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Abstract

Cell–cell communication plays a critical role in maintaining normal biological functions, regulating development and differentiation,
and controlling immune responses. The rapid development of single-cell RNA sequencing and spatial transcriptomics sequencing
(ST-seq) technologies provides essential data support for in-depth and comprehensive analysis of cell–cell communication. However,
ST-seq data often contain incomplete data and systematic biases, which may reduce the accuracy and reliability of predicting cell–
cell communication. Furthermore, other methods for analyzing cell–cell communication mainly focus on individual tissue sections,
neglecting cell–cell communication across multiple tissue layers, and fail to comprehensively elucidate cell–cell communication
networks within three-dimensional tissues. To address the aforementioned issues, we propose VGAE-CCI, a deep learning framework
based on the Variational Graph Autoencoder, capable of identifying cell–cell communication across multiple tissue layers. Additionally,
this model can be applied to spatial transcriptomics data with missing or partially incomplete data and can clustered cells at single-
cell resolution based on spatial encoding information within complex tissues, thereby enabling more accurate inference of cell–cell
communication. Finally, we tested our method on six datasets and compared it with other state of art methods for predicting cell–
cell communication. Our method outperformed other methods across multiple metrics, demonstrating its efficiency and reliability in
predicting cell–cell communication.
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Introduction
Cell–cell communication plays a crucial role in maintaining nor-
mal biological functions, regulating development and differen-
tiation, and controlling immune responses [1–3]. Cell–cell com-
munication is typically mediated by various membrane-bound
factors, such as ligands, receptors, extracellular matrix, integrins,
and junctional proteins [4]. The life of multicellular organisms
depends on the coordination of cellular activities [5], and this
coordination is reliant on cell–cell interactions (CCI) between dif-
ferent cell types [6, 7] and tissues within the organism. Therefore,
research on cellular functions increasingly needs to consider the
spatial environment of each cell [3, 8].

In recent years, several computational strategies based on
ligand-receptor (L-R) gene pairs have been developed to identify
CCI from single-cell RNA sequencing (scRNA-seq) data, such as
SingleCellSignalR [9], iTALK [10], CellPhoneDB [11], and CellChat
[12]. With the rapid advancement of scRNA-seq and spatial
transcriptomics sequencing (ST-seq) technologies, research
on cell–cell communication is becoming more in-depth and

comprehensive [13, 14]. These advanced technologies allow for the
analysis of gene expression and spatial organization at single-cell
resolution, revealing the complex interactions between different
cell types and subtypes [15–19]. scRNA-seq enables the precise
identification of the transcriptomic features of individual cells,
uncovering cellular heterogeneity and dynamic changes [20],
while ST-seq provides information on the spatial location of
cells in their original tissue environment, preserving the tissue
structure and the spatial relationship between cells [21–23]. By
combining these two technologies, researchers can construct
more comprehensive and accurate cell–cell communication
networks.

However, ST-seq data often contain incomplete data and sys-
tematic biases. Due to changes in sample processing and sequenc-
ing, data inaccuracies and incomplete data can occur [24–26].
Therefore, there is a need for a method that can accurately
identify cell–cell communication from missing or partially incom-
plete data to improve the precision and reliability of cell–cell
communication studies. Current methods often predict cell–cell
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communication within a single tissue layer, ignoring the linkages
between multiple tissue layers [27, 28]. However, many diseases
involve interactions across multiple tissue layers. Predicting cell–
cell communication across multi-layered tissue sections can help
identify key regulatory nodes and communication networks of
diseases, revealing the mechanisms of disease onset, progression,
and development, thereby providing new perspectives for disease
diagnosis and treatment.

In this study, we developed VGAE-CCI, a deep learning frame-
work based on VGAE, designed to identify CCI from scRNA-seq
and ST data. This deep learning framework can not only extract
latent features related to CCIs from spatial transcriptomics data
with missing or partially incomplete data, thereby reducing noise,
reconstructing existing interactions, and recovering missing inter-
actions to overcome the limitations of incomplete data. Addi-
tionally, it can accurately identify cell–cell communication across
multi-layered tissues, exploring connections between cells in dif-
ferent tissue layers. To validate the practicality of VGAE-CCI, we
demonstrated its overall functionality using six publicly available
scRNA-seq and ST datasets. Experimental results showed that
VGAE-CCI outperformed other methods in metrics such as area
under the receiver operating characteristic curve (AUROC) and
Accuracy (ACC). This clearly demonstrates that our approach
can reconstruct existing interactions, recover missing interac-
tions from datasets with missing or partially incomplete data,
and identify cell–cell communication across multi-layered tissue
sections.

