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Abstract

The human respiratory microbiome plays a crucial role in respiratory health, but there is no comprehensive respiratory genome
catalogue (RGC) for studying the microbiome. In this study, we collected whole-metagenome shotgun sequencing data from 4067
samples and sequenced long reads of 124 samples, yielding 9.08 and 0.42 Tbp of short- and long-read data, respectively. By submitting
these data with a novel assembly algorithm, we obtained a comprehensive human RGC. This high-quality RGC contains 190,443 contigs
over 1 kbps and an N50 length exceeding 13 kbps; it comprises 159 high-quality and 393 medium-quality genomes, including 117
previously uncharacterized respiratory bacteria. Moreover, the RGC contains 209 respiratory-specific species not captured by the unified
human gastrointestinal genome. Using the RGC, we revisited a study on a pediatric pneumonia dataset and identified 17 pneumonia-
specific respiratory pathogens, reversing an inaccurate etiological conclusion due to the previous incomplete reference. Furthermore,
we applied the RGC to the data of 62 participants with a clinical diagnosis of infection. Compared to the Nucleotide database, the
RGC yielded greater specificity (0 versus 0.444, respectively) and sensitivity (0.852 versus 0.881, respectively), suggesting that the RGC
provides superior sensitivity and specificity for the clinical diagnosis of respiratory diseases.
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Introduction
Extensive studies unequivocally demonstrate that the widespread
microbes within the human respiratory tract play roles in preserv-
ing respiratory health [1–4]. Specifically, the commensal micro-
biota that inhabits the upper respiratory tract is resistant to
microbial colonization of the mucosal surfaces by pathogenic
microorganisms [5]. Recent studies conducted during the COVID-
19 pandemic suggest that the respiratory microbiome (RM) influ-
ences the severity of COVID-19 and is associated with secondary
respiratory infections [6, 7]. Furthermore, the symbiotic respira-
tory microbiota synergistically collaborates with the immune sys-
tem of the host to thwart microbial intrusion [8–10]. For instance,
in conjunction with Haemophilus inf luenzae, the RM augments the
proficiency of neutrophils in eliminating Streptococcus pneumoniae
[10]. Microbial genomes provide a fundamental basis for accu-
rately understanding the composition and functionality of the
RM [11]. For example, in a previous study, decoded microbial

genomes facilitated the identification of specific microbial genes
involved in trimethylamine-N-oxide biosynthesis, allowing the
investigation of host–microbiome relationships [12].

Constructing a reference genome for the respiratory microbial
species is crucial to understand the RM. However, given the chal-
lenges of capturing the full diversity of the RM by microbial cul-
tivation, utilizing metagenomic data to reconstruct metagenome-
assembled genomes (MAGs) is pivotal to establishing comprehen-
sive respiratory microbial genome references, thus enhancing the
precision of microbiome analysis [13–16]. Our previous work con-
structed the Respiratory Microbial Gene Catalogue (RMGC) using
metagenomic data from 334 respiratory samples [16]. Owing to
the inherent limitations of sample size, repetitive elements within
microbial genomes, and short-read sequencing, the RMGC encom-
passed only 125 co-abundance gene groups, thus failing to capture
the full spectrum of microorganisms that inhabit the respiratory
tract [16, 17]. These inadequately assembled and unrepresentative
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respiratory genomes within the RMGC pose challenges to com-
prehensively understanding respiratory microbes. This highlights
the challenges of establishing a representative reference of the
respiratory microbial genome.

Therefore, in this study, we constructed a representative
respiratory genome catalogue (RGC) by integrating large datasets
and better assembly algorithms to enable high-resolution
annotation of the human respiratory genome. In addition to
encompassing a wide range of respiratory microorganisms,
the RGC also prioritizes enhancing assembly continuity and
optimizing binning performance to obtain high-quality MAGs.
Recent studies demonstrate that single-molecule sequencing
improves the continuity of metagenomic assembly by capitalizing
on longer read lengths [18–21]. For example, Moss et al. used
Nanopore sequencing to reconstruct microbial genomes from
metagenomic data, achieving greater assembly continuity and
enabling the recovery of 20 complete bacterial genomes using
MinION [19]. Furthermore, studies have combined Nanopore data
with next-generation sequencing data to address sequencing
errors introduced by long-read sequencing [20, 21]. Here, we
integrated next-generation sequencing and single-molecule
sequencing data, developed a metagenomic assembly algorithm,
and constructed a highly contiguous and representative RGC.

Accordingly, we performed large-scale MAG construction to
establish a comprehensive RGC by using 0.42 and 9.08 Tbp of
long- and short-read data, respectively, obtained from 4191 respi-
ratory samples. Adhering to the median criteria of the Minimum
Information about a Metagenome-Assembled Genome (MIMAG)
standards [22], the RGC comprises 551 non-redundant bacterial
genomes and 1 archaeal genome. Facilitated by improved species
and functional profiles within the RGC, we revisited a previous
pneumonia RM project and identified pneumonia-specific respi-
ratory pathogens. Accordingly, compared to the NCBI Nucleotide
(NT) database, the RGC yielded greater specificity and sensitivity
in a cohort of 62 participants with a clinical diagnosis of infection.
Thus, the RGC will be a valuable resource for future investigations
of the human respiratory microbiota.

Materials and methods
Ethics
This study followed the principles outlined in the Declaration of
Helsinki and received approval from the ethics committees of the
First Affiliated Hospital of Guangzhou Medical University (ethi-
cal number: 2020–36). Prior to their participation, all individuals
provided written informed consent and willingly volunteered to
undergo investigation for scientific research.

Illumina data collection
We comprehensively searched for publicly available respiratory
metagenomic data on PubMed prior to December 2022 using
the following criteria: (i) inclusion of the keywords ‘respiratory
metagenomic data’ or ‘respiratory metagenome’; (ii) datasets
comprising no fewer than 10 samples; and (iii) projects performed
on an Illumina platform. Ultimately, we collected 4067 public
data from 20 projects (Supplementary Table 1), providing
next-generation sequencing data for subsequent respiratory
metagenomic analysis [16, 23–41].

Participant recruitment and respiratory sample
collection
We specifically enrolled 124 participants with suspected respira-
tory infections from the First Affiliated Hospital of Guangzhou

Medical University, Guangzhou, China. We collected respiratory
samples from them and performed Nanopore sequencing. We col-
lected sputum, oropharyngeal swabs, and bronchoalveolar lavage
fluid (BALF) specimens from the participants using sterile spec-
imen containers. We carefully stored the collected specimens
in a liquid nitrogen freezing box and transported them to the
biosafety level three laboratory of the Guangdong Centres for
Disease Control. We mixed 140 μl respiratory sample with 560 μl
AVL solution and then stored them in a refrigerator at −80◦C for
preservation.

