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Abstract

Ribonucleic acid (RNA) molecules are essential macromolecules that perform diverse biological functions in living beings. Precise
prediction of RNA secondary structures is instrumental in deciphering their complex three-dimensional architecture and functionality.
Traditional methodologies for RNA structure prediction, including energy-based and learning-based approaches, often depict RNA
secondary structures from a static perspective and rely on stringent a priori constraints. Inspired by the success of diffusion models, in
this work, we introduce RNADiffFold, an innovative generative prediction approach of RNA secondary structures based on multinomial
diffusion. We reconceptualize the prediction of contact maps as akin to pixel-wise segmentation and accordingly train a denoising
model to refine the contact maps starting from a noise-infused state progressively. We also devise a potent conditioning mechanism
that harnesses features extracted from RNA sequences to steer the model toward generating an accurate secondary structure. These
features encompass one-hot encoded sequences, probabilistic maps generated from a pre-trained scoring network, and embeddings
and attention maps derived from RNA foundation model. Experimental results on both within- and cross-family datasets demonstrate
RNADiffFold’s competitive performance compared with current state-of-the-art methods. Additionally, RNADiffFold has shown a
notable proficiency in capturing the dynamic aspects of RNA structures, a claim corroborated by its performance on datasets comprising
multiple conformations.
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Introduction
Ribonucleic acid (RNA) is a vital biomolecule with diverse roles
beyond the transfer of genetic information from DNA to proteins.
It is involved in catalysis, regulation, and protein synthesis,
primarily through its non-coding regions [1]. For instance, microR-
NAs (miRNAs) regulate gene expression post-transcriptionally,
with their dysregulation linked to various diseases [2]. Long
non-coding RNAs (lncRNAs) are crucial in cellular processes
like chromatin modification and transcriptional regulation [3].
Small nuclear RNAs (snRNAs) form spliceosome complexes,
influencing splicing patterns and mRNA abundance [4]. Thus,
delving into RNA functionality is essential for unraveling its
biological mechanisms.

In cells, RNA typically exists as a single-stranded molecule and
folds into specific structures through base pairing via hydrogen
bonds, thereby interacting with other biomolecules and exerting
functions. The secondary structure of RNA is a two-dimensional
topological structure formed by base pairing through hydrogen
bonds [5]. Based on this, the tertiary structure further folds into a
three-dimensional spatial conformation. Although RNA primarily
exerts its biological functions through its tertiary structure, this

binding process often relies on motifs such as stems and loops
in the secondary structure. However, due to its single-stranded
nature, RNA’s tertiary structure is susceptible to environmental
influences and exhibits poor stability, making it challenging to
obtain directly. Despite significant progress in resolving high-
resolution RNA structures through existing experimental meth-
ods such as X-ray crystallography, nuclear magnetic resonance
(NMR) [6], and cryo-electron microscopy [7], challenges persist
in obtaining a sufficient quantity and quality of RNA tertiary
structures due to factors such as high experimental costs and
resolution limitations. Therefore, understanding RNA’s secondary
structure is key to deciphering its biological mechanisms and
progressing to tertiary structure resolution [8].

Over the past decades, researchers have developed various
methods for RNA secondary structure prediction, combining
experimental and computational approaches. These methods
fall into three main categories: energy-based, covariation-based,
and deep learning-based [9]. Energy-based methods primarily
utilize experimentally determined parameters to calculate the
free energy of RNA structures and identify the most stable
secondary structures through dynamic programming [10–13].
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While widely adopted and capable of providing relatively accurate
predictions, these methods are limited in that they only consider
nested base pairings and struggle with more complex structures
such as pseudoknots. Moreover, as the length of RNA increases,
the computational complexity of these methods significantly
escalates. Covariation-based methods infer secondary structures
by considering the co-evolutionary relationships between RNA
sequences and structures [14–16]. These methods can offer
highly accurate predictions under certain conditions but may
face challenges when dealing with limited information from
homologous sequence data. With the accumulation of RNA
secondary structure data and the rapid development of deep
learning technologies, deep learning-based RNA secondary struc-
ture prediction methods have gained traction. These methods
employ neural networks, such as Bi-LSTM, Transformer, and U-
Net to calculate base pairing probabilities to capture long-range
interactions [17–19]. Some approaches integrate thermodynamic
knowledge [20], adopt transfer learning strategies [21], or
incorporate evolutionary and mutational coupling information
[22] to optimize prediction results and alleviate prediction biases.
However, existing deep learning-based methods still exhibit
shortcomings in model generalization performance, especially
when modeling unknown RNA families. This limitation arises
because their model parameters often derive from a limited
pool of known structures, thereby restricting their adaptability to
new data. To overcome limitations in training data quantity and
distribution and enhance model generalization capabilities, new
computational methods are necessary to achieve more accurate
and comprehensive outcomes in RNA secondary structure
prediction.

In recent years, diffusion models have demonstrated outstand-
ing performance in various prediction tasks [23–25]. Inspired by
this, we introduce RNADiffFold, a novel framework for RNA sec-
ondary structure prediction using discrete diffusion models. The
framework aims to predict a deterministic RNA secondary struc-
ture in a generative manner. RNADiffFold first represents RNA
secondary structures as binary contact maps. The contact map
has a size of L × L (where L is the length of the RNA sequence),
and each point in the map can be classified into two categories:
“1” denotes pairing, and “0” denotes non-pairing. This approach
simplifies the complex RNA secondary structure prediction task
into a pixel-level image segmentation task.

RNADiffFold comprises two main components: the diffusion
model and conditional control. The diffusion model component
is based on discrete data space multinomial diffusion [26]. As
illustrated in Fig. 1, during the forward diffusion process, the
true contact map x0 is gradually degraded by injecting noise
following a uniform categorical distribution. When reaching
time step T, xT transitions into a completely random noise
state. In the inverse diffusion process, we employ U-Net [27] as
the learning network and add conditional control to gradually
denoise and restore the original contact map. The conditional
control component encompasses the sequence information
of RNA, including features such as one-hot encoding of the
sequence, probability maps from the Ufold scoring network
[19], and high-dimensional embeddings and attention maps
from RNA foundation model (RNA-FM) [28], with dimensionality
reduction through different MLPs. At each time step of the inverse
diffusion process, all these sequence features are fused with the
intermediate state xt. This design enables RNADiffFold to leverage
the powerful capabilities of the diffusion model to predict RNA
secondary structures while integrating various sequence features
to enhance the accuracy and stability of predictions.

Building upon previous work [19, 21, 22], we evaluate the
predictive performance of RNADiffFold on both within-family and
cross-family RNA datasets. Experimental results demonstrate
that even with simple one-hot encoding as the conditional
input, RNADiffFold exhibits comparable performance to existing
methods on within-family datasets, while also demonstrating
reasonable accuracy in predicting the secondary structures of
RNA sequences from unknown families. When additional features
generated from RNA-FM are incorporated, RNADiffFold shows
significant improvements in performance on both within-family
and cross-family datasets, surpassing existing methods and
highlighting its effectiveness and generalization. Furthermore,
RNADiffFold not only predicts static RNA secondary structures
but also captures dynamic multi-conformational features to
some extent by learning the distribution of secondary structure
conformations.