Materials and Methods
Workflow of VGAE-CCI
VGAE-CCI combines VGAE and adversarial networks to learn from
single-cell and spatial transcriptomics data, generating latent
distributions that capture the intrinsic associations between CCIs
and gene expression patterns. The role of the adversarial regular-
ization module is to improve the model’s robustness against input
perturbations and noise. In graph data, adversarial regularization
helps VGAE maintain stable performance when facing minor
perturbations in graph structures or node features, such as data
noise or missing data. Simultaneously, it encourages the latent
representations generated by the encoder to be closer to the true
distribution.

VGAE-CCI first constructs an undirected adjacency network of
cells using the SCTDB (See Data Processing section) database or
the spatial coordinates of cells, where nodes represent cells (or
genes) and edges represent adjacent cell pairs (or L-R pairs), as
shown in Fig. 1(a). This network is represented by an adjacency
matrix A, with single-cell gene expression data serving as the
features of the nodes in the adjacency matrix. Subsequently, we
input this adjacency network with node features into a neural
network composed of three GCNs, as illustrated in Fig. 1(b). In the
GCN, the generated latent representation Z captures the feature
information of individual cells and their neighboring cells, with Z
constrained by an adversarial regularization module derived from
a prior Gaussian distribution. Based on this latent representation,
the decoder generates the reconstructed CCI network adjacency
matrix A’ through a dot product operation, which shows the
reconstructed CCI network. However, to achieve cross-tissue cell–
cell communication analysis, the ST-seq and scRNA-seq data
need to be aligned using the PASTE [29] method. After alignment,
we obtain three-dimensional spatial coordinates and a three-
dimensional spatial structure map. Next, we input these three-
dimensional coordinates and spatial structure maps, along with

the gene expression matrix, into the GCN to reconstruct the three-
dimensional cell–cell communication structure.

Construction of adjacency matrices
When constructing the adjacency matrix, we provide two meth-
ods. When the goal is to explore cell-level communication, the
spatial coordinates of cells are required to construct the adja-
cency matrix. Conversely, when exploring gene-level communi-
cation, the adjacency matrix can be constructed using the real
SCTDB database we provide.

For exploring cell-level communication, we offer the following
method to construct the adjacency matrix (similar to DeepLinc
[30]). From a general biological perspective, it is reasonable to
assume that in solid tissues, most cells can directly contact three
or more other cells, and it is generally assumed that a cell inter-
acts with its neighboring cells. Based on this assumption, we can
construct the adjacency matrix. First, we calculate the distance
matrix using the spatial coordinates of the cells. Since most other
methods use Euclidean distance to calculate the distance between
two cells, for ease of comparison with them, we also use Euclidean
distance. Here, the Euclidean distance is used to compute the
distance between cells:

D(i,j) =
√√√√ d∑

k=1

(
xik − xjk

)2

Here, D(i, j)is the distance between cell i and cell j, xik and xjk

are the coordinates of cell i and cell j in the kth dimension.
Next, we determine the nearest neighboring cells for each cell

i. For each cell i, we find its n nearest neighboring cells and store
these neighboring cells in Ni:

Ni = {
the smallest n elements in Di

}

Here, Di represents the i-th row of the distance matrix D.
Then, the adjacency matrix is constructed:

Aij =
{

1, if j ∈ Ni

0, otherwise

Finally, we need to symmetrize the constructed adjacency
matrix to make it a symmetric matrix.

When exploring gene-level communication, the following
method can be used to construct the adjacency matrix. Given gene
expression data E = {e1, e2, . . . , eu} where ei is the identifier of the i-
th gene and u is the total number of genes, an adjacency matrix A
can be constructed by combining the curated L-R pairs. If genes i
and j from the gene expression matrix are present and correspond
in the SCTDB, then ei and ej are considered to be related, and the
adjacency matrix Aij can be represented as follows:

Aij =
{

1, if ei and ej are related
0, otherwise

Similarly, the constructed adjacency matrix should also be
symmetrized.

Construction of cell communication models
We constructed a cell–cell communication network model based
on VGAE. By combining GCN with VAE, an end-to-end model can
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Figure 1. Workflow of VGAE-CCI. VGAE-CCI consists of an encoder, a decoder, and an adversarial regularization module within the VGAE framework.
The encoder is composed of three layers of GCN, and the decoder is a Sigmoid function applied to the dot product of the latent variables. (a) VGAE-CCI
integrates scRNA-seq data and the cellular adjacency graph to construct a cell adjacency network. (b) The encoder of VGAE-CCI is composed of three
layers of GCN, which receives the cell adjacency network graph and generates a new matrix A’, representing the reconstructed CCI network.

be built to simultaneously learn the graph structural informa-
tion and latent representations from the cell–cell communication
network. The integration of these two components enhances the
model’s representation and generation capabilities for cell–cell
communication networks. Moreover, since cell–cell communica-
tion networks are typically sparse and high-dimensional, the
combination of GCN and VAE can effectively handle such data,
improving the model’s robustness and generalization ability.