Nanopore library preparation and sequencing
Following the manufacturer’s protocol, we extracted total DNA
from the sputum specimens using an E.Z.N.A. Soil DNA Kit
(Omega Bio-Tek, Norcross, United States). We used the extracted
DNA samples that met the specified quality criteria to construct
Nanopore libraries following the instructions provided in the
Ligation Sequencing Kit (Nanopore, Cambridge, United Kingdom).
Accordingly, we obtained 124 high-quality DNA libraries and
subjected them to metagenomic sequencing using the MinION
platform (Nanopore, Cambridge, United Kingdom).

Illumina data filtration and metagenomic
assembly
We employed prinseq++ software (version 1.2) to perform quality
filtering on all next-generation sequencing data [42], eliminat-
ing sequences with more than 10 low-quality bases (i.e. <Q20).
Subsequently, we employed bwa software (version 0.7.17-r1188)
with the default parameters to align the high-quality reads to
the Homo sapiens reference genome (GRCh38) [43]. To remove
reads aligned to the human genome, we utilized samtools (ver-
sion 1.3.1) [44]. Prior to metagenomic assembly, we merged all
high-quality filtered paired-end reads within each project. For
paired-end reads, we employed the ‘repair.sh’ script from bbmap
(version 39.01–0) to sort the reads and eliminate unmated ones
[45]. For metagenomic next-generation sequencing data assembly,
we predominantly utilized the software and databases integrated
within MetaWRAP (version 1.3.2) [46]. We performed preliminary
assembly using MEGAHIT (version 1.2.9) with kmer parameters
set at 25, 50, and 75, respectively [47]. Subsequently, we conducted
initial binning of the assembly results using MetaBAT (version
2.12.1) [48], MaxBin (version 2.0) [49], and CONCOCT (version 1.1.0)
[50]. We selected and merged the highest-quality bins from the ini-
tial binning results using pplacer (version 1.1.alpha19–0-g807f6f3)
[51]. After evaluating the quality of the bins using CheckM (version
1.0.18) [52], we retained the bins with completeness >50% and
contamination <10% as representatives for each dataset.

Optimization of Illumina metagenomic
assemblies
To obtain longer sequences, we adopted a metagenomic scaffold-
ing approach based on the contigs assembled using MEGAHIT [47].
This process is inspired by the conjugate graph proposed by Jia
et al. [53]. With the contigs, a collection of DNA segment C =
{C1, C2, . . . Cn} can be constructed. The junction set J among C can
be derived from the next-generation sequencing reads alignment.
Given a junction j =< Ci, Cj >, a number w(j) represents the
weight of this junction, which indicates the reads pair counts
that aligned Ci and Cj separately. According to the conjugate
graph definition, each Ci can be represented as conjugate vertices
Vi+ and Vj−, denoting the positive and negative DNA strands,
respectively. Similarly, each connection j can be represented as
a pair of conjugate edges < Vi+, Vj− > and < Vj−, Vi+ >.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae620#supplementary-data
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Based on this conjugate graph derived from assembly contigs,
we consider the meta-genome scaffolding problem as finding the
maximum weighted path on this graph. Accordingly, we propose
a constrained Kuhn–Munkres algorithm to solve this problem.
Owing to the shared weights and copy numbers of conjugate
elements in the conjugate graph, we introduced a conditional
restriction in the original Kuhn–Munkres algorithm. Specifically,
when searching for an augmenting path, if an edge is already
included in a previous path, its conjugate edge will be excluded
from the search.

After scaffolding, for a pair of contigs, ci and cj, on the scaffolds’
path, we connected the two contigs initially if the longest common
subsequence between their ends could be found. For the remain-
ing contigs, we performed a gap closure procedure on the scaffolds
with two steps: (i) gap size estimation and (ii) gap filling.

Gap size estimation. We used BWA to align the read sequences
with all contigs [43], retaining only the read pairs that aligned with
two separate contigs. Let Rij be a set of read pairs, where read1 (r1)

and read2 (r2) are aligned with ci and cj, respectively. For a read
pair (r1, r2) in Rij, the soft-clip lengths of r1 and r2 are denoted by
r1(s) and r2(s), and the distances from r1 and r2 to the ends of ci

and contigj are denoted by ci (r1) and cj (r2), respectively. When r1(s)
is greater than 0, ci (r1) will be 0; the same applies to r2. Given
the average insertion size (i.e. isize) and variance (i.e. istd) of the
sequencing data, we calculated the gap length supported by r1 and
r2 using the following formula:

Gap (r1, r2) = (
isize − len (r1) − len (r2)

)+(r1(s) + r2(s))−
(
ci (r1) + cj (r2)

)

For Rij, we only kept read pairs where abs
(
Gap (r1, r2)

)
< isize +

istd, resulting in the filtered reads set as RFij.

Gap
(
ci, cj

) =

∑
r1, r2
in RFij

Gap (r1, r2)

count
(
RFij

)

Gap filling. We merged the unaligned reads and the reads used
in the gap size estimation stage. We then reassembled these reads
into short contigs using MEGAHIT [47]. With these short contigs,
we applied LR_Gapcloser software (version 3) to fill the gaps across
the scaffolds, resulting in the final assembled sequences [54].

Nanopore data filtration and metagenomic
assembly
We employed NanoFilt (version 2.8.0) to filter the Nanopore
sequencing data, explicitly removing reads shorter than 150 bp
and those with an average quality score less than 10 [55].
Subsequently, we used Minimap2 software (version 2.24-r1122)
[56] with the default parameters to align the high-quality
reads to the Homo sapiens reference genome (GRCh38) and
utilized samtools (version 1.3.1) to remove reads aligned to the
human genome [44]. Following this, we merged all filtered high-
quality Nanopore reads and conducted preliminary metagenomic
assembly using metaFlye software (version 2.9.1-b1780) [57].
Similarly, we performed initial binning of the assembly results
using the MetaBAT2, MaxBin, and CONCOCT methods [48–50].
Next, we merged and selected the best-quality bins from the
initial binning results using the pplacer algorithm [51]. After
evaluating the quality of the bins using CheckM [52], we retained
bins with completeness >50% and contamination <10%.