Materials and methods
Preliminaries
Diffusion models
Diffusion models [29–30] are a type of probabilistic generative
models characterized by two Markov chains in the diffusion pro-
cess: a forward chain that deconstructs data into noise, and a
reverse chain that reconstructs data from noise. Specifically, in
Diffusion Probabilistic Models (DDPMs), given a data distribution
x0 ∼ q(x0), the forward diffusion process q produces a sequence of
latent states from x1 to xT by adding noise at the timestep t with
variance schedule βt ∈ (0, 1). The transition kernel is defined as
follows:

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtI) (1)

The reverse diffusion process p is parameterized by a prior dis-
tribution xT ∼ N (0, I) and a learnable transition kernel pθ (xt−1|xt)

defined as follows:

pθ (xt−1|xt) = N (xt−1; μθ (xt, t), �θ(xt, t)) (2)

where θ denotes the model parameters, μθ and �θ represent the
mean and variance of the distribution at time t. The training
objective is to learn the parameters θ so that the reserve trajectory
pθ closely approximates the forward trajectory q. It is achieved
by optimizing a variational upper bound on the negative log-
likelihood:

Lvb = Eq(x0)

⎡⎢⎣ T∑
t=2

DKL(q(xt−1|xt, x0)||pθ (xt−1|xt))︸ ︷︷ ︸
Lt−1

+ DKL(q(xT|x0)||p(xT))︸ ︷︷ ︸
LT

− (Eq(x1 |x0)[log pθ (x0|x1)])︸ ︷︷ ︸
L0

⎤⎥⎦
(3)

Due to the incorporation of Gaussian noise as a prior, most
diffusion models operate effectively in continuous state spaces;
however, they may not efficiently handle discrete data. In address-
ing this issue, some methods [26, 31, 32] are proposed to generate
high-dimension discrete data. For example, D3PM [31] considers
a transition matrix with an absorbing state or using discretized,
truncated Gaussian distribution. VQ-diffusion [32] accommodates
discrete data with a lazy random walk or a random masking
operation.
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Figure 1. Overview of RNA secondary structure prediction with multinomial diffusion. During the diffusion process q(xt|xt−1), discrete noise is gradually
introduced to corrupt the contact map from left to right. In the denoise process pθ (xt−1|xt, c), a generative model learns to denoise the corrupted map
from right to left.

RNA foundation model
RNA-FM [28] is an RNA foundational model based on the BERT
language model architecture, built upon 12 bidirectional encoder
blocks based on Transformers. The model consists of two stages:
pre-training and fine-tuning. In the pre-training stage, RNA-FM
is trained in a self-supervised manner on a large amount of
unlabeled RNA sequence data, allowing it to capture latent struc-
tural and functional information and extract meaningful RNA
representations. Its pre-training strategy is similar to BERT, where
15% of the base tokens representing nucleotides are randomly
masked, and the model is trained to reconstruct the masked
tokens from the remaining sequence. Upon completion of train-
ing, RNA-FM can generate a 640 × L embedding matrix for each
RNA sequence of length L. These embedding matrices provide
rich feature representations for downstream tasks. In the task-
specific fine-tuning stage, the pre-trained RNA-FM model can
generate sequence embeddings tailored to the requirements of
downstream modules, which can be directly used for various
RNA-related machine-learning tasks.

It is worth noting that a recent study [33] further validated
the importance of the multi-head attention mechanism outputs
in RNA-FM for capturing structural information. These attention
maps not only reveal the strength of associations between differ-
ent positions in RNA sequences but also provide new perspectives
for understanding RNA secondary structure and function.

Architecture of RNADiffFold
As depicted in Fig. 2A, RNADiffFold consists of the diffusion
model component and the condition construction unit. In the
left branch, the input RNA sequence undergoes a conditional
construction unit to obtain four types of feature representations:
one-hot encoding, probability maps, embeddings from RNA-FM,
and attention maps from RNA-FM. In the right branch, the RNA
secondary structure is represented as an L × L binary contact
map. During the diffusion process, discrete noise is gradually
injected to disrupt the original contact map, and after T time
steps, the contact map transitions into completely random noise.
In the reverse diffusion process, denoising is performed using
a U-Net denoising network, combined with sequence features
outputted by the conditional control unit, to progressively restore
the original contact map. Once the model training is completed,
given a randomly sampled noise xT and an RNA sequence, the
progressive denoising process can predict the secondary structure
contact map.

Diffusion process
As illustrated in Fig. 2C, RNADiffFold employs a shared-weight
neural network to learn the progressive reconstruction of data

over T steps. The diffusion process of RNADiffFold is implemented
based on multinomial diffusion [26], but there are some differ-
ences. Specifically, the model deals with binary contact maps
where pixel values are limited to two representations: 0 and 1.
The initial x0 is a L × L tensor with deterministic 0-1 relationships,
where L represents the sequence length. To undergo denoising
learning via U-Net, each pixel is embedded into an 8-dimensional
vector, resulting in a L×L×8 tensor representation. Subsequently,
using the Gumbel-Softmax method [34], discrete noise is gradu-
ally added to the sample at each timestep t through the forward
process defined as follows:

q(xt|xt−1) = Multinomial
(

(1 − βt) · xt−1 + βt · 1
K

· �1
)

(4)

where xt represents a contact matrix at time t in one-hot encoded
format xij

t ∈ {0, 1}K(K = 2, 0 ≤ i, j ≤ L). �1 is an all-one matrix. βt

is the chance of resampling another pairing possibility uniformly.
We apply the cosine schedule [30] to avoid spending many steps
on high-noise problems. As t approaches T, βt is adjusted to
approximate 1, making the distribution closer to the uniform
distribution. Since it is Markovian, we can sample arbitrary xt

directly based on x0 as:

q(xt|x0) = Multinomial
(

ᾱt · x0 + (1 − ᾱt) · 1
K

· �1
)

(5)

where αt = 1 − βt, and ᾱt = ∏t
τ=1 ατ . Using equations 4 and 5 we

can derive the categorical posterior q(xt−1|xt, x0) in the following
form:

q(xt−1|xt, x0) = Multinomial

(
θ̃(xt, x0)/

K∑
k=1

θ̃k

)
(6)

where θ̃(xt, x0) = [αt ·xt + (1−αt)

K ]� [ᾱt−1 ·x0 + (1−ᾱt−1)

