Our study 
provides novel information that may guide physiologic understanding and future treatments in this disease.

1. Introduction

Friedreich ataxia (FDRA) is an autosomal recessive neurodegenera
tive disease that primarily affects the cerebellum and spinal cord.1 Most 
cases are caused by a homozygous triple repeat expansion in the GAA 
sequence in the frataxin (FXN) gene.2,3 It is the most common inherited 
ataxia in patients of European descent with roughly 1 in 50,000 being 
affected.4 Pathogenesis involves the degeneration of the posterior spinal 
columns progressing to muscle weakness. Common clinical features 
include limb and gait ataxia, impaired reflexes and speech, and weak
ness.5 Impaired vibration sense and proprioception as well as hearing 

and visual dysfunction have also been documented.6

Ocular manifestations have also been seen in FDRA. Nystagmus, 
including gaze-evoked horizontal and spontaneous vertical nystagmus, 
has been noted in the majority of individuals with FDRA.7,8 In one study 
of 20 subjects with FDRA and oculomotor abnormalities, 12 displayed 
gaze-evoked horizontal nystagmus, and 9 showed spontaneous vertical 
nystagmus, with one subject having both types of nystagmus.8 In this 
study, the presence of vertical nystagmus positively correlated with 
disease duration.8 However, most subjects maintained normal vision, 
with only 1 of 20 subjects experiencing visual loss in one study (acuity 
<6/60), likely due to optic atrophy.8 In fact, optic atrophy has been 
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noted in 30.4 % (35 of 115)9 of FDRA patients in one study and 12 % (3 
of 26) in another.7

Subclinical central nervous system manifestations of FDRA have also 
been detected in the retina. Retinal nerve fiber layer (rNFL) thinning, 
measured by optical coherence tomography (OCT), has been noted in 
FDRA with lower mean average thickness noted in cases compared to 
controls in two studies (76 ± 12.0 μm, n = 21 vs. 100 ± 8.9 μm, n = 48, 
p < 0.000110; 72.7 ± 14.7 μm, n = 10 vs. 111.1 ± 12.0 μm, n = 22 p <
0.000111). In yet another study, 83 % (19 of 23) of individuals with 
FDRA were noted to have rNFL thinning, defined by a mean peripapil
lary thickness <5 percentile compared to the built in normative data
base.12 RNFL thinning has been linked to age of FDRA onset (r = 0.57, p 
= 0.007)10 and disease duration (r = − 0.52, p < 0.001).13

In this report, we describe a case of an individual with extreme light 
sensitivity with concomitant FDRA. As this manifestation has not been 
studied with respect to FDRA, we describe clinical features of the case 
and functional neuroimaging responses to visual processing. As a 
comparator, we also examined neuroimaging responses in an individual 
with photosensitivity but without FDRA (control). Finally, given its 
utility in migraine,14,15 we investigated the clinical impact of botulinum 
toxin A (BoNT-A) on light sensitivity in FDRA.

2. Methods

This study was approved by the Miami Veterans Administration 
(3011.08) and University of Miami (20,190,340) Institutional Review 
Boards and was conducted in accordance with the tenets of the Decla
ration of Helsinki and the United States Health Insurance Portability and 
Accountability Act. Both patients provided written informed consent 
prior to study participation.

2.1. Questionnaires

The patients were administered several questionnaires during the 
baseline clinical visit, providing information on ocular symptoms that 
included the 5 Item Dry Eye Questionnaire (DEQ-5, range 0–22)16 and 
the Ocular Surface Disease Index (OSDI, range 0–100).17 Average ocular 
pain was reported using the Numerical Rating Scale (NRS, range 
0–10).17,18

2.2. Ocular surface evaluation

Subjects underwent an ocular surface evaluation that included 
measurements of tear stability (tear break up time, TBUT, lower values 
indicate more tear instability), fluorescein epithelial corneal staining 
(rated in accordance with the National Eye Institute (NEI) scale,19

higher values indicate more epithelial disruption), and tear production 
(Schirmer test, measured in millimeters of wetting in 5 min, lower 
values indicate decreased tear production).

2.3. Botulinum toxin protocol

Botulinum toxin A (Botox, Allergan) was administered to each pa
tient using a modified migraine protocol.20 A total of 35 units at 7 sites 
on the forehead were administered: 20 units in the frontalis, 10 units in 
the corrugators, and 5 units in the procerus. Six weeks after adminis
tration, subjects again filled out questionnaires regarding eye symptoms 
and underwent an ocular surface examination.