Integration of Illumina and Nanopore
metagenomic assemblies
To integrate the bins obtained from multiple datasets, we initially
incorporated all refined bins into a genome tree using pplacer
software [51] and selected the highest-quality bins meeting the
criteria of completeness >50% and contamination <10%. Subse-
quently, to eliminate redundancy within our collection of high-
quality genomes, we employed the ‘dereplicate’ module in dRep
software (version 3.4.2) to remove duplicate genomes exhibiting
a shared average nucleotide identity (ANI) > 95.0% or a shared
genome coverage >30% (parameters: ‘-comp 50 -con 10’) [58].
We defined the resulting set of filtered MAGs as the RGC and
employed it in subsequent analyses.

Species-level clustering of MAGs in the RGC
We performed taxonomic classification for genomes in the RGC
using the ‘classify_wf’ module implemented in genome taxonomy
database (GTDB)-Tk software (version 2.1.1) [59]. Leveraging the
GTDB (version 08-RS214) [60], we assigned species-level taxonomy
to the MAGs with a shared ANI > 95% with reference genomes.
Meanwhile, we designated the MAGs that could not be confidently
assigned at the species level as novel species within the RGC
database while retaining their genus-level annotations.

Gene prediction and functional annotation
We employed Prokka software (version 1.14.6) to predict the genes
of MAGs with the ‘—metagenome’ parameter [61]. Utilizing the
protein sequences from the comparative antibiotic resistance
database (CARD, version 3.2.7) [62], we performed blastp (ver-
sion 2.13.0+) analysis to annotate antibiotic resistance genes
(ARGs) with the parameters, ‘-max_target_seqs 1’ and ‘-evalue 1e-
5’ [63]. Similarly, to identify virulence genes, we performed blastn
analysis (version 2.13.0+) based on nucleotide sequences from
the virulence factor database (VFDB, version 26 May 2023) [64].
Furthermore, we used antiSMASH software (version 6.1.1) with
the parameter ‘–genefinding tool none’ to identify metabolic gene
clusters (MGCs) within the MAG of the RGC [65]. Finally, we utilized
BiG-SCAPE software (version 1.1.5) with the default parameters to
classify and summarize the metabolic annotation results [66].

Construction of phylogenetic trees
Using the ‘classify_wf’ module implemented in GTDB-Tk software
[59], we generated a ‘user_msa’ file containing the aligned protein
sequences of 120 core bacterial genes for all MAGs. Based on
the aligned sequences, we employed the ‘infer’ module of GTDB-
Tk software to construct maximum likelihood phylogenetic trees.
We visualized the resulting trees using Interactive Tree Of Life
(version 6.7.5) [67].

Taxonomical annotation for the RGC and other
databases
For the RGC and NT databases, we used Salmon software (version
0.14.1) to perform species annotation [68]. First, we constructed
libraries for the RGC and NT databases [69] using the ‘index’
function in Salmon. Next, we employed the ‘quant’ function in
Salmon to align the metagenomic data to the databases, enabling
quantitative evaluation of the species composition within the
samples. Last, we extracted and summarized the species com-
positions of the samples using the ‘summarize_salmon_files.py’
script in MetaWRAP [46].

For the standard database in Kraken2 and the Unified Human
Gastrointestinal Genome (UHGG) database [70], we employed
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Kraken2 (version 2.1.3) and Bracken (version 2.8) software to
perform taxonomical annotation [71]. First, we employed the
Kraken2 software to perform taxonomical annotations with the
standard or UHGG databases. Second, we utilized Bracken to
adjust the taxonomical profiles acquired in the last step. To
obtain the optimal adjusted results, we constructed libraries
with different read lengths for the databases (i.e. 100, 150,
200, and 250 bp) and selected the appropriate read length
according to the metagenomic data of each sample. Finally, we
unified all annotation results into the same format using the
‘kreport2mpa.py’ script in Bracken.

Given that the taxonomical abundances calculated by Salmon
and Kraken2 were measured in copy number per million reads
and aligned reads number, respectively, we converted copy num-
ber per million reads into aligned reads number using the follow-
ing formula to compare taxonomical abundance across different
databases:

Ri = CPMi ∗ Li/10000000

CPMi is the abundance value calculated by Salmon, Riis the
reads number aligned to genome i, and Li is the length of genome
i.

Simulation of metagenomic data
We used an in-house script to simulate RM metagenomic data to
assess the accuracy of the RGC, UHGG, and standard database in
Kraken2 for taxonomical annotation. For each RM metagenomic
dataset, the script would randomly select 10 genomes from the
RGC, assign the selected genomes random abundance, and gener-
ate 3 Gbp of metagenomic data.

To evaluate the performance of the RGC for the taxonomical
annotation of metagenomic data under various read lengths, we
reused the metagenomic data from a previous project, which
contained 80 metagenomic datasets with 250 paired-end reads.
We applied seqkit software (version 2.5.1) to trim the reads and
obtained metagenomic data with 100, 150, and 200 paired-end
reads for further analysis [72].

Statistics
After obtaining the taxonomical results for the exemplified
datasets, we applied a centered log-ratio transformation for
RM normalization before performing other inferential statistics
[73]. To assess the recovery of all species in the exemplified
samples, we employed the ‘specaccum’ function in R to generate
an accumulation curve. We determined the bacterial diversity
at the species level by calculating the Shannon index and the
observed species number using the ‘vegan’ package in R [74]. To
explore the overall features of the RM in the exemplified dataset,
we performed principal coordinate analysis on all samples
based on Atchison distances using the ‘vegan’ package in R
[74]. Subsequently, we filtered taxonomical features present in
fewer than three samples and performed differential analysis
between the healthy and pneumonia groups using the two-tailed
Welch’s t-test. We adjusted for multiple statistical tests using the
Benjamini–Hochberg method (adjusted P < 0.05) and visualized
the results using the ‘ggplot2’ package in R.

Results
Effective assembly of a high-quality RGC
The genomic sequences recovered in the comprehensive RGC
represent the microorganisms in the human respiratory tract,

thus tackling the challenge posed by the substantial microbes
with unknown sources in public databases. In the present study,
we curated a comprehensive dataset of 4067 Illumina metage-
nomic data from 20 independent studies (Supplementary Table 1).
We also sequenced 124 respiratory samples with Nanopore
technology obtained from healthy individuals and patients with
respiratory infections. After stringent data filtering to remove
low-quality and host-related sequences, 9.08 Tbps of short-
read data and 415.52 Gbps of long-read data remained. We
performed metagenomic assembly and assembly binning for each
dataset. Subsequently, we used the dRep software [58] package
to eliminate duplicate MAGs from the assembled sequences
effectively and identify 552 MAGs that passed the median
criteria of the MIMAG standards [22] (i.e. >50% completeness
and < 10% contamination) (Fig. 1). Within the MAG collection,
159 high-quality genomes showed >90% completeness and < 5%
contamination (Fig. 1a, Supplementary Table 2).