K ]. The generative
diffusion process is defined as:

p(xt−1|xt, x̂0) = Multinomial

(
θ̃(xt, x̂0)/

K∑
k=1

θ̃k

)
(7)

where x̂0 = μ(xt, t, c) is a neural network to predict the initial
contact matrix x̂0 given the previous step state xt and condition c ∈
{conehot, cu, cemb, cattn}. Note that, we parametrize p(xt−1|xt) using the
probability vector from q(xt−1|xt, x̂0). The main difference between
these two processes lies in the fact that the forward diffusion
process introduces to the data, making it independent of data or
condition. Conversely, the generative diffusion process relies on
the provided condition and a comprehensive observation of the
preceding step.
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Figure 2. The pipeline of RNADiffFold. (A) Overview of RNADiffFold workflow as a supervised task. Given the input sequence, we construct the
representation through the condition construction stage. During the training stage, discrete noise is incrementally added to the ground truth contact
map. Then, we gradually denoise the map conditioned by the sequence representation. In the prediction stage, given the sequence and a map randomly
sampled from the categorical distribution, we generate candidate maps with different seeds and vote for the most reasonable one. (B) Details of condition
construction. We leverage RNA-FM and UFold score networks with their respective pre-trained weights. Following the corresponding operations, we get
four condition representations: one hot encoding, probability map, FM embedding, and FM attention map. (C) Details of the diffusion process. We leverage
multinomial diffusion and a U-Net network as the denoising network for training and inferring.

The training objective of this diffusion process is to mini-
mize the expected Kullback–Leibler(KL) divergence between equa-
tions 7 and 6, following a similar form as in equation 3:

Lt−1 = DKL(q(xt−1|xt, x0)||p(xt−1|xt))

= DKL(C(θpost(xt, x0))||C(θpost(xt, x̂0)))

(8)

Furthermore, LT corresponds to the second term in equation 3.
Given that x0 is one-hot encoded, the computation of L0 can be
expressed as:

L0 = log pθ (x0|x1) =
∑

k

x0,k log x̂0,k (9)

Details of denoising the U-Net network are illustrated in
Supplementary Fig. S1. Benefiting from the flexibility of U-Net
to handle inputs of different sizes, we can also process variable-
length sequence data.

Condition construction unit
The condition construction is depicted in Fig. 2B. To incorporate
features of the input sequence into the reverse diffusion pro-
cess, the most intuitive strategy is to perform one-hot encoding
on the sequence. Experimental results demonstrate that when
using one-hot encoded features conehot as conditions, RNADiffFold
exhibits a certain level of prediction capability, comparable to

state-of-the-art methods on some datasets. However, its predic-
tive performance decreases when facing more complex scenarios.
Therefore, it is necessary to construct additional neural networks
to process input sequences, thereby extracting more meaningful
features and generating sequence representations containing rich
additional information.

As illustrated in Fig. 2B, we adopt two neural networks as
feature extractors, namely the Ufold scoring network and the
pre-trained RNA-FM model. Here, the conditional representations
from Ufold consist of a probability matrix cu, while those from
RNA-FM consist of a sequence embedding cemb, and an attention
map cattn. Given an RNA sequence of length L, denoted as s =
(s1, s2, . . . , sL), where each si ∈ {A, U, C, G, N} and N represents an
unknown state, the computation methods for the four types of
feature representations are described as follows:

conehot is the sequence feature from one-hot encoding, conehot ∈
{0, 1}4×L. The encoding rules are as follows: A: (1, 0, 0, 0), U: (0, 1, 0,
0), C: (0, 0, 1, 0), G: (0, 0, 0, 1), N: (0, 0, 0, 0).

cu is the probability matrix outputted by the scoring network
from Ufold. Specifically, firstly, the Kronecker product is computed
between conehot and itself, and then the dimensions are adjusted to
transform conehot into a tensor ckronecker ∈ {0, 1}16×L×L. Subsequently,
to address the sparsity issue in class-like representations, ckronecker

is concatenated with an additional pairing probability matrix used
in CDPFold [35], resulting in a tensor cinput of size 17 × L × L.
Thus, the obtained feature representation considers all potential
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pairing possibilities without imposing explicit constraints, thereby
enabling the prediction of more complex structures. Finally, cinput

is inputted into a U-Net network to produce the probability tensor
cu, with dimensions of 8 × L × L. In this process, to meet the
dimension requirements of the diffusion process, the last layer
of the U-Net network is adjusted so that its output dimension
is exactly 8. It is noteworthy that apart from the last layer, the
initial weights of the U-Net are sourced from the pre-trained
Ufold model. Subsequently, fine-tuning operations are conducted
to ensure the entire network performs optimally for the current
task.

cemb and cattn are, respectively, the one-dimensional sequence
embedding and the two-dimensional attention map from RNA-
FM. Specifically, the RNA sequence is inputted into the pre-
trained RNA-FM model. From each encoder block’s Multi-Head
Attention (MHA) layer, attention maps of dimensions 20 × L × L
are obtained, and from the output layer, the sequence embedding
cemb of dimensions 640 × L are derived, where 640 represents
the embedding dimension, and 20 represents the number of
attention heads. Subsequently, the attention maps from the 12
encoder blocks are integrated to form the final attention map
cattn of dimensions 240 × L × L. cemb contains meaningful biological
information. As argued in the [33], the multiple attention heads
in different layers of the Transformer encoder module should
theoretically capture structural information by focusing on the
strength of correlations between different positions in the input
sequence. Therefore, cattn contains information related to the
structure.

Datasets preparation
We evaluated RNADiffFold using several datasets for both within-
family and cross-family scenarios, following prior work [19, 21, 22].
These datasets include RNAStrAlign [36], ArchiveII [37], bpRNA-
1m [38], bpRNA-new [20], and PDB. Specifically, the RNAStrAlign,
ArchiveII, and bpRNA-1m datasets were utilized for evaluating
within-family performance, while the bpRNA-new and PDB
datasets were employed for assessing cross-family performance.

RNAStrAlign comprises 30 451 unique sequences distributed
among 8 RNA families, whereas ArchiveII consists of 3975
sequences spanning 10 RNA families. Due to their similar family
distributions, RNAStrAlign is often used as a training set and
ArchiveII as a test set. The bpRNA-1m dataset contains 102
318 sequences from 2588 families and is considered one of the
most exhaustive datasets used for benchmarking RNA secondary
structure prediction methods. On the other hand, the bpRNA-
new dataset was derived from Rfam14.2 [39] and includes 1500
new RNA families detected by newly developed techniques
[40]. Furthermore, the PDB dataset, collected from the Protein
Data Bank [41], comprises high-resolution RNA structures with
resolutions less than 3.5Å (as of 9 April 2020).

Before using the datasets, we performed preprocessing steps
to enhance computational efficiency and reduce redundancy.
Specifically, for the RNAStrAlign dataset, we removed sequences
longer than 640 nucleotides and randomly split the dataset into
training, validation, and test sets in an 8:1:1 ratio. Redundant
sequences were removed using methods from E2Efold [18] and
Ufold [19]. For the ArchiveII dataset, which was used solely for
testing, a similar strategy as the RNAStrAlign dataset was adopted
to reduce redundancy. Regarding the bpRNA-1m dataset, we used
CD-HIT-EST [42] to remove sequences with over 80% similarity,
following the methods of MXfold2 [20] and SPOT-RNA [21]. The
remaining data, referred to as bpRNA, were divided into training,
validation, and test sets labeled TR0, VL0, and TS0, respectively.