2.4. fMRI

2.4.1. MRI acquisition
Imaging was conducted using a 3T Siemens MAGNETOM Vida 

scanner (Erlangen, Germany) with a Siemens BioMatrix Head/Neck 20 
channel coil. For anatomical scans, a sagittal three-dimensional T1- 
weighted scan (MPRAGE) was performed (TE/TR = 2.38/2100 ms; 192 

1.00 mm-thick sagittal slices; in-plane resolution = 1.00 × 1.00 mm 
[256 x 256]). For the functional scan, a gradient echo (GE) echo planar 
imaging (EPI) sequence was performed (TE/TR = 30/2000 ms; 100 1.50 
mm-thick oblique slices aligned to the long axis of the caudal brainstem; 
in-plane resolution = 1.94 × 1.94 mm [136 x 136]), with 290 vol (9 min 
and 40 s) captured. The oblique orientation of acquisition has proven 
useful for functional imaging of brainstem structures.21

2.4.2. fMRI protocol
For the functional scan, an event-related design based on our pre

vious photophobia study21 was employed using the following stimula
tion protocol. Briefly, our scanning protocol included two visual 
conditions: a black screen as the resting condition (featuring a black 
background with an overlaying white cross, ~0.5 lux) and a white 
screen as the stimulus condition (featuring a white background with an 
overlaying black fixation cross, ~65 lux). Subjects were shown 16 epi
sodes of the white screen for 6 s each with resting conditions (black 
screen) in between stimuli that varied between 26 and 34s in 2-s in
crements, to avoid anticipatory responses.21

2.4.3. Comparison subject for fMRI analysis
The comparison subject chosen post-hoc was a 41-year-old White 

female who had severe migraine-associated light sensitivity that wors
ened 1 year after laser-assisted in situ keratomileusis (LASIK). Criteria 
for selection included same gender and similar response to BoNT-A as 
the FDRA subject.

2.4.4. fMRI data analysis
Functional imaging datasets were processed and analyzed using 

FEAT (FMRI Expert Analysis Tool) Version 6.0, part of FSL 6.0.7.3 
(FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl).22 Pre-processing 
included elimination of the first three acquired volumes to allow for 
signal equilibration; motion correction using MCFLIRT (Motion 
Correction using FMRIB’s Linear Image Registration Tool)23; removal of 
non-brain structures using BET [Brain Extraction Tool]24; spatial 
smoothing using a Gaussian kernel of 5-mm full-width half-maximum; 
grand-mean intensity normalization of the entire 4D dataset by a single 
multiplicative factor; and high-pass temporal filtering (Gaussian-
weighted least-squares straight line fitting with sigma = 50.0 s). Vox
elwise normalization was completed by dividing the signal intensity at 
each time point by the voxel’s mean intensity. A region of interest (ROI) 
analysis focused on light-related activity in the intracalcarine cortex. 
The Harvard-Oxford Subcortical and Cortical atlases were used to create 
a structural anatomical mask of bilateral intracalcarine cortex (min =
50, max = 100). MRI data acquired from the subject with FDRA were 
compared to similarly collected data in a subject without FDRA.25

For the voxel clusters identified within the ROI, single-trial averages 
were calculated for all 16 light stimulus on-off cycles for each individual. 
The BOLD signal time course averaged all voxels within the mask- 
defined anatomic boundaries of the ROI voxels, generating a mean 
ROI signal time course.

A total of 288 signal intensities per functional scan were extracted 
from FSL. Our sampling window for analysis for each stimulus cycle 
included the signal intensities at 3 time points before the stimulus, the 3 
time points that made up the stimulus, and 10 time points immediately 
following the stimulus (16 signal intensities total). There were 32 total 
residual time points excluded per scan – time points remaining after the 
10 post-stimulus that were not part of the 3 time points preceding the 
following stimulus. Each trial average was calculated by averaging the 
first signal intensity of each sampling window, the second, third, and so 
on, creating 16 trial averages. The normalized change in signal intensity 
was compared to the light stimulus signal intensity over the full duration 
of the scan as well as for each half of the scan for each subject to look at 
stability of the signal intensity change.
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2.5. Statistical analyses

Statistical analyses were performed using GraphPad Prism 10.1.1 
software (GraphPad Software, LLC, San Diego, California, USA). In the 
pre-BoNT-A condition, relationships between ROI activation and the 
light stimulus were analyzed using Pearson’s correlation coefficients. 
The statistical significance was determined by an alpha level of 0.05. 
Means are reported with standard deviation (M±SD).