In addition to the MAGs, this large-scale assembly of the res-
piratory metagenome demonstrates favorable assembly continu-
ity. The RGC consists of 190,443 contigs (>1 kbps) with an N50
length of 13 kbps, resulting in a total assembly length of 1157
Mbps (Fig. 1b and 1c). The largest contig within the RGC has a
length of 1.72 Mbps, with 2681 contigs exceeding 50 kbps in
length. Among the MAGs obtained, the average genome length
reached 2.096 ± 1.179 Mbps (range: 0.460–8.536 Mbps), including
five genomes that achieved 100% completeness (Fig. 1d, g). By
annotating the 159 high-quality MAG species, we observed a
predominance of the Firmicutes, Actinobacteriota, Bacteroidota,
and Proteobacteria phyla (Fig. 1a).

Representativeness of genomes recovered in the
RGC
The representative genomes in the RGC reveal the presence of
previously unidentified species within the RM. We compared the
552 MAGs with dereplicated genomes in the GTDB to assign their
taxonomical positions, employing an average nucleotide identity
threshold of 95% (Fig. 2a, Supplementary Table 2). Accordingly, 435
MAGs exhibited high similarity with previously reported bacterial
genomes, suggesting their affiliation with known species (Fig. 2a).
However, 117 MAGs shared low homology with the genomes
of known species. Among these unannotated MAGs, 27 were
high-quality MAGs, indicating their existence within the RM.
The 552 MAGs encompassed 13 phyla, 19 classes, 51 orders, 92
families, 237 genera, and 502 species (Fig. 2b). Additionally, we
identified two complete MAGs, Fusobacterium gonidiaformans and
Cryptobacterium curtum, which were circularized without any gaps.
The genomic sizes of these complete MAGs were 1.72 and 1.68
Mbp, respectively; 1477 and 1333 genes were annotated within
their genomes (Fig. 2c, d). In addition to 116 ARGs, F. gonidiaformans
harbored two non-ribosomal peptide synthetase-like metabolic
gene clusters, suggesting capacity to assemble structurally and
functionally diverse peptides with notable clinical applications
(Fig. 2c). To further assess the genomic representativeness of
the RGC, we performed taxonomical annotation for all enrolled
samples and calculated the species frequencies among the
21 datasets (Supplementary Table 3). Of the 502 species, 112
existed in no more than five datasets, including 16 species
with high-quality genomes (Fig. 1a). For each dataset, there
were fewer than 500 RGC-annotated species, while there were
fewer than 400 in 18 datasets, which was less than the total
species number in the RGC (Fig. 1e). Based on the accumulation
curves, we observed that the RGC contained sufficient species
to cover the RM in the 21 datasets (Fig. 1f). Overall, these

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae620#supplementary-data
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae620#supplementary-data
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Figure 1. Effective assembly of the species-level MAGs in the RGC. (a) Maximum-likelihood phylogenetic tree constructed from 159 high-quality MAGs.
Solid stars represent the MAGs with 100% completeness. The bars in the outer first circle represent the number of assembled genomes for each species-
level MAG. The bars in the outer second circle represent the frequencies of the MAGs among the 21 datasets. (b) Length distribution of the assembled
contigs. The x- and y-axes represent the length and number of contigs, respectively. (c) Contig cumulative curve. The x-axis represents Nx, and the y-axis
represents the length of contigs. The N50 of the contigs reached 12,173 bp. (d) Length distribution of the MAGs. The x- and y-axes represent the length and
number of MAGs, respectively. (e) Species number distribution among the 21 datasets. The x- and y-axes represent the numbers of species and datasets,
respectively. (f) Accumulation curves of the species. Horizontal and vertical coordinates indicate the numbers of datasets and species, respectively. (g)
Quality distributions of the MAGs in the RGC. The x- and y-axes represent the completeness and contamination of the MAGs, respectively.
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Figure 2. Representativeness of respiratory microbes using the RGC. (a) Cluster analysis results of 522 genomes in the RGCs and 317,542 GTDs with
a threshold ANI of 95%; 78.8% of the RGC genomes exhibited significant homology (>95% ANI) with the GTDB, while the remaining 21.2% were unique
to the RGC dataset. (b) Taxonomic distribution of the RGC dataset at the phylum, class, order, family, and genus levels. Only the top five taxonomic
units are shown for each hierarchical level, while the remaining classifications are labelled ‘other’. (c, d) two complete MAGs were recovered in the RGC.
The outermost (i.e. first) circle represents the scale (kbp); the second circle displays ARGs in the two currently assembled complete MAGs; the third
circle represents genes on the genomic positive strand; the fourth circle represents genes on the genomic negative strand; the fifth circle represents
the GC skew; and the sixth circle represents GC content. In plot c, the dashed lines next to the outer first circle represent the MGCs in Fusobacterium
gonidiaformans strain rs. The centers of the plots display the species information and genome sizes for the two complete MAGs.

results demonstrate the representativeness of the RGC for
the RM obtained from large-scale and complex metagenomic
datasets.

The distinct functional distributions among different bacteria
in the RGC enable us to gain insights into the relationship
between the RM and human health. Figure 3 displays the
distributions of ARGs (Fig. 3a), virulence genes (VGs) (Fig. 3b),
and MGCs (Fig. 3c) in the RGC. A total of 1,092,814 genes
were predicted in the RGC, including 85,391 ARGs, 8401 VGs,
and 1185 MGCs (Supplementary Table 4). ARG enrichment
indicated that the bacteria belonging to Proteobacteria, Acti-
nobacteriota, and Firmicutes have resistance against tetra-
cycline (19,341, 22.65%), macrolide (17,244, 20.19%), and flu-
oroquinolone (16,742, 19.61%) (Fig. 3a). Furthermore, these
bacteria contained substantial VGs, particularly enriched in
the categories of immune modulation (778, 9.26%), adherence
(770, 9.17%), and nutritional/metabolic factors (720, 8.57%)
(Fig. 3b). Among the bacteria from Proteobacteria, Actinobac-
teriota, Firmicutes, and Bacteroidota was a notable presence
of MGCs, with enrichment in ribosomally synthesized and