For the bpRNA-new dataset, sequences with over 80% similarity
were removed using CD-HIT-EST, and sequences longer than 500
nucleotides were filtered out. For the PDB dataset, we applied
the same dataset division as SPOT-RNA2 [22], resulting in train-
ing (TR1), validation (VL1), and various test sets (TS1, TS2, TS3,
TS-hard).

Furthermore, we analyzed the relationship between sequence
length and the number of base pairs in each dataset, finding a
linear relationship for most samples, as shown in Supplementary
Fig. S2. However, some samples deviated from the fitted line,
with most of the deviations related to sequences containing
low pairing information and some being completely unpaired.
Thus, sequences longer than 200 nucleotides with fewer than
10 base pairs were removed from the training set to reduce
the impact of low-pairing sequences. Validation and test sets
remained consistent with previous work. The final dataset used
in this study was slightly smaller than that used in previous
studies.

To enhance the transfer ability of the model in handling
unknown RNA families, we employed data augmentation similar
to Ufold [19]. In the bpRNA-new dataset, 20 − 30% of nucleotides
were randomly mutated to create new data. Then, sequences
with over 80% similarity to real sequences were removed using
CD-HIT-EST, yielding 2717 mutated sequences (named Mutate-
seq) for supplementary training. Labels for Mutate-seq were
generated using Contrafold [43], a probabilistic method extending
stochastic context-free grammars (SCFGs) with discriminative
training objectives and flexible feature representations.

In summary, the dataset configuration for this study includes
multiple training sets derived from RNAStrAlign, bpRNA TR0,
and Mutate-seq, along with TR1 from the PDB dataset utilized
for cross-family fine-tuning. For within-family evaluations,
the test sets include sequences from ArchiveII and bpRNA
TS0. Conversely, cross-family testing employs bpRNA-new and
multiple test sets from PDB (TS1, TS2, TS3, and TS-hard). The
detailed statistics of the final datasets employed for the training,
validation, and testing phases are systematically presented in
Supplementary Table S1.

We also observed that approximately 80% of the sample
sequences in the original data were concentrated below 160
nucleotides in length (23 374 sequences between 30 and 160
nucleotides, 3202 sequences between 160 and 320 nucleotides,
and 3119 sequences between 320 and 640 nucleotides), as shown
in Supplementary Fig. S3A, which hindered the model’s ability to
learn long-range RNA interactions. To address this issue, a data
balancing strategy [44] was employed. Specifically, sequences
with lengths between 160 and 640 nucleotides were selectively
duplicated in the training set to increase their representation
in the dataset. After duplication, the number of sequences
with lengths between 160 and 640 nucleotides increased to
48 658. This initiative effectively mitigated the impact of data
imbalance on model training. Supplementary Figure S3B shows
the distribution of sequence length and number of base pairs
after data balance. In addition, to improve the training efficiency,
we also developed a data bucketing strategy to process the
above datasets, and the details are given in Supplementary
Section 1.1.

Experiments and results
Evaluation criteria and experimental setup
To comprehensively evaluate the prediction accuracy of RNADiff-
Fold, we employed precision (Prec), recall (Recall), and F1 score as
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evaluation metrics, defined as follows:

Prec = TP
TP + FP

(10)

Recall = TP
TP + FN

(11)

F1 = 2 × Prec × Recall
Prec + Recall

(12)

where TP represents the number of correctly predicted base pairs
(true positives), FP represents the number of incorrectly predicted
base pairs (false positives), and FN represents the number of base
pairs in the reference structure that were not predicted (false
negatives).

RNADiffFold is implemented using Pytorch [45]. We set the
number of diffusion steps T as 20 during the diffusion process,
considering that the contact map contains sparse classification
information. A large T, on the contrary, tends to degrade pre-
diction performance. Adam [46] is employed as the optimizer
with a learning rate of 1e-3. The model undergoes training for
a maximum of 400 epochs, with validation performed every 20
epochs. Early stopping with a patience of 5 is implemented to
prevent overfitting. Supplementary Table S10 details all the hyper-
parameters of the experiment.

The training process is divided into two stages. Firstly, the
model is trained on the RNAStrAlign training set, TR0, and
Mutate-data, followed by testing on ArchiveII, TS0, and bpRNA-
new to evaluate its generalization ability. Secondly, using the
model weights obtained in the first stage, fine-tuning is performed
on the PDB dataset, and testing is conducted on TS1, TS2, TS3,
and the challenging TS-hard dataset to validate the model’s
performance in different scenarios. All experiments are carried
out on a single Nvidia A40 GPU and an Intel(R) Xeon(R) Gold
6326 CPU @ 2.90GHz. An analysis of computational efficiency is
provided in Supplementary Section 1.3 and Table S12.

Baselines
We compared RNADiffFold with 10 competitive baseline methods
for RNA secondary structure prediction, including 6 energy-
based approaches and 4 deep learning-based methods. Among
the energy-based methods, Mfold [47] utilizes nearest-neighbor
energy parameters and dynamic programming to find the
structure with the lowest energy. Linearfold [13] combines
dynamic programming with beam search to enhance efficiency.
RNAfold [48] integrates dynamic programming algorithms with
a thermodynamic-based energy model to predict optimal RNA
structures. RNAStructure [11] calculates minimum free energy
and optimizes prediction results based on experimental data.
Contrafold [43] uses conditional log-linear models, extending to
SCFGs, and integrates thermodynamic parameters. ContextFold
[49] introduces a fine-grained model with a large parameter set
(approximately 70 000).

For the deep learning-based methods, SPOT-RNA [21] employs
a CNN and BiLSTM architecture and utilizes transfer learning
to enhance performance. MXFold2 [20] combines deep learning
with thermodynamic parameters for more accurate predictions.
E2Efold [18] innovatively integrates the Transformer model with
an unrolling algorithm, imposing hard constraints on RNA sec-
ondary structure. UFold [19] utilizes U-Net and a structure sim-
ilar to image inputs to capture long-range dependencies effec-
tively. Due to the lack of reproducible results from SPOT-RNA and

Figure 3. Violin plot on the ArchiveII dataset. Visualization of F1 value of
RNADiffFold against other methods.

ContextFold in experiments, we referenced the experimental data
of UFold for comparison analysis.

Performance on within-family datasets
The “within-family” datasets indicate that the RNA families in
the test set are highly similar to those in the training set. As
reported in previous studies, evaluation results on these datasets
effectively reflect the model’s predictive performance. As shown
in Fig. 3 and Supplementary Table S2, for the ArchiveII test set,
RNADiffFold demonstrates good predictive performance with an
F1 score of 0.880, surpassing all energy-based methods and rank-
ing among the top in deep learning-based methods. Its F1 score
is slightly lower than UFold and RNA-FM, possibly due to infor-
mation loss from the conditional construction strategy. Since
ArchiveII contains a limited number of families and species,
RNADiffFold achieves comparable predictive performance using
only one-hot encoding as the condition, as further confirmed in
subsequent ablation experiments.