VAE is a generative model that can learn latent representations
of data and generate new samples. In the context of cell–cell
communication networks, this can be used to generate poten-
tial ligand-receptor pairs and simulate new cell–cell communi-
cation networks. GCN, as the encoder, encodes the data x to
obtain the mean μ∅(x) and standard σ∅(x) deviation of the latent
variable z:

q∅ (z|x) = N
(
z : μ∅(x), σ∅(x)2)

Here, μ∅ (x) and σ∅ (x) are learned through neural network
parameters ∅. To allow gradients to pass through the random

variable z, the reparameterization trick is used:

z = μφ(x) + σφ(x) � ε

Here, ε ∼ N (0, I) is the noise sampled from a standard normal
distribution.

The loss function includes a reconstruction loss and a KL
divergence loss. The reconstruction loss is used to measure the
difference between the generated data and the original data. Here,
we use the cross-entropy loss:

Lrecon = −Eqφ (z|x) [log pθ (x|z)]

Here, pθ (x|z) represents the conditional probability distribution
of generating data x given the latent variable z.

The KL divergence loss is used to measure the difference
between the approximate posterior distribution q∅ (z|x) and the
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prior distribution p (z):

LKL = DKL
(
qφ (z | x) ‖ p(z)

) = 1
2

∑d

j=1

(
1 + log

(
σ 2

j

)
− μ2

j − σ
)

The total loss function is the weighted sum of the reconstruc-
tion loss and the KL divergence loss:

L = Lrecon + βLKL

Here, β is a weight parameter used to balance the reconstruc-
tion loss and the KL divergence loss, which is set to 1 by default.

The GCN, used as the encoder, aggregates features based on
neighboring nodes, updating the target node through weighted
contributions from neighboring nodes. The propagation between
layers in the GCN neural network is as follows:

H(l+1) = σ

(∼
D

−1/2 ∼
A

∼
D

−1/2

H(l)W(l)
)

In the formula,
∼
A = A + I is the identity matrix, A is the

adjacency matrix of the nodes, and
∼
D is the degree matrix of

∼
A.

The formula is given by
∼
Dii = ∑

j

∼
Aij.H represents the features at

each layer, and σ is the activation function.
This propagation method allows parameters to be shared

across all nodes, which means that the update rules are the same
for each node. This method is more suitable for identifying all
genes in the network and classifying them according to their
expression values, which is more in line with the needs.

In our model, features are extracted through convolutional
layers, and latent space representations are generated using the
reparameterization trick. For the first layer of graph convolution:

H(1) = ReLU
(
ÂXW(0)

)

The l-th layer of graph convolution is given by:

H(l) = ReLU
(
ÂH(l−1)W(l−1)

)

Next, compute the mean and standard deviation of the latent
space:

μ = ÂH(l)W(l)

log σ = ÂH(l)W(l+1)

For the reparameterization method,

Z = μ + ε· exp
(
log σ

)

Here, ε ∼ N (0, I). Finally, we use the dot product decoder to
compute the reconstructed adjacency matrix:

Â = σ
(
ZZT)

Here, σ represents the sigmoid function.

Alignment of multilayer tissue layers
In order to analyze cell–cell communication between multi-
layered tissue sections, the most critical step is to align these
sections for subsequent analysis and processing. There are many
ways to align tissue sections with each other, but some require
high-quality image data and some require a priori manual
annotation of information. Here, we use the PASTE method
because it takes into account both gene expression levels and
location information. This method can effectively integrate
multiple sections on the basis of maintaining gene expression
and spatial location information, and the method can process
sections of different sizes and shapes, which is flexible. Compared
with other algorithms, this algorithm can better handle the noise
and variability in the data, thereby increasing the robustness of
alignment, and the algorithm is more suitable for complex spatial
transcriptomics data.

First, we extract feature vectors from each layer, typically
constructed using gene expression data or coordinates for each
cell. Next, we calculate the distance between each pair of cells,
using Euclidean distance to compute the cell–cell distance. Let xi

and xj are the feature vectors of two cells; their Euclidean distance
dij is calculated as follows:

dij =
√√√√ n∑

k=1

(
xik − xjk

)2

Here, xik and xjk are the kth components of the feature vectors.
Next, align the layers by optimizing the alignment objective

function. First, initialize the matching matrix P:

P = 1
n × m

Here, n and m represent the number of points in the two layers.
Then, for each layer, compute the distance matrix between its

points:

DX
(
i, j

) =‖ Xi − Xj ‖

DY
(
k, l

) =‖ Yk − Yl ‖

Here, DX
(
i, j

)
and DY

(
k, l

)
are the distance matrices of the two

cell graphs, and X and Y are the point sets of the two layers,
respectively. The PASTE algorithm uses the Gromov–Wasserstein
(GW) distance to align the two cell graphs. The GW distance
measures the discrepancy between the distance matrices of the
cells, aiming to minimize the GW distance between the two cell
graphs. The optimization objective function can be expressed as
follows:

C
(
i, k, j, l

) = (
DX

(
i, j

) − DY
(
k, l

))2

GW (C, P) =
∑
i,j,k,l

C
(
i, k, j, l

)
P

(
i, k

)
P

(
j, l

)

Iteratively optimize and update the matching matrix P using
the Sinkhorn-Knopp algorithm.

P ← diag(u)· P· diag(v)

Here, u and v are normalization vectors, and P is iteratively
updated to satisfy row and column sum constraints.
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Finally, generalized Procrustes analysis is used to optimize
rotation and scaling parameters, enhancing the accuracy of the
alignment results:

R, t = arg min
R,t

‖ RX + t − Y‖2
F

Here, R is the rotation matrix and t is the translation vector.
Through the above steps, multi-layer tissue layers can be success-
fully aligned.

Data processing
Accurately predicting biologically meaningful cell–cell commu-
nication requires a comprehensive set of signaling L-R pairs.
In recent years, several published L-R pair databases have
emerged, such as CellChatDB, CellTalkDB [31], CellCallDB [23],
CellPhoneDB, connectomeDB2020 [32], and iTALK, among others.
These databases have been developed to better predict CCI by
providing literature-supported L-R pairs for human and mouse.

To better predict cell–cell communication, we integrated pub-
licly available ligand-receptor pair databases to construct SCTDB.
SCTDB includes human and mouse L-R interactions. To ensure
that the data in SCTDB is based on reliable and validated scientific
studies, we prioritized interactions supported by literature to
enhance the accuracy and reliability of predicting cell–cell com-
munication. Additionally, we considered the presence of multi-
subunit complexes, which are crucial functional units involved in
complex L-R interactions during cellular processes. By accounting
for these factors, we ensured that the predicted interactions
reflect the complexity of actual biological processes. Finally, we
integrated all the data and removed redundant L-R pairs to ensure
the uniqueness and accuracy of the dataset. As a result, SCTDB
retained 5786 human-validated L-R interactions and 4806 mouse-
validated L-R interactions (Supplementary Data S1 and S2 avail-
able online at http://bib.oxfordjournals.org/).

The VGAE-CCI framework takes the scRNA-seq gene expres-
sion matrix and the corresponding adjacency matrix as primary
inputs. For the gene expression matrix, we first perform data
cleaning by removing cells and genes with all-zero values as an
initial filtering step. Next, we standardize the filtered gene expres-
sion matrix to reduce data bias and improve analysis accuracy.
The adjacency matrix can be obtained through two methods: one
approach involves obtaining cell coordinate data and construct-
ing the adjacency matrix as referenced in the methods section;
the other approach is based on real ligand-receptor pairs. Using
SCTDB, we match the processed gene expression matrix with
SCTDB, extract matching genes to construct a symmetric matrix,
and finally build the adjacency matrix based on the L-R pairs.

Evaluation criteria for the model
Here, we use Area Under the Curve (AUC), Average Precision (AP),
and ACC to evaluate the performance of VGAE-CCI in CCI predic-
tion. These metrics are well-known in the field of bioinformatics
and have been widely used, defined as follows:

AUC =
∑n−1

i=1

(
FPRi+1 − FPRi

) × TPRi+1 + TPRi

2

where FPRi and TPRi are the False Positive Rate and True Positive
Rate at the ith point:

AP =
∑

n

(Rn − Rn−1) Pn

where Pn is the precision at the nth threshold, Rn is the recall at
the nth threshold, and Rn-1 is the recall at the previous threshold.

ACC = TP + TN
TP + TN + FP + FN

where TP is the number of true positives, FN is the number of
false negatives, FP is the number of false positives, and TN is the
number of true negatives.

Results
Comparison of performance in inferring CCI with
other methods
To evaluate the performance of VGAE-CCI, we compared it with
six other methods (DeepCCI [33], CellPhoneDB, SingleCellSignalR,
CellChat, NATMI, DeepLinc) on three different datasets. Each
method used its default parameters to infer CCI. For each dataset,
the results obtained by our method are obtained under 30 epochs
and averaged based on 30 runs under different seeds.