post-translationally modified peptides (429, 36.20%) and non-
ribosomal peptide synthetase (200, 16.88%) (Fig. 3c). These
findings suggest the potential of these bacteria to synthesize
natural cyclic peptides with significant clinical applications.
In addition, we aligned the RGC-unmapped metagenomic
reads to the CARD, VFDB, and human genome and calculated
their alignment ratios (Supplementary Fig. 1a). The results
demonstrate that 27.5%, 41.3%, and 35.5% of the samples have
RGC-unmapped reads that aligned to the CARD, VFDB, and human
genome, respectively [62, 64], with only 0.101%, 0.218%, and
0.317% averaged align ratios, respectively (Supplementary Fig. 1a).
To clarify the RGC-unmapped reads, we further aligned the RGC-
unmapped reads to the NT and bacteriophage databases [69, 75],
which contain 115,325 genomes and 873,718 phage sequences,
respectively. The results suggest that the RGC-unmapped reads
belonging to Bacteria, Viruses, Fungi, and Archaea took 6.913%
(518,193 reads per sample in average), 0.914% (24,790 reads per
sample in average), 0.081% (3541 reads per sample in average),
and 0.009% (25 reads per sample in average) of the original
metagenomic data, respectively (Supplementary Fig. 1b).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae620#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae620#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae620#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae620#supplementary-data
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Figure 3. Characteristics of the RGC genes in different functional databases. (a–c) Annotation results of the genes predicted in the RGC compared to the
CARD, VFDB, and BGC databases, respectively. Each figure presents three distinct sections from left to right: The distribution of genes from different phyla
in the RGC across various functional categories in the databases, the major functional categories encompassed by the RGC, and the phyla contributing
the most to the functional genes within the RGC.

Distinct microbial characteristics along different
sites of the respiratory tract
Based on the RGC database, we detected the microbial com-
positions for all respiratory samples and discovered differen-
tial microbial characteristics from the upper to lower respira-
tory tract (Fig. 4, Supplementary Table 3). According to the col-
lection sites, we divided the 3941 samples into seven groups:
the nasal cavity, nasal pharynx, oropharynx, epiglottis, larynx,

trachea, and lungs (Fig. 4a). In the nasal cavity and nasal pharynx,
the dominant phyla were Firmicutes (average relative abundance:
42.07% and 34.93%, respectively), Actinobacteriota (34.70% and
50.86%, respectively), and Proteobacteria (19.54% and 11.57%,
respectively). As the sampling sites approached the lower respi-
ratory tract, we found that Bacteroidota became one of the dom-
inant taxa (Fig. 4a). For the samples collected from the orophar-
ynx, epiglottis, and larynx, the average relative abundance of

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae620#supplementary-data
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Bacteroidota reached 26.44%, 23.93%, and 16.05%, respectively. In
the lower respiratory tract, Proteobacteria became the dominant
taxa; average relative abundance was 41.05% and 37.14% for
the samples collected from the trachea and lungs, respectively
(Fig. 4a).

Besides phyla, we detected the species compositions for the
samples from the seven respiratory sites. Notably, samples from
the lower respiratory tract contained the most species (Fig. 4b).
For example, the samples from the lungs and nasal cavity
contained 449 and 248 species, respectively. As the sampling
number was higher in the lower respiratory tract (n = 1406
and 1243 for the lungs and trachea, respectively), we deduced
that the RGC database would perform well for samples from
the lower respiratory tract. In addition, seven respiratory sites
shared 209 species, including Lactobacillus paragasseri, Tropheryma
whipplei, and Pseudomonas aeruginosa (Fig. 4c). Based on the
species prevalence among the 21 datasets (Fig. 1a), we further
explored the distributions of seven highly prevalent species and
determined their specific distribution patterns among the seven
respiratory sites (Fig. 4d–j). For example, the relative abundances
of L. paragasseri and T. whipplei in the lungs, nasal pharynx, and
nasal pharynx were significantly lower than in the oropharynx
and larynx (P < 0.001). Thus, these findings collectively describe
the microbial features along the respiratory tract, providing a
basis for taxonomical detection or comparison with the RGC
database.

Taxonomical and functional comparison
between the RGC, unified human
gastrointestinal genome database, and
respiratory microbial gene catalogue
The RGC includes respiratory-specific species, highlighting the
inadequacy of the UHGG database for RM analysis. We applied
iToL to visualize the phylogenetic tree for the 552 RGC and
4729 UHGG genomes (Fig. 5a) and discovered habitat-specific
subclades in the phylogenetic tree. Then, we compared the
species compositions between the RGC and UHGG (Fig. 5b),
revealing that 54.3% of the species in the RGC were respiratory-
specific. Among the species shared between the two databases,
Agathobacter rectalis had the most genomes in the UHGG (Fig. 5c).
In contrast, Actinomyces graevenitzii, Alloscardovia omnicolens, and
H. inf luenzae had the most genomes in the RGC. Furthermore,
the RGC and UHGG had 5047 and 9239 KEGG orthology (KO)
identifiers, respectively, wherein 4778 KOs are shared between
the RGC and UHGG (Fig. 5d). Moreover, functional enrichment
analysis showed that 29 KEGG pathways were enriched in the
RGC (P < 0.05, Fig. 5e).

The RGC demonstrated notable advantages in the representa-
tiveness and continuity of respiratory microbial genomes com-
pared to the RMGC. The RGC includes 552 MAGs, whereas the
RMGC only reports 125 co-abundance gene groups (Fig. 5f). Fur-
thermore, the RGC and RMGC contain 1,122,815 and 2,245,343
non-redundant, open reading frames, respectively; the mean open
reading frame lengths in the RGC and RMGC were 851 nucleotides
(range: 65–43,635 nucleotides) and 761 nucleotides (range: 102–
32,241 nucleotides), respectively (Fig. 5g).

Simulated metagenomic data reveals the stable
performance of the RGC
To examine the performance of the RGC with the RM, we con-
ducted RM annotations for the 21 collected datasets by using
the RGC, UHGG, and standard database in Kraken2. With the

standard database from Kraken2, the RM samples exhibited 8854
annotated species, while the UHGG and RGC databases exhibited
4936 and 501 annotated species, respectively (Fig. 6a). The RM
taxonomic profiles of these three databases shared 79 species,
and the RGC annotation results included 260 specific species. We
subsequently checked the taxonomical assignment and genome
completeness of the MAGs corresponding to the 260 RGC-specific
species (Fig. 6b, c). Among the 260 MAGs, 152 exhibited high sim-
ilarity to the known bacterial genomes in the GTDB database,
while 43 exhibited genome completeness >90%. On the other
hand, 108 MAGs exhibited low similarity to known species, while
25 had over 90% genome completeness. In addition, the spe-
cific species annotated by the RGC were mainly from Firmi-
cutes, Bacteroidota, Proteobacteria, and Actinobacteriota (Fig. 6d).
Thus, the results suggest that compared to the UHGG and stan-
dard database in Kraken2, the RGC contains unidentified res-
piratory microorganisms that can deepen our understanding of
the RM.