In contrast, the bpRNA dataset from Rfam12.2 [50] encom-
passes a broader range of RNA families. Evaluation results on
its test set, TS0, show RNADiffFold achieves an average F1 score
of 0.711, surpassing all energy-based and deep learning-based
methods (Fig. 4 and Supplementary Table S2). Specifically, RNAD-
iffFold shows a notable 8.7% improvement in F1 score compared
to UFold and a 2.7% increase compared to RNA-FM. This sig-
nificant performance enhancement highlights the superiority of
RNADiffFold in the field of RNA secondary structure prediction,
demonstrating that its outstanding performance results from its
unique algorithm design and feature fusion strategy, rather than
a simple combination of the UFold scoring network and RNA-FM
output features.

To comprehensively assess RNADiffFold’s capability in pre-
dicting long-range base pairs, we followed the methodology of
UFold [19] and conducted an in-depth analysis on the bpRNA
TS0 dataset. For each RNA sequence of length L, we classified
base pairs and non-base pairs with intervals exceeding L/2 as
long-range base pairs. After rigorous screening, we selected 993
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Figure 4. Violin plot on the bpRNA TS0 dataset. Visualization of F1 value
of RNADiffFold against other methods.

Table 1. F1 scores of RNADiffFold compared with other
learning-based methods on the TS0 dataset of long-range base
pairing

Method Precision Recall F1

RNADiffFold 0.748 0.764 0.739
Ufold 0.644 0.765 0.687
SPOT-RNAa 0.361 0.492 0.403
MXfold2 0.318 0.450 0.360
e2efold 0.038 0.084 0.043

a The results of SPOT-RNA are cited from Ufold[19]

samples from a total of 1304 that met the criteria for precision,
recall, and F1 score calculations. Comparing RNADiffFold with
other mainstream methods, the results, presented in Table 1 and
Supplementary Fig. S4, demonstrate RNADiffFold’s outstanding
performance on long-range base pair RNA data. Compared to
UFold, RNADiffFold’s predicted precision and recall are closer,
indicating a more stable predictive performance. This stability
likely stems from the effective integration of the pre-trained UFold
scoring network with RNA-FM output features, providing RNAD-
iffFold with rich contextual and structural information, thereby
enhancing its accuracy in predicting long-range base pairs.

Performance on cross-family datasets
The “cross-family” datasets indicate that the RNA family species
in the test set are entirely distinct from those in the training
set. Performance on such datasets, particularly for deep learning-
based methods, better reflects their understanding of RNA folding
patterns and their ability to generalize to unknown families. To
enhance the model’s generalization performance, we adopted
UFold’s data augmentation strategy, generating 2717 mutated
sequences with mutation rates between 20 and 30% from the
original sequences. These sequences were predicted for their sec-
ondary structures by Contrafold, serving as pseudo-labels. These
mutated datasets were then integrated into RNAStrAlign and TR0
for training and comprehensively evaluated on three different
test sets.

Figure 5. Violin plot on the bpRNA-new dataset. Visualization of F1 value
of RNADiffFold against other methods.

As shown in Fig. 5 and Supplementary Table S3, RNADiffFold
outperformed other methods, demonstrating its superior perfor-
mance in predicting the secondary structures of RNA sequences
from unknown families. Unlike baseline methods like MXfold2,
which incorporates thermodynamic constraints, or UFold, which
employs biological-based hard constraints, RNADiffFold predicts
the secondary structures of new, unknown family sequences by
learning the distribution of RNA conformations. Additionally, we
analyzed the performance across different sequence lengths by
partitioning the bpRNA-new dataset at 100 nt intervals. As shown
in Supplementary Fig. S5, the performance of most methods dete-
riorates with increasing length. RNADiffFold maintains excellent
predictive performance for sequences below 300 nt but decreases
more for sequences between 300 and 500 nt, possibly due to the
absence of constraints.

To comprehensively evaluate RNADiffFold in cross-family
scenarios, we conducted additional validation using the PDB
dataset. The PDB dataset [41] contains secondary structure
information extracted from high-resolution RNA 3D structures,
providing a reliable basis for evaluation. Following the same
dataset partitioning method as SPOT-RNA2 [22], we fine-tuned
the pre-trained model on the PDB dataset. Figure 6 shows that
RNADiffFold achieved an average F1 score of 0.736, demonstrating
comparable performance with other methods. Further analysis
on different test sets within PDB (TS1, TS2, and TS3) is detailed
in Supplementary Table S4 and Fig. S6. We also constructed
a more challenging test set, TS-hard, which was curated from
TS1 and TS3 by excluding similar sequences using BLAST-N [51]
and INFERNAL [52] models. The results on TS-hard, shown in
Supplementary Table S5 and Fig. S7, validate that RNADiffFold
maintains comparable performance with most methods even in
challenging prediction tasks.

To further substantiate RNADiffFold’s predictive capability,
we employed two statistical significance assessment methods:
an individual t-test-based method and a bootstrapping-based
method. The results in Table S6 indicate that RNADiffFold
significantly outperforms other methods statistically, with most
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Figure 6. Violin plot on the PDB test dataset encompassing TS1, TS2,
and TS3. Visualization of F1 value of RNADiffFold against other methods.

P-values being less than 0.05. For the relatively small-scale PDB
dataset, bootstrapping proved to be a more effective evaluation
method. Supplementary Table S7 and Fig. S8 present the 95%
confidence intervals of F1 scores for all compared methods on
the PDB test sets (TS1, TS2, TS3), providing robust support for our
conclusions.

Multiple sampling and voting strategy testing
experiments
To further enhance the model’s performance, we implemented
a strategy based on multiple sampling and voting. Given that
RNADiffFold is a generative prediction method capable of learning
the distribution of secondary structures, we used random seeds to
generate a set of predicted structures. We then conducted cluster
analysis by calculating the similarity between these predictions
and selected the most frequently occurring structure from the
largest cluster as the final prediction. When no clear clusters
were present, a random selection method determined the final
prediction. This strategy resulted in a performance improvement,
as shown in Table S8. By increasing the number of samples from
1 to 10, moderate improvements were observed in the evaluation
metrics across the four test sets. This outcome suggests that the
multiple sampling and voting strategy helps reduce the uncer-
tainty of model predictions, thereby enhancing the accuracy of
RNA secondary structure prediction. The performance shown in
Figs 3–6 all adopted this strategy.

Visualization
To intuitively demonstrate the model’s ability to capture the
details of RNA secondary structures, we randomly selected
RNA sequences from different RNA family species and visually
compared the predicted structures from RNADiffFold with those
from two other top-performing methods, Ufold and MXfold2, as
well as the ground truth. The predicted results were converted
into.ct format based on base pairing relationships and visualized
using VARNA [53]. Figure 7 shows that the structures predicted by

RNADiffFold are closer to the ground truth than those predicted
by other methods, demonstrating improved accuracy in detail.