The human colorectal cancer (CRC) liver metastasis spatial
transcriptomics dataset is a comprehensive resource for studying
high-throughput spatial gene expression during the liver metas-
tasis of colorectal cancer. By analyzing CCIs within this dataset,
we can gain deeper insights into the spatial distribution of cancer
cells in the liver, their migration pathways, and their interactions
with other cell types in the microenvironment. This is crucial for
understanding the complex dynamics of the tumor microenviron-
ment, the mechanisms of cancer cell metastasis, and potential
therapeutic targets. Therefore, we compared the performance of
VGAE-CCI with six other methods on this dataset. Each method
used its default threshold, and performance was evaluated using
ACC. The accuracy is calculated based on SCTDB. As shown in
Table 1, VGAE-CCI achieved the highest ACC value.

Next, we compared VGAE-CCI with other methods on the
human melanoma dataset. Similarly, we used ACC for perfor-
mance evaluation. As shown in Table 1, VGAE-CCI achieved the
highest ACC value. These results indicate that VGAE-CCI is highly
effective in identifying relevant L-R pairs in cancer datasets and
demonstrates high accuracy.

Finally, we compared the performance of VGAE-CCI with six
other CCI prediction methods on the human testicular dataset.
Each method used its default threshold. VGAE-CCI identified 69
literature-supported cell–cell communications from Sertoli cells
to SSCs, while DeepCCI, CellPhoneDB, SingleCellSignalR, CellChat,
NATMI, and DeepLinc identified 42, 42, 59, 40, 62, and 55 literature-
supported CCIs, respectively. Reportedly, 87.34% of the literature-
supported CCIs identified by VGAE-CCI (69/79) are involved in
spermatogenesis (see Supplementary Data S3 available online at
http://bib.oxfordjournals.org/). The identification results from
DeepCCI, CellPhoneDB, SingleCellSignalR, CellChat, NATMI,
and DeepLinc are shown in Fig. 2(a). We then used AUROC to
compare these methods, with the results shown in Fig. 2(b).
VGAE-CCI achieved the highest AUROC. These results suggest
that VGAE-CCI may provide more accurate inference of cell–
cell communications compared to others methods and has the
capability to identify biologically relevant CCIs from scRNA-seq
data.

Performance of VGAE-CCI on noise datasets
Single-cell spatial transcriptomics analysis provides snapshots of
the cellular interaction landscape, which are likely only a small
subset of the complete cellular interaction network and are often

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae619#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae619#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae619#supplementary-data
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Table 1. Comparison of ACC between VGAE-CCI and six other methods on two real datasets.

VGAE-CCI DeepCCI CellPhoneDB Single-
CellSignalR

CellChat NATMI DeepLinc

CRC 0.84 0.795 0.731 0.724 0.803 0.731 0.56
Melanoma 0.831 0.79 0.744 0.755 0.785 0.754 0.635

Figure 2. Comparison of VGAE-CCI with other methods. (a) The number of literature-supported CCIs predicted by each method using their default
thresholds. (b) Comparison of AUROC between VGAE-CCI and other CCI prediction methods on the human testicular dataset.

contaminated by high noise. Therefore, VGAE-CCI is crucial as it
efficiently learns from the information provided by cellular spa-
tial organization and single-cell transcriptomics analysis, filters
out noise, accurately infers potential interactions, and ultimately
reconstructs the complete cellular interaction landscape. This is
a key benchmark.

VGAE-CCI was applied to two spatial transcriptomics datasets,
seqFISH and MERFISH. To assess the robustness of VGAE-CCI
to artificial noise, different levels of Gaussian noise were added
to the original gene expression data. As shown in Fig. 3, on the
two datasets, it can be observed that under the condition of
Gaussian noise with a standard deviation of 0–7, the AUROC and
AP of VGAE-CCI increase rapidly within the first 10 epochs, and
then the growth rate gradually flattens. Additionally, regardless
of the noise standard deviation, VGAE-CCI’s AUROC and AP val-
ues eventually exhibited high consistency. Therefore, VGAE-CCI
demonstrates strong resistance to interference, with AUROC and
AP remaining relatively stable across different levels of noise (the
std dev represents the magnitude of the standard deviation of the
noise). This indicates that VGAE-CCI has significant robustness to
noise in gene expression data, which is crucial for handling high-
noise spatial transcriptomics data.

Performance of VGAE-CCI on incomplete datasets
Next, we evaluated the performance of VGAE-CCI in recover-
ing partially missing CCI networks. Specifically, we randomly
removed varying proportions of existing edges from the original
CCI network and then used the remaining network and single-cell
transcriptomic data to train the VGAE-CCI model. By calculating
the values of AUROC, AP, and ACC, we assessed the performance
of VGAE-CCI in identifying the interactions that were randomly

removed at different proportions. As shown in Fig. 4, VGAE-CCI
demonstrated high accuracy in imputing the missing interactions.
Even when half of the interactions were missing from the input,
VGAE-CCI was still able to recover these missing edges with 75–
80% accuracy. This result indicates that VGAE-CCI can effectively
learn from limited and incomplete CCI networks and accurately
recover the missing edges. This imputation and predictive capa-
bility of VGAE-CCI is crucial as it enables the inference of a
complete CCI landscape from missing or partially missing spatial
transcriptomic data.