To assess the accuracy of the RGC for RM annotation, we
applied the RGC, UHGG, and standard database in Kraken2 to
perform taxonomical annotation and abundance calculation on
five simulated respiratory metagenomic data. First, we checked
the species compositions of the three databases on the simulated
data (Fig. 6e). We found that the number of species annotated by
the RGC was the same as that of the simulated data (nspecies = 49)
in contrast to the annotated species numbers from the UHGG
(nspecies = 3511) and standard database in Kraken2 (nspecies = 6555).
Second, we explored the abundance distributions of the species
of the three databases using the simulated data (Fig. 6f). The
results show that the species abundance calculated with the
RGC was close to the simulated species abundance, whereas
the species abundance calculated with the UHGG and standard
database in Kraken2 poorly reflected the actual abundance in
the simulated data. Third, we calculated the sample similarity
between the simulated data and annotation results of the three
databases (Fig. 6g). The sample similarity between the simulated
data and RGC annotation results was significantly higher
(Bray–Curtis distance = 0.050 ± 0.059) than that between the
simulated data and UHGG (Bray–Curtis distance = 0.583 ± 0.125,
P = 0.008) or the standard database in Kraken2 (Bray–Curtis dis-
tance = 0.716 ± 0.124, P = 0.008). These findings indicate that the
RGC can reduce the taxonomical bias caused by non-respiratory
microorganisms.

To assess the stability of the RGC for RM annotation, we
used the RGC and UHGG databases to conduct RM analysis
on 88 samples, with each sample having four metagenomic
data with different read lengths (i.e. 100, 150, 200, and 250 bp).
First, we examined the species compositions of the RM samples
under different read lengths (Fig. 7a, b). Utilizing the RGC for
RM annotation, the metagenomic data with different lengths
exhibited almost identical species composition, except Lacto-
bacillus gasseri, which only existed in the datasets with 150 and
200 bp read lengths (Fig. 7a). However, when applying the UHGG
database for RM annotation, we observed inconsistent species
composition for the datasets with different read lengths (Fig. 7b).
Then, we calculated the sample similarity among the datasets
with different read lengths and compared them between the
RGC and UHGG (Fig. 7c). Notably, the sample similarity among
different read lengths was significantly lower when applying
the UHGG database than the RGC database (P < 0.001). These
findings demonstrate the stable performance of the RGC for
RM taxonomical annotation with variable metagenomic read
length.
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Figure 4. Composition of the RM along the respiratory tract. (a) RM compositions along the respiratory tract at the phylum level. Phylum composition
was detected at seven respiratory sites. Colors indicate different phyla. (b) Species numbers in the seven respiratory sites. The x-axis represents the
respiratory site. Bar height indicates species number, which corresponds to the left y-axis. The spot in the curve indicates the sample number at each
respiratory site, which corresponds to the right y-axis. (c) Numbers of core species among the seven respiratory sites. The number in the center circle
indicates the number of core species among respiratory sites. (d–j) Distributions of seven high-frequency and high-genome-completeness species at the
seven respiratory sites.
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Figure 5. Comparison of the RGC, UHGG, and RMGC databases. (a) Phylogenetic tree of all RGC and UHGG genomes. The bars in outer circle indicate the
genome source: The RGC and UHGG . (b) Numbers of shared and specific species between the RGC and UHGG. (c) Numbers of supporting genomes for
each shared species between the RGC and UHGG. (d) Numbers of shared and specific KO identifiers between the RGC and UHGG. (e) Enriched pathways
of RGC-specific KO identifiers. (f) Numbers of MAGs in the RGC and numbers of co-abundance gene groups in the RMGC. (g) Distributions of open reading
frame length in the RGC and RMGC. Dashed line indicates the mean value.
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Figure 6. Comparison of the RGC, UHGG, and standard database of Kraken2 for RM annotation. (a) Numbers of species annotated using the RGC, UHGG,
and standard database of Kraken2 on all enrolled metagenomic data. (b) Numbers of GTDB-annotated and GTDB-unannotated MAGs. MAGs correspond
to RGC-specific species. (c) Genome completeness of the RGC-specific MAGs. (d) Taxonomic distribution of the RGC dataset at the phylum, class, order,
family, and genus levels. Only the top five taxonomic units are shown for each hierarchical level, while the remaining classifications are labelled ‘other’.
(e) Numbers of species annotated by the RGC, UHGG, and standard database of Kraken2 on five simulated metagenomic data. (f) Heatmap of species
abundance calculated using the RGC, UHGG, and standard database of Kraken2 on five simulated metagenomic datasets. Top: Dendrograms showing
the clustering results of the samples based on the Euclidean distances of species. (g) Comparison of RM similarity between the simulated and database
annotated profiles. The first box indicates the Bray–Curtis distances between the simulated and RGC annotated profiles; the second box indicated the
Bray-Curtis distances between the simulated and UHGG annotated profiles; and the third box indicated the Bray-Curtis distances between the simulated
and standard database of Kraken2 annotated profiles (∗∗P < 0.01).