We also validated RNADiffFold’s ability to capture dynamic
structural features using CoDNaS-RNA [54], a database containing
diverse RNA conformational ensembles. Considering data qual-
ity and sequence length, we selected 14 clusters, each contain-
ing two different conformations of the same sequence. Among
these, 9 clusters had extremely similar sequences, differing by
only 1-2 bases. The experimental results indicate that RNADiff-
Fold successfully predicted the structural profiles of 11 clusters
and captured the different conformations to a certain extent.
Supplementary Figure S10 shows examples of 4 successfully pre-
dicted clusters, of which Cluster 189 represents the prediction of
9 similar clusters. The failed cases occurred because the ground
truth sequences tended to be completely unpaired or contained
pairings that violated standard pairing rules, making accurate
predictions challenging, as shown in Supplementary Fig. S11.

Ablation study
In this section, we explore the impact of different conditioning
strategies on the performance of RNADiffFold while maintaining
other experimental parameters constant. The versions with differ-
ent conditions are labeled as follows: v1: using only the one-hot
encoding conehot of the given sequence; v2: utilizing the probability
map cu from the Ufold scoring network; v3: employing both conehot,
cemb and cattn from RNA-FM simultaneously; v4: utilizing conehot,
cu, and cemb as conditions simultaneously; v5: RNADiffFold’s final
form, incorporating all four conditions simultaneously.

Figure 8 and Supplementary Table S9 present the comprehen-
sive performance evaluation results of RNADiffFold on four test
sets. Key observations drawn from this study are as follows: (i)
On the ArchiveII test set and TS0, RNADiffFold exhibits competi-
tiveness with state-of-the-art methods (Ufold and RNA-FM) when
using only conehot as a condition (version v1). However, the perfor-
mance of the v1 is relatively limited when faced with sequences
from unknown families, indicating the inadequacy of one-hot
encoding in feature extraction. (ii) The probability map cu from the
Ufold scoring network (version v2) contributes more significantly
to cross-family data, while cemb and cattn from RNA-FM (version
v3) play a more significant role in within-family data. Integrating
these output features as sequence condition information achieves
more balanced performance on both within-family and cross-
family data. (iii) Comparing versions v4 and v5 highlights the
utility of the attention map cattn. Introducing cattn results in slight
performance improvements on almost all datasets, albeit modest.
This may be due to partial feature information loss from exces-
sive dimensionality reduction. To determine if the exceptional
performance of RNADiffFold primarily stems from its diffusion
process, we conducted further comparative experiments detailed
in Supplementary Section 1.2 and Table S11. The results confirm
that the integration of features from Ufold and RNA-FM alone
does not account for the superior outcomes observed; the diffu-
sion process is pivotal to its success.

Additionally, early experiments explored the relationship
between different diffusion step sizes and model performance.
Unexpectedly, smaller step sizes performed better in the diffusion
process, as shown in Supplementary Fig. S9. This may be
because the secondary structure contact map contains sparser
information compared to real-world images. Conversely, larger
step sizes may make it difficult for the model to explore the
conformation distribution space. These findings provide valuable
guidance for further optimizing RNADiffFold.
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Figure 7. Visualization compares three examples predicted by RNADiffFold with those from two other methods against the ground truth. The RNA
sequences are from the following families: (A) Aspergillus fumigatus, recorded in the SRPDB database; (B) Alphaproteobacteria subfamily 16S rRNA,
recorded in the RNAStrAlign database; and (C) Escherichia coli, recorded in the tmRNA database. The results indicate that RNADiffFold aligns more
closely with the ground truth in detail than the other two methods.

Discussion
In this paper, we present RNADiffFold, a novel RNA secondary
structure prediction method based on the discrete diffusion
model. Unlike traditional deep learning-based prediction meth-
ods, RNADiffFold treats secondary structure prediction as a
pixel-level contact map segmentation task, utilizing discrete
diffusion processes to capture conformational distributions.
During the forward diffusion process, noise following a uniform
distribution is gradually injected into the true contact map
until it is completely randomized. In the reverse process,
RNADiffFold employs a U-Net as the denoising network. Addi-
tionally, we propose an effective conditioning strategy to extract
condition information from RNA sequences to guide structure
prediction.

RNADiffFold offers several significant advantages over pre-
vious methods. First, traditional approaches typically predict
secondary structures in a deterministic manner, which contra-
dicts the dynamic folding nature of RNA. RNADiffFold, however,
explores the conformational space of RNA through diffusion
processes without imposing any explicit hard constraints,
allowing it to predict non-canonical pairings arising from
tertiary interactions. Second, our proposed conditioning strategy

leverages the strengths of different models. From another
perspective, RNADiffFold can be viewed as a downstream
task of pre-trained models, avoiding the need for embedding
complex prior knowledge. Experimental results demonstrate
that RNADiffFold achieves competitive performance in predicting
RNA secondary structures compared to current deep learning
and energy-based methods. Additionally, the method exhibits the
ability to capture dynamic RNA features. Further experiments on
intra-family and inter-family datasets validate the effectiveness
and robustness of RNADiffFold.

Although RNADiffFold demonstrates outstanding predictive
performance, there is still room for improvement. First, a more
specific design of the loss function for training the diffusion model
is needed to address contact map features containing sparse
information. Unlike real-world images, contact maps contain less
category information, with most regions classified as “0” class.
Therefore, resources should be reduced in these easily learnable
regions. Second, adopting more efficient conditional pre-training
models could enhance performance. Due to computational cost
limitations, this study has not retrained a condition control model
tailored for the diffusion model. Theoretically, using more suitable
and thoroughly trained pre-training models to extract sequence
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Figure 8. F1 values on the four datasets (within-family datasets ArchiveII (A), bpRNA TS0 (B) and cross-family datasets bpRNA-new (C), PDB datasets
(D)). v1-v5 are different condition construction strategies combined with the diffusion process. v1: one-hot encoding conehot; v2: probability map from the
Ufold score network cu; v3: one-hot encoding conehot, output from RNA-FM cemb, cattn; v4: one-hot encoding conehot, probability map from the Ufold score
network cu, output from RNA-FM cemb; v5: full version of RNADiffFold.

features as conditions is expected to further improve the perfor-
mance of RNADiffFold.

Key Points

• We introduce RNADiffFold, a novel discrete diffusion
framework that treats RNA secondary structure predic-
tion as a pixel-level segmentation task. This approach
effectively captures the distribution of secondary confor-
mations, unveiling valuable biological insights embed-
ded in the primary sequence.

• A condition construction strategy is proposed to con-
struct sequence features, enabling flexible feature
design to enhance prediction performance or cater to
specific tasks.

• Experiments show that RNADiffFold surpasses previous
energy-based and recent learning-based methods on
within- and cross-family datasets, demonstrating the
effectiveness and robustness of RNADiffFold.
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4. Bratkovič T, Božič J, Rogelj B. Functional diversity of small
nucleolar RNAs. Nucleic Acids Res 2020;48:1627–51. https://doi.
org/10.1093/nar/gkz1140.