3. Results

3.1. Case

A 64-year-old White female presented to the eye clinic for worsening 
photophobia, which started spontaneously approximately three years 
prior to presentation. She also complained of blurred vision, intermit
tent diplopia, and constricted peripheral vision. Her medical history was 
significant for a 36-year history of genetically confirmed FDRA by 
presence of GAA trinucleotide repeat expansions within the FXN gene on 
both FRDA1 alleles.26 One allele had 1005 repeats and the other had 139 
repeats; the normal range is 5–33 repeats.26 The multi-gene panel was 
performed by Athena Diagnostics (Marlborough, Massachusetts), a 
Clinical Laboratory Improvement Amendments (CLIA) certified labora
tory, and this pathologic variant was validated by repeat expansion 
analysis and Southern blot.

Her past ocular history was significant for cataract extraction and 
intraocular lens (IOL) implantation in both eyes 9 years prior to pre
sentation. Her post operative course was complicated by recurrent cys
toid macular edema (CME) in the right eye, treated with topical 
nonsteroid anti-inflammatory agents (NSAIDs) and epiretinal membrane 
(ERM) in both eyes. A few years later, due to an unknown cause, partial 
intraocular lens (IOL) dislocations were noted in both eyes with 
compression of iris tissue nasally, leading to enlarged pupils (Fig. 1A–B). 
In the left eye, the nasal IOL haptic was anterior to the iris (Fig. 1B). The 
patient underwent IOL repositioning and pupilloplasty in the left eye, 
without improvement in light sensitivity (Fig. 1C–D).

Given her continued symptoms, tinted contact lenses (HEMA 
Hydrogel lens 38 % Water content – complete black out with 6.0 mm 
clear pupil opening) (Fig. 1E–F) and pilocarpine drops were trialed, with 
no improvement in light sensitivity. Given a history of episodic 
migraine, external trigeminal nerve stimulation (e-TNS, CEFALY Tech
nology, Belgium) was also trialed for three months with no relief of 
symptoms. FL-41 tinted glasses (Axon Optics, Bountiful, Utah, USA) 
were recommended which provided slight relief for the light sensitivity. 
Beyond migraine and FDRA, the patient’s other medical conditions 
included atrial fibrillation and major depressive disorder. Her current 
medications included paroxetine, metoprolol, rivaroxaban, and vita
mins D3 and B complex. She was not taking any eye drops at the time of 
presentation.

On presentation, visual acuity was 20/150 in the right eye and count 

Fig. 1. Slit lamp photos demonstrating intraocular lens (IOL) and iris abnormalities in an individual with Friedreich ataxia.
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fingers (CF) at 2’ in the left eye. Though nystagmus was previously 
documented, nystagmus was not noted on baseline examination. Slit 
lamp examination was consistent with a nasally displaced iris in the 
right eye and pupilloplasty in the left eye with IOLs well positioned in 
both eyes. No intraocular inflammation was noted in either eye. On 
dilated examination, optic atrophy was noted, supported by rNFL thin
ning on a prior OCT (Fig. 2).

The patient endorsed severe symptoms on dry eye specific (Ocular 
Surface Disease Index, OSDI)17 and light sensitivity questionnaires. 
Ocular surface examination demonstrated normal tear production and 
mild corneal staining (Table 1).

Confocal microscopy imaging demonstrated activated dendritic cells 
(aDC) and a paucity of corneal nerves (Fig. 3A), and infrared imaging of 
the Meibomian gland demonstrated dropout in both eyes (Fig. 3B). 
Multifocal electroretinogram (mERG) done four years prior to presen
tation was normal.

Fig. 2. Optical coherence tomography of the retinal nerve fiber layer in the Friedreich 
ataxia patient.

Table 1 
Symptoms and examination findings at baseline and after botulinum toxin 
(BoNT-A) injection.

Baseline 6 weeks Post-BoNT-A

Dry eye questionnaires
DEQ5 (range 0–22) 6 3
OSDI (range 0–100) 77 58
Pain and light sensitivity questionnaires
Light sensitivity (OSDI-Q1) (range 0–4) 4 4
Average pain rating 1 week recall (range 0–10) 0 0
Tear parameters (Right/Left)
TBUT (seconds) 10/8 7.3/7.3
Corneal staining (range 0–15) 2/2 13/3
Schirmer score (range 0–35 mm) 14/14 2/6

DEQ5: 5 Item Dry Eye Questionnaire, OSDI: Ocular Surface Disease Index, Q1: 
Question 1, TBUT: tear break-up time.
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3.2. fMRI analysis

The patient underwent fMRI imaging to determine brain activity in 
response to a light stimulus.27 Post-hoc, we selected a 41-year old White 
female with ocular pain and photophobia who was resistant to BoNT-A 
treatment from an existing cohort to act as a comparator. Blood oxygen 
level dependent (BOLD) responses to light in the FDRA (case) and con
trol patients were analyzed spatially via statistical parametric maps and 

in a temporal dimensional way via time course plots then compared to 
the comparator subject (Figs. 4 and 5).