Figure 7. Comparison of the annotation stability of the RGC and UHGG with metagenomic data of different read lengths. (a) Numbers of species
annotated by the RGC with metagenomic data of different read lengths. Each sample has four metagenomic datasets with different read lengths (i.e.
100, 150, 200, and 250 bp). (b) Numbers of species annotated by the UHGG with metagenomic data of different read lengths. (c) Comparison of RM
similarity among datasets with different read lengths. The x- and y-axes in the plot represent the Bray-Curtis distances and the source databases,
respectively (∗∗∗P < 0.001).
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Figure 8. Example practical application of the RGC with pneumonia data. (a) Numbers of core-pan species annotated by the RGC and RMGC. (b)
Alignment ratios of 334 respiratory metagenomes in the RGC and RMGC. (c) Annotation results of the RMGC-unaligned reads with the RGC database.
The six most abundant species were selected from the annotation results. (d) Comparison of shared respiratory microbes between healthy children
and children with pneumonia. The first (i.e. outermost) and second circles represent the relative abundance of species in the children with pneumonia
and healthy children, respectively; solid stars indicate the respiratory microbes enriched in the children with pneumonia; the third and fourth circles
indicate the prevalence of species in children with pneumonia and healthy children; the sixth circle represents the phylum-level classification of the
species. (e) Shared and unique respiratory microbes in healthy children and children with pneumonia. (f, g) Enriched virulence factors and antibiotic
resistance categories in children with pneumonia and healthy children, respectively (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001).
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The RGC enables high-resolution analysis of
respiratory metagenomic data for clinical
applications
Empowered with the RGC, we re-analyzed the RM metagenomic
data from 334 previously published samples and acquired RM
information more comprehensive than that with the RMGC
database (Supplementary Fig. 2, Supplementary Table 5) [16].
First, the RGC enables detailed taxonomical classification (Fig. 8a).
Utilizing the RGC, we identified 385 distinct species from the RM
of the samples, exceeding the 23 species reported in the RMGC
database. Furthermore, the RGC provided detailed taxonomic
classifications of these species, encompassing 16 phyla, 19
classes, 51 orders, 93 families, and 237 genera, effectively
eliminating the limitation of determining the taxonomical
positions for the co-abundance gene groups introduced by the
RMGC (Fig. 8d, Supplementary Table 5). Second, the RGC utilized
the RM metagenomic data more robustly (Fig. 8b). Among the
334 samples, an average of 63.83 ± 17.01% of the metagenomic
data could be aligned to the reference genomes in the RGC,
surpassing the data utilization ratio of 43.89 ± 12.45% with the
RMGC (P < 0.001). Third, the RGC deciphered species information
from the RMGC-unaligned metagenomic data (Fig. 8c). Using
the RGC to analyse the metagenomic data unaligned with the
RMGC, we found that these sequences were mainly attributed
to Alloprevotella sp905369775, Nanosynbacter sp900555425, and
Porphyromonas pasteri. These findings imply that the RGC
provides more comprehensive RM information, overcoming the
taxonomical annotation bias caused by the incompleteness of the
RMGC.

Furthermore, high-resolution deciphering of the RM using
the RGC assisted us in accessing the RM components and
gaining deeper insights into the mechanism of the RM in
pneumonia. First, the previous study inaccurately claimed the
existence of opportunistic pathogens both in patients with
pneumonia and healthy pediatric subjects. RGC-based analysis
revealed that the oropharyngeal microbiota from children with
pneumonia includes 17 unique pathogenic microorganisms,
including Staphylococcus aureus, Mycoplasmoides pneumoniae, and
Staphylococcus haemolyticus (Fig. 8e, Supplementary Table 5).
However, a previous study reports these pathogens as core
species in patients with pneumonia and healthy pediatric
subjects, contradicting the sample grouping information. Second,
the RGC unveiled distinct RM characteristics in children with
pneumonia that were not identified in previous studies. For the
78 shared microorganisms between children with pneumonia
and healthy children, those with pneumonia exhibited signifi-
cantly higher abundance and prevalence of Rothia mucilaginosa
(Padj < 0.001) and Ralstonia sp001078575 (Padj < 0.001) (Fig. 8d,
Supplementary Table 6). Conversely, the abundance and preva-
lence of Veillonella infantium (Padj < 0.001) and Prevotella histicola
(Padj < 0.001) were significantly lower in children with pneumonia
(Fig. 8d, Supplementary Table 6). Third, the RGC comprehensively
illustrated the distribution of the VGs and ARGs in the RM of
children with pneumonia. With the enrichment of opportunistic
pathogens, the RM of children with pneumonia contained higher
abundances of VGs, notably enriched in adherence (Padj < 0.001),
effector delivery system (Padj < 0.001), and immune modulation
(Padj = 0.007) (Fig. 8f, Supplementary Table 7). Furthermore, the
RM of children with pneumonia exhibited greater antibiotic
resistance, including resistance to macrolide (Padj = 0.002),
fluoroquinolone (Padj = 0.002), and tetracycline (Padj = 0.003)
(Fig. 8g, Supplementary Table 7).

The RGC contributes to the rapid and specific
diagnosis of respiratory infections
Compared to the NT, the RGC demonstrates superior sensitiv-
ity and specificity for the diagnosis of respiratory infections.
To assess the clinical utility of the RGC, we applied it to clin-
ical samples for respiratory infection diagnosis. We submitted
the BALF samples from 62 patients to RM annotation and res-
piratory infection diagnosis using the RGC and NT databases
(Supplementary Table 8). Then, we committed the inferred results
to the final clinical diagnosis to evaluate concordance, and dis-
covered that the RGC effectively mitigated the substantial noise
signals introduced by the NT database, enhancing the diagnostic
efficacy of respiratory infections. Among the 62 BALF samples,
the RGC annotated 79 bacterial species, while the NT database
identified 7008 bacterial species (Fig. 9a, Supplementary Fig. 3).
Despite the significant disparity in the number of respiratory
species identified by the two databases, the RGC captured a com-
prehensive representation of the RM in the participants (Fig. 9a).

Furthermore, owing to the diminished noise signals, the RGC
facilitated the rapid identification of the predominant respira-
tory pathogens, such as Mycobacterium tuberculosis and Limosilac-
tobacillus mucosae, which would enable clinicians to rapidly deter-
mine the specific infection types (Fig. 9b). Additionally, the RGC
enhanced the sensitivity and specificity of respiratory infection
diagnosis (Fig. 9c–e). We compared the inferred results from the
RGC and NT databases with the final clinical diagnosis to eval-
uate their concordance (Supplementary Table 9). The diagnostic
results of 37 cases using the RGC were consistent with the final
clinical diagnosis, while the NT database showed concordance
in 52 cases (Fig. 9d). The higher diagnostic accuracy of the NT
database may be due to the sample bias in the studied population
(nInfect = 53, Fig. 9c). Nevertheless, the RGC demonstrated supe-
rior performance to the NT in other clinical diagnostic indices,
including specificity (0.444 versus 0, respectively) and sensitivity
increased (0.881 versus 0.852, respectively) (Fig. 9e).

Discussion
In this study, we constructed an RGC by employing long-read
Nanopore and short-read next-generation sequencing data
derived from 4191 respiratory samples. The RGC consists of 522
genomes that fulfil the median criteria of the MIMAG standards
[22]. Including such a diverse array of sample sources enhances
the richness and representativeness of the RGC, thereby making
it a valuable reference for exploring the composition of the RM.
Furthermore, to our knowledge, the RGC documents the largest
collection of respiratory microbial genomes, being more than four
times larger than the previous RMGC. Consequently, the RGC is
an invaluable resource that paves the way for further research on
the RM.