5. Fallmann J, Will S, Engelhardt J. et al. Recent advances in RNA
folding. J Biotechnol 2017;261:97–104. https://doi.org/10.1016/j.
jbiotec.2017.07.007.

6. Cheong H-K, Hwang E, Lee C. et al. Rapid preparation of RNA
samples for NMR spectroscopy and x-ray crystallography. Nucleic
Acids Res 2004;32:e84. https://doi.org/10.1093/nar/gnh081.

7. Fica SM, Nagai K. Cryo-electron microscopy snapshots of the
spliceosome: structural insights into a dynamic ribonucleo-
protein machine. Nat Struct Mol Biol 2017;24:791–9. https://doi.
org/10.1038/nsmb.3463.

8. Mathews DH, Moss WN, Turner DH. Folding and find-
ing RNA secondary structure. Cold Spring Harb Perspect Biol
2010;2:a003665–5. https://doi.org/10.1101/cshperspect.a003665.

9. Zhang J, Fei Y, Sun L. et al. Advances and opportunities in RNA
structure experimental determination and computational mod-
eling. Nat Methods 2022;19:1193–207. https://doi.org/10.1038/
s41592-022-01623-y.

10. Zuker M. On finding all suboptimal foldings of an RNA molecule.
Science 1989;244:48–52. https://doi.org/10.1126/science.2468181.

11. Reuter JS, Mathews DH. RNAstructure: software for RNA sec-
ondary structure prediction and analysis. BMC Bioinformatics
2010;11:1–9. https://doi.org/10.1186/1471-2105-11-129.

12. Parisien M, Major F. The MC-Fold and MC-Sym pipeline infers
RNA structure from sequence data. Nature 2008;452:51–5.
https://doi.org/10.1038/nature06684.

13. Huang L, Zhang H, Deng D. et al. Linearfold: linear-time approx-
imate RNA folding by 5’-to-3’ dynamic programming and beam
search. Bioinformatics 2019;35:i295–304. https://doi.org/10.1093/
bioinformatics/btz375.

14. Havgaard JH, Gorodkin J. RNA structural alignments, part I:
Sankoff-based approaches for structural alignments. In: Gorod-
kin J, Ruzzo W. (eds) RNA Sequence, Structure, and Function: Com-
putational and Bioinformatic Methods. Methods in Molecular Biol-
ogy, Humana Press, Totowa, NJ, 2014;1097:275–290. https://doi.
org/10.1007/978-1-62703-709-9_13.

15. Yinghan F, Sharma G, Mathews DH. Dynalign II: com-
mon secondary structure prediction for RNA homologs with
domain insertions. Nucleic Acids Res 2014;42:13939–48. https://
doi.org/10.1093/nar/gku1172.

16. Rivas E, Clements J, Eddy SR. A statistical test for conserved RNA
structure shows lack of evidence for structure in lncRNAs. Nat
Methods 2017;14:45–8. https://doi.org/10.1038/nmeth.4066.

17. Wang L, Liu Y, Zhong X. et al. Dmfold: a novel method to pre-
dict RNA secondary structure with pseudoknots based on deep
learning and improved base pair maximization principle. Front
Genet 2019;10:143. https://doi.org/10.3389/fgene.2019.00143.

18. Chen X, Yu L, Umarov R. et al. RNA secondary structure predic-
tion by learning unrolled algorithms. In: International Conference
on Learning Representations, Toulon, France: ICLR publisher, 2020.

19. Laiyi F, Cao Y, Jie W. et al. Ufold: fast and accurate RNA sec-
ondary structure prediction with deep learning. Nucleic Acids Res
2022;50:e14–4.

20. Sato K, Akiyama M, Sakakibara Y. RNA secondary struc-
ture prediction using deep learning with thermodynamic

integration. Nat Commun 2021;12:941. https://doi.org/10.1038/
s41467-021-21194-4.

21. Singh J, Hanson J, Paliwal K. et al. RNA secondary structure
prediction using an ensemble of two-dimensional deep neural
networks and transfer learning. Nat Commun 2019;10:5407.
https://doi.org/10.1038/s41467-019-13395-9.

22. Singh J, Paliwal K, Zhang T. et al. Improved RNA secondary
structure and tertiary base-pairing prediction using evolu-
tionary profile, mutational coupling and two-dimensional
transfer learning. Bioinformatics 2021;37:2589–600. https://doi.
org/10.1093/bioinformatics/btab165.

23. Chen S, Sun P, Song Y. et al. DiffusionDet: diffusion model
for object detection. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision, Paris, France: ICCV, pp. 19830–43,
2023.

24. Jing B, Erives E, Pao-Huang P. et al. Eigenfold: generative pro-
tein structure prediction with diffusion models. In: International
Conference on Learning Representations, MLDD workshop, Kigali,
Rwanda: ICLR publisher, 2023. https://openreview.net/forum?
id=BgbRVzfQqFp.

25. Zheng S, He J, Liu C. et al. Towards predicting equilibrium dis-
tributions for molecular systems with deep learning. Nat Mach
Intell 2024;6:558-567.

26. Hoogeboom E, Nielsen D, Jaini P. et al. Argmax flows and multi-
nomial diffusion: learning categorical distributions. In: Ranzato
M, Beygelzimer A, Dauphin Y. et al. (eds.), Advances in Neural
Information Processing Systems, Red Hook, New York, USA, Vol. 34.
Curran Associates, Inc., 2021, 12454–65.

27. Ronneberger O, Fischer P, Brox. U-net: convolutional networks
for biomedical image segmentation. In: Navab N, Horneg-
ger J, Wells W, Frangi A. (eds) Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015, Munich, Ger-
many: Springer International Publishing, 2015;9351. https://doi.
org/10.1007/978-3-319-24574-4_28.

28. Chen J, Hu Z, Sun S. et al. Interpretable RNA foundation model
from unannotated data for highly accurate RNA structure
and function predictions. In: International Conference on Machine
Learning, Baltimore, Maryland, USA, workshop. PMLR, 2022.

29. Sohl-Dickstein J, Weiss E, Maheswaranathan N. et al. Deep unsu-
pervised learning using nonequilibrium thermodynamics. In:
International Conference on Machine Learning, Lille France, pp.
2256–65. PMLR, 2015.

30. Nichol AQ, Dhariwal P. Improved denoising diffusion proba-
bilistic models. In: International Conference on Machine Learning,
pp. 8162–71. PMLR, 2021.

31. Austin J, Johnson DD, Ho J. et al. Structured denoising diffu-
sion models in discrete state-spaces. Adv Neural Inf Process Syst
2021;34:17981–93.

32. Shuyang G, Dong C, Bao J. et al. Vector quantized diffusion
model for text-to-image synthesis. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, New Orleans,
Louisiana, USA: IEEE, 10696–706, 2022.