In the FDRA patient, the BOLD response during the 6-s light stimulus 
appears to have a delayed onset and prolonged duration in the first half, 
and the response in the second half appears even more delayed, 
becoming negatively correlated with the stimulus (Fig. 5A–B). In the 
comparison patient, a clear BOLD response is seen in both the first and 
second half of the scan (Fig. 5C–D).

Fig. 3. Confocal imaging of the central cornea and infrared imaging of the Meibomian 
glands in an individual with Friedreich ataxia.

Fig. 4. Time series of blood oxygen level dependent (BOLD) responses in the visual cortex 
over the full duration of the scan.
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3.3. Photophobia treatment

Based on data in migraine,15 the patient received 35 units of BoNT-A 
to the frontalis, corrugators, and procerus sites. Six weeks later, she 
subjectively reported unchanged light sensitivity (Table 1).

4. Discussion

Friedreich ataxia is a debilitating disease that can affect the entire 
body, including the eye.2,28,29 A systematic review of 81 articles sum
marized neuro-ophthalmological findings in FDRA.30 Oculomotor ab
normalities, rNFL thinning, and optic atrophy were described, although 
unlike our patient, most individuals maintained good visual acuity. In 
our patient, while nystagmus was not noted during our assessment, its 
presence was documented on prior exams, supported by an artifact on a 
prior rNFL that is often seen in individuals with nystagmus. Our patient 
is unique as no prior reports have documented severe photophobia in 
patients with FDRA.

Mechanisms behind photophobia have been previously studied by 
examining visual cortex activity measured by fMRI in response to a light 
stimulus. In a prior study by our group, 8 individuals with a history of 
chronic ocular surface pain and photophobia and 8 controls underwent 
the same fMRI protocol as the present case.27 Cases had greater activity 
in the visual cortex (lingual gyrus, though not intracalcarine cortex) 
compared to controls at baseline. In addition, cases demonstrated 
light-evoked activation in pain-related areas within the trigeminal 
brainstem, primary somatosensory cortex (S1), anterior mid-cingulate 
cortex (aMCC), and insula compared to controls.27 Visual cortex activ
ity has also been studied in individuals with photophobia in the setting 
of migraine. In a study of 19 individuals with migraine and 19 controls, 

greater occipital cortex activation was seen in cases when presented 
with low and medium light stimuli intensities compared to controls.31 In 
our present case, we examined visual cortex function in a different way, 
specifically focusing on neurovascular coupling to light, which became 
increasingly dissociated in the FDRA but not in the control patient as the 
scan progressed over time. While our current methodology cannot be 
directly compared to that of previous studies, a common theme across 
studies is the presence of various visual cortex abnormalities in in
dividuals with photophobia.

While not using light-stimulus protocols, previous studies have 
examined brain activation during motor and cognitive tasks in in
dividuals with FDRA. A systematic review of 12 mixed-methods fMRI 
studies in FDRA subjects (n = 198) summarized overall brain activation 
compared to healthy controls (n = 205) while performing a variety of 
taks.32 They found overall conflicting results, with a combination of 
hypo- and hyperactivation in a variable pattern within widespread re
gions of the frontal, parietal, and temporal cortices compared to controls 
during various tasks. This mixed pattern may be due to the variable 
clinical presentation of FDRA in their cohort, particularly regarding 
disease duration and severity. There were, however, some consistencies 
among studies. The left middle occipital, medial precuneus, and right 
fusiform gyrus were consistently hyperactivated during motor tasks, and 
the left central opercular and left insular cortex areas were consistently 
hypoactive. Though motor tasks were not included in our examination, 
we conducted a novel methodology to study visual cortex response to 
visual stimuli. This approach broadens the use of fMRI in FDRA patients 
with the hope of deepening understanding of the underlying mecha
nisms of this disease.

Though prior studies have not focused on neurovascular coupling in 
FDRA, this concept has been applied to the study of ischemia. One study 

Fig. 5. Single-trial averages of region of interest (ROI, visual cortex) activation.
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examined BOLD responses to a bimanual handball squeeze task in 7 
individuals with anterior circulation stenosis and in 7 controls. Delayed 
BOLD responses in the bilateral primary motor cortices were found in 
the stenotic individuals in response to the task compared to the con
trols.33 Another study examined BOLD responses to a lexical decision 
task in 5 individuals with stroke-induced aphasia and in 4 controls. They 
found delayed activation in the left Posterior Perisylvian Network 
(Wernicke’s area, the angular and supramarginal gyri) in 3 aphasic in
dividuals compared to the control patients.34 While multiple explana
tions can underlie these findings, the authors postulated that 
abnormalities in the vascular bed may contribute to the decoupled 
neurovascular response. In our case, we speculate that in FDRA, 
abnormal cerebral autoregulation from progressive nervous system 
damage may contribute to the noted visual cortex abnormalities.