In summary, VGAE-CCI demonstrated a high level of robustness
and recovery capability in the context of partially missing CCI
networks within gene expression data. Even in cases where a
significant portion of interactions were lost, VGAE-CCI was able to
maintain high AUROC, AP, and ACC, highlighting its effectiveness
in handling complex and incomplete spatial transcriptomics data.

VGAE-CCI identifies cell–cell communication in
three-dimensional space
In a real physiological environment, cell–cell communication typ-
ically occurs in a three-dimensional structure. When analyzing
single-layer tissue layers, there is a risk of missing interlayer cell–
cell communication information, making it crucial to identify
interactions across multiple tissue layers. The complexity of this
three-dimensional tissue architecture is essential for understand-
ing the dynamic regulation of cell interactions and functions.
Multi-layer tissue layers can more accurately simulate the true
interactions of cells within an entire tissue, reflecting cellular
behavior in complex physiological environments. Exploring cell–
cell communication across multiple tissue layers requires the
alignment of these layers as a prerequisite.
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Figure 3. Performance of VGAE-CCI under different noise conditions. (a) AUROC curves for seqFISH dataset with Gaussian noise of varying standard
deviations. (b) Precision curves for VGAE-CCI on the seqFISH dataset. (c) AUROC values under different noise levels for the MERFISH dataset. (d) Precision
values for VGAE-CCI on the MERFISH dataset.

Table 2. Effects before and after aligning tissue sections.

Seed 1 Seed 2 Seed 3 Seed 4 Seed 5 Average

Before
alignment

ACC 0.837 0.823 0.835 0.834 0.83 0.832
AUROC 0.897 0.87 0.894 0.892 0.896 0.89
AP 0.865 0.852 0.865 0.853 0.865 0.86

After
alignment

ACC 0.891 0.883 0.892 0.859 0.867 0.878
AUROC 0.928 0.928 0.936 0.919 0.917 0.926
AP 0.891 0.893 0.901 0.89 0.88 0.891

Tissue layers typically exhibit varying spatial structures, and
without proper alignment, the positions of cells on these layers
will no longer correspond to the actual structure of the bio-
logical tissue. This misalignment can distort the relative posi-
tions and spatial relationships between cells, potentially leading
to an inaccurate reflection of the spatial dependency of cell–
cell communication. Consequently, this may affect the accuracy
and interpretation of communication patterns between cells. As
shown in Table 2, the effects of aligning tissue layers before and
after alignment are presented. It is evident that without proper
alignment of the tissue layers, the accuracy of prediction results
decreases, which may lead to misunderstandings of cell function,
tissue structure, and biological processes, ultimately impacting
research conclusions and clinical applications.

Here, we utilized three tissue layers from the human dorso-
lateral prefrontal cortex dataset, labeled 151 670, 151 671, and
151 672. As shown in Fig. 5(a), the changes before and after
alignment across the three layers of tissue layers are displayed.
To further investigate cell–cell communication across different
layers, we applied the data to the VGAE-CCI model. Figure 5(b),

Table 3. Datasets summary.

Datasets Cell count Data types Reference

seqFISH 1597 scRNA-seq, ST-seq [34]
MERFISH 4975 scRNA-seq, ST-seq [35]
Human testicular 3074 scRNA-seq [36, 37]
CRC 2887 scRNA-seq, ST-seq [38]
Melanoma 4645 scRNA-seq [39]
DLPFC 11 465 scRNA-seq, ST-seq [40, 41]

(c), and (d) presents the spatial positions of cells after alignment
and the cell–cell communication views across the three layers of
tissue layers. It is evident that cell–cell communication does not
only occur within a single layer; some cells engage in communi-
cation across tissues with cells from other layers.

To further investigate the behavior of inter-layer communica-
tion, we visualized the communication networks of the top 10
genes within different layers, as shown in Fig. 5(e). The ITGAV
(Integrin av) gene encodes an integrin protein that belongs to
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Figure 4. Performance of VGAE-CCI in reconstructing CCI networks. (a) Boxplots of AUROC over 50 iterations for varying proportions of randomly removed
existing edges in both seqFISH and MERFISH datasets. (b) Values of AP for different proportions of removed existing edges. (c) Prediction accuracy of
VGAE-CCI for varying proportions of removed edges.

the integrin family. It is closely related to various cellular reg-
ulations, cell-matrix interactions, and biological processes such
as skeletal system development, immune responses, and cell
migration. Moreover, ITGAV is associated with the occurrence
and development of multiple diseases, particularly cancer and
autoimmune diseases. It plays a significant role in tumor metas-
tasis, inflammatory responses, and platelet function. As illus-
trated in Fig. 5 (e), ITGAV is a gene shared among the three
layers, yet the associated genes differ between layers. This indi-
cates that VGAE-CCI can identify these relationships and discern
the interactions and influences between different layers, thus
exploring the mechanisms of inter-layer cell–cell communica-
tion. This understanding can contribute to better distinguishing
between tumor tissues and normal tissues, which has positive
implications for cancer treatment.