Here, we developed an optimizing strategy to advance the con-
tinuity of metagenomic assemblies. By leveraging the conjugate
graph concept, we can efficiently model the complex double-
helical structure of DNA, capturing critical information to pro-
duce accurate contiguous assemblies. Furthermore, by modelling
the scaffolding process, finding the weighted maximum bipartite
matching problem on the conjugate graph and solving it using
a constrained Kuhn–Munkres algorithm, our method effectively
resolves the orders and directions of contigs. This optimization
strategy improves the continuity, accuracy, and resolution of
the MAGs obtained directly from complex next-generation

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae620#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae620#supplementary-data
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae620#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae620#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae620#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae620#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae620#supplementary-data
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Figure 9. Assessment of respiratory infections in 62 participants using the RGC. (a) Cumulative curves derived from the microbial annotation of BALF
samples from 62 participants using the RGC and NT databases. Left and right panels display the cumulative curves for the RGC and NT annotations,
respectively. (b) Bacterial annotations of BALF samples from 62 participants using the RGC and NT databases. Bar length corresponds to species
abundance, and colors represent different species. (c) Numbers of infected and uninfected participants after final clinical diagnosis. (d) Upset graph
illustrating the concordance between the RGC annotation results, NT annotation results, pathogenic culture results, and final clinical diagnoses. (e)
Venn diagram of the numbers of common and unique species among the 62 BALF samples after annotation using the RGC and NT databases. The bar
plot shows the accuracy, precision, sensitivity, and specificity of clinical infection diagnosis based on the RGC and NT databases.

sequencing metagenomic data. Using this method, we developed
the RGC, an extensive collection of high-quality respiratory
genomes. In particular, the RGC demonstrates substantial
advances in the continuity and representativeness of respiratory
microbial genomes compared to the previously constructed
RMGC. With a diverse range of sample sources, the RGC includes
522 high-quality respiratory microbial genomes (4.4 times more

than the RMGC), highlighting its representativeness for the
microbes in the RM. Additionally, the RGC features the longest
contig spanning 1.72 Mbp (a complete MAG) and an N50 of
13,173 bp, significantly exceeding the RMGC’s N50 of 981 bp
and underscoring the novel genome continuity achieved by
the RGC. Overall, the RGC contains comprehensive and high-
quality respiratory microbial genomes, serving as a fundamental
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resource for establishing standardized repositories of respiratory
genomes and further facilitating metagenomic investigation of
the RM.

When comparing the RGC and UHGG, we observed that the
RM has specific subclades in the genome compared to the gut
microbiome. Only 45.7% of RM species are shared between the
respiratory and digestive tracts. However, 94.7% of the RGC KO
identifiers were detected in the gut microbiome. The respiratory-
specific KOs are enriched in pathways of the biosynthesis of
secondary metabolites (P < 0.001) and the biosynthesis of type
II polyketide products. These pathways might play vital roles in
microbial adaptation in the human respiratory tract. The respira-
tory tract contains a relatively large number of specific species
but few specific genes compared to the RMGC. This might be
because the RMGC integrates publicly available genes from the
Human Microbiome Project, the Pathosystems Resource Integra-
tion Center, and the Integrated Microbial Genomes and Micro-
biomes, which include a substantial number of non-respiratory
microbial genes.

Additionally, this study demonstrated the accuracy and stabil-
ity of the RGC for RM annotation. Using the simulated metage-
nomic data, the RM results from the RGC exhibited the same
species composition and species abundance close to the sim-
ulated data compared to the RM annotations from the UHGG
database or the standard database in Kraken2. This, the results
not only demonstrate the accuracy of the RGC for RM annotation,
but also show that it reduces the taxonomical bias caused by
non-respiratory microorganisms. Furthermore, compared to the
UHGG database, the RGC yielded consistent species composition
and abundance for the metagenomic data from the same samples
with varying read lengths. Thus, the results collectively demon-
strate the stable performance of the RGC for RM taxonomical
annotation using metagenomic data with either long or short read
length.

We also assessed the clinical utility of the RGC using the
metagenomic data from a previous pneumonia study, offering a
detailed etiological characterization for the children with pneu-
monia [16]. The diversity of the RM is potentially crucial for
human health [76]. The RM of children with pneumonia exhibits
reduced species diversity compared to that in healthy children,
indicating a simplified microbial community structure resulting
from intense immune responses in patients [77]. In addition,
the RGC identified 385 respiratory microbial species across all
samples, surpassing the 125 species annotated in previous studies
and highlighting the superiority of the RGC in capturing the
RM spectrum. Furthermore, the RGC confirmed the presence of
17 pneumonia-specific respiratory pathogens, including Staphy-
lococcus aureus, Mycoplasma pneumoniae, and S. haemolyticus. These
pathogens are reported to be present in both children with pneu-
monia and healthy children [16], suggesting potential etiological
judgment errors due to an incomplete RM database, which would
have impeded a deeper understanding of the RM.

Furthermore, we showed that the RGC demonstrates superior
sensitivity and specificity for diagnosing respiratory infections.
Compared to the NT database, the RGC had fewer microbial
annotations, effectively mitigating the substantial noise signals
introduced by non-respiratory microorganisms present in the
NT database. Furthermore, the RGC showed better sensitivity
and specificity for respiratory infection diagnosis than the
public database. These findings underscore the significance
of a complete and representative RGC in facilitating exami-
nation of the RM, which is crucial for diagnosing respiratory
infections.

Nevertheless, one limitation of this study is the inadequate
recovery of fungi, archaea, and viruses in the RGC. As bacte-
ria account for up to 98% of the genetic material in metage-
nomic samples, other microorganisms, such as fungi, archaea,
and viruses, were captured incompletely in the RGC, leading
to small fungal, archaeal, and viral genomic fragments during
assembling [78], which were filtered from the RGC (shorter than
1000 bp). In addition, the vast diversity of virus types and the high
genome similarity between the bacteriophages and the bacteria
make it more difficult to isolate viruses from metagenomes [79].
Another limitation is the limited number of complete MAGs.
Owing to the insufficient respiratory metagenomic data, which
is hindered by host genomic data, it is difficult to recover com-
plete MAGs. However, future advances in low-input, high-depth
sequencing technologies will offer opportunities to obtain more
complete MAGs for RM.

In summary, we constructed a non-redundant, highly contigu-
ous, and representative RGC based on the large-scale integration
of second- and third-generation metagenomic data from respira-
tory samples. This invaluable resource will provide fundamental
support for researchers and clinicians to access precise infor-
mation on the RM composition, functional features, and clinical
diagnosis.

Key Points

• The respiratory genome catalogue (RGC) presents highly
contiguous and representative microbial genomes in the
human respiratory tract.

• The RGC contains respiratory-specific species, enabling
high-resolution and precision identification of the respi-
ratory microbiome.

• The RGC exhibits superior sensitivity and specificity for
the diagnosis of respiratory infections compared to other
databases.
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