We chose to treat our patient with BoNT-A as this Clostridium derived 
neurotoxin is used to treat many pain related conditions including 
chronic migraine,35–37 blepharospasm,38 and neuropathic ocular 
pain.38–40 Its mechanisms of action is believed to stem from the reduced 
muscle fiber activity due to inhibition of acetylcholine release at pre
synaptic nerve terminals leading to a reduction in neurogenic inflam
mation.41,42 Prior studies have noted reduced levels of glutamate, 
calcitonin gene-related peptide (cGRP), and substance P after BoNT-A 
injection. This mechanism has been demonstrated in craniofacial mus
cles in a mouse model of migraine,43 in temporomandibular joints in a 
mouse model of arthritis,44 and in bladders in a rat model of acute and 
chronic cystitis,45 as well as in numerous human models.46–49 We have 
previously applied this treatment to individuals with neuropathic ocular 
pain (NOP), both with and without co-morbid migraine.20,50 In a case 
series of four individuals with clinically diagnosed NOP, the frequency 
and severity of photophobia and eye discomfort were improved one 
month following BoNT-A.20 In a follow up study, the impact of BoNT-A 
on NOP was examined using fMRI technology. In 12 individuals with 
NOP, 6 subjects reported reduced unpleasantness in response to light 
stimulation after BoNT-A while 6 reported stable or increased unpleas
antness.15 Group level fMRI analysis demonstrated that BoNT-A in
jections significantly reduced light-evoked brain activity in pain 
processing-related regions including bilateral S1, S2, hemispheric 
lobule VI, and crus I in addition to left crus II, and cerebellar vermis.15

Interestingly, individuals who had a positive response to BoNT-A (re
sponders) had greater spinal trigeminal nucleus (SpV) activation to light 
prior to BoNT-A compared to non-responders. This suggests diverse 
photophobia pathways that may have differential responses to treat
ment. Unfortunately, our subject did not note clinical benefit from 
BoNT-A and continued to report severe photophobia six weeks 
post-injection. This suggests that our patient may process light sensi
tivity through a non-trigeminal neural network.15,51

Though trigeminal projections have been well described as a key 
pathway in photophobia,37,52 other potential pathways beyond this 
circuit have also been described, and may have relevance in our two 
patients as neither reported symptom improvement after BoNT-A.53–55

Conventional visual processing involves rods and cones that relay 
photo-signals to retinal ganglion cells which travel via the optic nerve to 
brainstem nuclei and the brain, which can trigger autonomic responses 
to light that may trigger photophobia.56 Separately, intrinsic photo
sensitive retinal ganglion cells (ipRGCs) contain photo-pigment mela
nopsin and have been found in the retina.52 These ipRGCs transmit 
signals to the olivary pretectal and suprachiasmatic nuclei52 as well as 
directly to posterior thalamic nuclei and subsequently to 
pain-processing cortical regions and have also been implicated in 
exacerbation of headache by light.57 There are also melanopsin photo
receptors in the iris that bypass the retina and optic nerve which then 
activate nociceptors outside or inside the globe.58 fMRI studies may help 
determine which pathways and brain structures are most relevant in 
different photophobia sub-groups.

Several limitations should be taken into consideration when 
reviewing this case. First, as our patient’s presentation is unusual, we 

cannot extrapolate our fMRI findings to FDRA in general and subsequent 
studies are needed to examine visual cortex activity in individuals with 
FDRA with other ocular phenotypes to see if the observed decoupling is a 
salient feature of disease. It is also important to consider the multiple 
etiologies of photophobia, including intraocular abnormalities (e.g., 
CME, IOL issues), pain co-morbidities, and mood disorders and as such, 
the degree to which FDRA contributed to photophobia cannot be fully 
determined. Despite these limitations, this case highlights photophobia 
as a possible ocular presentation of FDRA and introduces the idea of 
visual cortex dysfunction as a potential consequence of disease. Future 
studies are needed to more robustly examine our findings.

Claims of priority

After conducting an extensive literature review utilizing PubMed and 
Google Scholar, we did not find any reports of severe photophobia as an 
ocular manifestation of Friedreich Ataxia, treated with botulinum toxin 
A and assessed with functional magnetic resonance imaging.
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