Discovery of cancer-associated L-R pairs
CRC refers to a malignant tumor that occurs in the colon or
rectum, with high incidence and mortality rates globally. Liver
Metastasis of CRC is one of the most common forms of metastasis
in CRC, where cancer cells spread from the primary tumor site in
the colon or rectum to the liver via the bloodstream or lymphatic
system. In this study, we utilized spatial transcriptomics data of
colorectal cancer liver metastasis to predict and analyze cell–cell
communication. By employing advanced computational models,
we inferred ligand-receptor interactions between different cells,
identifying gene pairs with significant communication potential
during liver metastasis. Figure 6(a)–(d) illustrates the network
diagrams of the top 10 gene pairs with the highest communi-
cation probability as analyzed by VGAE-CCI in the context of
colorectal cancer liver metastasis data. Through these network
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Figure 5. VGAE-CCI cross-tissue identification of cell–cell communication between 151 670, 151 671, and 151 672 tissue sections. (a) Comparison of
multilayer tissue sections before and after alignment. (b) Visualization of the position of cells between the three layers of layers. (c) 3D diagram of
the communication between top cells between different layers. (d) Cell–cell visualization with high probability of communication between layers. (e)
Communication network diagram of the top 10 genes per layer.

diagrams, we can visually observe the communication patterns
of specific gene pairs within the liver metastasis microenviron-
ment, providing crucial insights into the complex dynamics of the
tumor microenvironment and identifying potential therapeutic
targets. For instance, EGFR (Epidermal Growth Factor Receptor) is
a gene that encodes the epidermal growth factor receptor, which is
widely recognized for its significance in cancer. The role of EGFR in
colorectal cancer liver metastasis is particularly critical. Its acti-
vation can initiate multiple intracellular signaling pathways, such
as the PI3K/AKT, RAS/RAF/MEK/ERK, and JAK/STAT pathways,
thereby influencing biological processes such as cell proliferation,
apoptosis, angiogenesis, and migration. PLD2 (Phospholipase D2)
is involved in processes like cell signaling, migration, invasion,
and proliferation. PLD2 mediates intracellular signal transduc-
tion by generating the second messenger phosphatidic acid and
interacts with various signaling molecules to regulate cellular
physiological activities. EGFR and PLD2 interact in cell signaling
to synergistically promote cell proliferation, migration, and inva-
sion. Within the EGFR signaling pathway, PLD2 is considered one
of the downstream effectors, enhancing the cell’s response to

EGFR-mediated growth factors by regulating key nodes within the
EGFR signaling pathway. Their synergistic interaction plays a cru-
cial role in tumor progression, and understanding this interaction
is vital for developing new therapeutic strategies and overcoming
drug resistance. Studies suggest that simultaneously targeting
EGFR and PLD2 may enhance antitumor efficacy and overcome
the issue of resistance associated with single-target therapies.
Therefore, exploring the interaction mechanisms between EGFR
and PLD2 in colorectal cancer liver metastasis is of great signifi-
cance for cancer biology research and the formulation of clinical
treatment strategies.

Melanoma is a malignant tumor originating from melanocytes,
the pigment-producing cells of the skin. Although it accounts
for only a small fraction of all skin cancers, melanoma is the
most lethal, characterized by its highly aggressive and metastatic
nature. In the human melanoma dataset, we visualized the L-
R pairs involved in communication between different cells, as
shown in Fig. 6(a)–(d). The development, prognosis, and treatment
of melanoma are closely associated with mutations in genes such
as BRAF, CKIT, and NRAS.NRAS mutations occur in approximately
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Figure 6. Visualization of VGAE-CCI. (a) Gene communication network diagrams on the Human Colorectal Cancer Liver Metastasis Dataset and the
Melanoma Dataset. (b) Chord diagram representation of LR pair communication on two datasets. (c) Heatmap visualization of the TOP gene. (d)
Communication chord diagram display of specific genes. (e) Sankey diagram of communication between NRAS, CDKN2A, BRAF genes, and TOP genes.