33. Zhang Y, Lang M, Jiang J. et al. Multiple sequence alignment-
based RNA language model and its application to structural
inference. Nucleic Acids Res 2024;52:e3–3. https://doi.org/10.1093/
nar/gkad1031.

34. Jang E, Gu S, Poole B. Categorical reparameterization with
Gumbel-Softmax. In: International Conference on Learning Represen-
tations, Toulon, France: ICLR publisher, 2017.

35. Zhang H, Zhang C, Li Z. et al. A new method of RNA secondary
structure prediction based on convolutional neural network

https://doi.org/10.1016/j.addr.2015.05.001
https://doi.org/10.1016/j.addr.2015.05.001
https://doi.org/10.1016/j.addr.2015.05.001
https://doi.org/10.1016/j.addr.2015.05.001
https://doi.org/10.1016/j.addr.2015.05.001
https://doi.org/10.1038/nrg2521
https://doi.org/10.1038/nrg2521
https://doi.org/10.1038/nrg2521
https://doi.org/10.1038/nrg2521
https://doi.org/10.1093/nar/gkz1140
https://doi.org/10.1093/nar/gkz1140
https://doi.org/10.1093/nar/gkz1140
https://doi.org/10.1093/nar/gkz1140
https://doi.org/10.1093/nar/gkz1140
https://doi.org/10.1016/j.jbiotec.2017.07.007
https://doi.org/10.1016/j.jbiotec.2017.07.007
https://doi.org/10.1016/j.jbiotec.2017.07.007
https://doi.org/10.1016/j.jbiotec.2017.07.007
https://doi.org/10.1016/j.jbiotec.2017.07.007
https://doi.org/10.1093/nar/gnh081
https://doi.org/10.1093/nar/gnh081
https://doi.org/10.1093/nar/gnh081
https://doi.org/10.1093/nar/gnh081
https://doi.org/10.1093/nar/gnh081
https://doi.org/10.1038/nsmb.3463
https://doi.org/10.1038/nsmb.3463
https://doi.org/10.1038/nsmb.3463
https://doi.org/10.1038/nsmb.3463
https://doi.org/10.1101/cshperspect.a003665
https://doi.org/10.1101/cshperspect.a003665
https://doi.org/10.1101/cshperspect.a003665
https://doi.org/10.1101/cshperspect.a003665
https://doi.org/10.1101/cshperspect.a003665
https://doi.org/10.1038/s41592-022-01623-y
https://doi.org/10.1038/s41592-022-01623-y
https://doi.org/10.1038/s41592-022-01623-y
https://doi.org/10.1038/s41592-022-01623-y
https://doi.org/10.1038/s41592-022-01623-y
https://doi.org/10.1126/science.2468181
https://doi.org/10.1126/science.2468181
https://doi.org/10.1126/science.2468181
https://doi.org/10.1126/science.2468181
https://doi.org/10.1186/1471-2105-11-129
https://doi.org/10.1186/1471-2105-11-129
https://doi.org/10.1186/1471-2105-11-129
https://doi.org/10.1038/nature06684
https://doi.org/10.1038/nature06684
https://doi.org/10.1038/nature06684
https://doi.org/10.1038/nature06684
https://doi.org/10.1093/bioinformatics/btz375
https://doi.org/10.1093/bioinformatics/btz375
https://doi.org/10.1093/bioinformatics/btz375
https://doi.org/10.1093/bioinformatics/btz375
https://doi.org/10.1093/bioinformatics/btz375
https://doi.org/10.1007/978-1-62703-709-9_13
https://doi.org/10.1007/978-1-62703-709-9_13
https://doi.org/10.1007/978-1-62703-709-9_13
https://doi.org/10.1093/nar/gku1172
https://doi.org/10.1093/nar/gku1172
https://doi.org/10.1093/nar/gku1172
https://doi.org/10.1093/nar/gku1172
https://doi.org/10.1093/nar/gku1172
https://doi.org/10.1038/nmeth.4066
https://doi.org/10.1038/nmeth.4066
https://doi.org/10.1038/nmeth.4066
https://doi.org/10.1038/nmeth.4066
https://doi.org/10.3389/fgene.2019.00143
https://doi.org/10.3389/fgene.2019.00143
https://doi.org/10.3389/fgene.2019.00143
https://doi.org/10.3389/fgene.2019.00143
https://doi.org/10.1038/s41467-021-21194-4
https://doi.org/10.1038/s41467-021-21194-4
https://doi.org/10.1038/s41467-021-21194-4
https://doi.org/10.1038/s41467-021-21194-4
https://doi.org/10.1038/s41467-019-13395-9
https://doi.org/10.1038/s41467-019-13395-9
https://doi.org/10.1038/s41467-019-13395-9
https://doi.org/10.1038/s41467-019-13395-9
https://doi.org/10.1093/bioinformatics/btab165
https://doi.org/10.1093/bioinformatics/btab165
https://doi.org/10.1093/bioinformatics/btab165
https://doi.org/10.1093/bioinformatics/btab165
https://doi.org/10.1093/bioinformatics/btab165
https://openreview.net/forum?id=BgbRVzfQqFp
https://openreview.net/forum?id=BgbRVzfQqFp
https://openreview.net/forum?id=BgbRVzfQqFp
https://openreview.net/forum?id=BgbRVzfQqFp
https://openreview.net/forum?id=BgbRVzfQqFp
https://openreview.net/forum?id=BgbRVzfQqFp
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1093/nar/gkad1031
https://doi.org/10.1093/nar/gkad1031
https://doi.org/10.1093/nar/gkad1031
https://doi.org/10.1093/nar/gkad1031
https://doi.org/10.1093/nar/gkad1031


12 | Wang et al.

and dynamic programming. Front Genet 2019;10:467. https://doi.
org/10.3389/fgene.2019.00467.

36. Tan Z, Yinghan F, Sharma G. et al. TurboFold II: RNA struc-
tural alignment and secondary structure prediction informed by
multiple homologs. Nucleic Acids Res 2017;45:11570. https://doi.
org/10.1093/nar/gkx815.

37. Sloma MF, Mathews DH. Exact calculation of loop formation
probability identifies folding motifs in RNA secondary
structures. RNA 2016;22:1808–18. https://doi.org/10.1261/
rna.053694.115.

38. Danaee P, Rouches M, Wiley M. et al. BpRNA: large-scale auto-
mated annotation and analysis of RNA secondary structure.
Nucleic Acids Res 2018;46:5381–94. https://doi.org/10.1093/nar/
gky285.

39. Kalvari I, Argasinska J, Quinones-Olvera N. et al. Rfam 13.0: shift-
ing to a genome-centric resource for non-coding RNA families.
Nucleic Acids Res 2018;46:D335–42. https://doi.org/10.1093/nar/
gkx1038.

40. Weinberg Z, Lünse CE, Corbino KA. et al. Detection of 224
candidate structured RNAs by comparative analysis of specific
subsets of intergenic regions. Nucleic Acids Res 2017;45:10811–23.
https://doi.org/10.1093/nar/gkx699.
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