20–25% of melanomas and contribute to signal transduction
through pathways such as RAF-MEK-ERK and PI3K/Akt/mTOR,
affecting cell growth, differentiation, and tumor development.
The BRAF gene encodes the serine/threonine-protein kinase B-
Raf, which is part of the MAPK/ERK signaling pathway involved
in regulating cell division, differentiation, and apoptosis. The
BRAF V600E mutation is the most common melanoma-related
mutation, leading to constitutive activation of the B-Raf kinase,
resulting in uncontrolled cell proliferation and tumor formation.
The CDKN2A gene encodes two proteins: p16INK4a and p14ARF,
both of which are tumor suppressors. p16INK4a inhibits cyclin-
dependent kinases CDK4/6, while p14ARF stabilizes p53, together
preventing cell cycle progression and promoting apoptosis.
Mutations or deletions in the CDKN2A gene can result in the
loss of function of p16 and p14, leading to the loss of cell cycle
control, which promotes cell proliferation and tumor formation.
As illustrated in Fig. 6(e), the communication relationships
between BRAF, CDKN2A, NRAS, and other genes are depicted. In
melanoma, BRAF and NRAS mutations promote cell proliferation
by activating the MAPK/ERK pathway, while CDKN2A mutations
further enhance tumor cell proliferation by removing inhibition

of the cell cycle. When mutations in these three genes occur
simultaneously, tumor cells gain a greater growth and survival
advantage, leading to the rapid progression and worsening of
melanoma. Therefore, understanding the interactions among
these genes is crucial for the diagnosis and treatment of
melanoma.

In conclusion, VGAE-CCI has played a pivotal role in elucidating
the complex interactions and communication networks between
cells in various cancer types, such as colorectal cancer liver
metastasis and melanoma. By leveraging advanced computa-
tional models, VGAE-CCI can predict and visualize ligand-receptor
interactions, identifying key genes that play crucial roles in the
tumor microenvironment. This allows for a deeper understand-
ing of cellular behavior and interactions, which is essential for
discovering potential therapeutic targets and developing effective
treatment strategies.

Conclusion
ST-seq data often contain incomplete data and systematic biases,
which can lead to inaccuracies and incomplete data. Previous
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methods may yield inaccurate predictions due to the presence of
such noise. Moreover, these methods typically overlook intercellu-
lar communication across multiple tissue layers. In a real physio-
logical environment, intercellular communication is not confined
to a single tissue layer; rather, it is often three-dimensional,
and a single tissue layer may miss communication informa-
tion between layers. To address this, we propose a VGAE-based
model, VGAE-CCI, in this paper, which can accurately identify
intercellular communication from incomplete or partially incom-
plete data and predict communication between cells in three-
dimensional space. Next, we applied VGAE-CCI to six real datasets,
where it demonstrated high AUROC and ACC scores. Even when
we manually introduced varying levels of Gaussian noise into
the data, VGAE-CCI remained remarkably stable. This highlights
VGAE-CCI’s robustness to noise in gene expression data, which
is crucial when dealing with high-noise spatial transcriptomic
data. In summary, VGAE-CCI can accurately identify intercellular
communication from noisy data and can detect communication
between cells across multiple tissue layers. When applied to
cancer datasets, VGAE-CCI can identify key genes that play critical
roles in the tumor microenvironment. This deeper understanding
of cellular behavior and interactions is essential for discovering
potential therapeutic targets and developing effective treatment
strategies.

Key Points

• VGAE-CCI can be applied to missing or partially incom-
plete spatial transcriptomics data and can more accu-
rately infer cell–cell communication.

• VGAE-CCI can identify cell–cell communication across
multi-layered tissue sections and can display a three-
dimensional cell–cell communication map.

• VGAE-CCI exhibits excellent accuracy and robustness,
making it suitable for various experimental designs,
single-cell sequencing presumably derived from differ-
ent organs, and cell communication of spatial transcrip-
tomic data.
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to the procedures described in the original study, resulting
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stash/dataset/10.5061/dryad.8t8s24818/, focusing on the mouse
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18 at Bregma +0.11 mm, as this region contained the highest
number of single cells. After removing ambiguous cells, the
final dataset contained 4975 cells. The human testis scRNA-seq
dataset comprised 3074 cells (GSE106487). The human CRC liver
metastasis spatial transcriptomics dataset included four different
cancer patients; here, we selected patient 1, which contained
2887 cells (GSE217414). The human melanoma dataset contained
4645 cells (GSE72056). The human dorsolateral prefrontal cortex
(DLPFC) dataset analyzed using the Visium platform can be
downloaded from the portal at the following URL: http://spatial.
libd.org/spatialLIBD/. Source codes for the VGAE-CCI python
packages and the related scripts are available at VGAECCI Github
[https://github.com/zhangxiangz/VGAECCI].
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