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Abstract 
Single-cell multiomics have opened up tremendous opportunities for understanding gene regulatory networks underlying cell states by 
simultaneously profiling transcriptomes, epigenomes, and proteomes of the same cell. However, existing computational methods for 
integrative analysis of these high-dimensional multiomics data are either computationally expensive or limited in interpretation. These 
limitations pose challenges in the implementation of these methods in large-scale studies and hinder a more in-depth understanding 
of the underlying regulatory mechanisms. Here, we propose TriTan (Triple inTegrative fast non-negative matrix factorization), an 
efficient joint factorization method for single-cell multiomics data. TriTan implements a highly efficient factorization algorithm, 
greatly improving its computational performance. Three matrix factorization produced by TriTan helps in clustering cells, identifying 
signature features for each cell type, and uncovering feature associations across omics, which facilitates the identification of domains 
of regulatory chromatin and the prediction of cell-type-specific regulatory networks. We applied TriTan to the single-cell multiomics 
data obtained from different technologies and benchmarked it against the state-of-the-art methods where it shows highly competitive 
performance. Furthermore, we showed a range of downstream analyses conducted utilizing TriTan outputs, highlighting its capacity to 
facilitate interpretation in biological discovery. 
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Introduction 
Single-cell multiomics technologies can simultaneously profile 
multiple omics within the same cell, including transcriptomics, 
epigenomics, and proteomics [1]. These approaches provide a 
more comprehensive view of cellular function as they capture 
multiple layers of regulatory machinery of the cell. Integration 
of multiomics information can reveal new insights into the 
underlying mechanisms that regulate gene expression and 
how these may alter in response to different stimuli. With the 
rapid advancement in these technologies, we face a complex 
data integration challenge. The unique characteristics of data 
from each modality, such as sparsity, dimension, and scale, 
make it difficult to synthesize a coherent joint representation. 
In order to effectively combine information from different 
omics, it is necessary to design bespoke methodologies that 
are efficient in handling the increasing scale of data and 
flexible enough to incorporate more omics as they become 
available. 

Several recent studies have offered innovative ways of inte-
grating single-cell multiomics data. One category of methods 
focuses on finding relationships among data from different omics 
and then performing the integration. For example, Seurat v4 

[2] utilizes the weighted nearest neighbors (WNNs) approach to 
assign cell-specific weights, allowing it to effectively integrate 
multiple modalities by learning the contribution of each modality 
to the overall cellular profile. Similarly, Schema [3] employs a 
metric learning strategy to identify and extract the informative 
features from each modality, followed by an integration step that 
combines these features, enabling a more precise representa-
tion of cellular states across different omics. Another approach 
consists of projecting the feature spaces from different omics 
into a common latent space. In this category, MOFA+ [4] per-
forms low-dimensional reconstructions for each modality and 
integrates them. It models variations across multiple modali-
ties using factor modeling with variational inference. MOJITOO 
[5] efficiently infers multiple modalities’ shared representations 
through canonical correlation analysis (CCA). Integrative nonneg-
ative matrix factorization (iNMF) [6] extends NMF to multiomics 
for joint cell clusters identification. Mowgli [7] combines iNMF 
with optimal transport to improve data integration and capture 
relationships across multiomics. Besides, deep generative mod-
els have been employed to perform single-cell multiomics data 
integration. Among these, totalVI [8] uses a variational autoen-
coder (VAE) model to jointly analyze CITE-seq data (RNA and
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Figure 1. Schematic of TriTan. It receives two (or more) paired single-cell matrices whose rows represent the same cells, where each matrix represents 
a particular omic. In this example, scRNA-seq and scATAC-seq are being considered. Each input matrix is decomposed into three matrices where F is 
a cell cluster matrix shared across all modalities. Each column of F represents a distinct cell cluster and each row contains a single nonzero element 
indicating the cluster assignment of the corresponding cell. GRNA and GATAC are feature cluster matrices whose columns represent different feature 
clusters and rows contain a single nonzero element indicating the cluster assignment of the corresponding feature. Middle matrices SRNA and SATAC 

(association matrices) are condensed representations of the input matrices, which can be considered as associations between cell clusters and feature 
clusters. After the factorization, we calculated the matrix C using SRNA and SATAC to show feature correlations across modalities. 

cell surface proteins from the same cell), representing data as a 
composite of biological and technical factors. CLUE [ 9] considers 
cross-encoders in a multi-modal VAE and constructs a joint latent 
cell representation. Although deep learning methods have shown 
great potential in clustering cells, they inherently lack biological 
interpretability thus limiting their utility for downstream analysis. 

The majority of the methods discussed above have a primary 
focus on the estimating embedding at the cell level. Among 
them, matrix factorization methods have become popular as they 
provide a low-dimensional representation of the data as well as 
feature contributions for the discovered topics. However, standard 
two-matrix factorization methods suffer from several limitations, 
including slow computational speed on larger datasets, arbitrari-
ness in determining the number of cell topics, and no systematic 
way to find signatures for inferred cell topics or the associations 
across omics. The critical need to address above limitations and 
find the functional roles of features in individual omics, as well 
as the associations between them, motivates us to look beyond 
the existing two-matrix factorization methods. We have designed 
TriTan, an efficient and interpretable method that decomposes 
the input single-cell multiomics matrices into low-dimensional 
matrices (see cartoon in Fig. 1). TriTan does not rely on predefined 
parameters, such as the rank of factor matrices and uses an auto-
mated approach for identifying the number of cell and feature 
clusters, making it a more flexible and adaptive tool for analyzing 
complex datasets. 

The rest of the manuscript is organized as follows. In the 
Materials and methods section, we present a detailed, step-by-
step derivation and explanation of TriTan. In the Results section, 
we benchmarked TriTan against state-of-the-art methods, 
Seurat v4 (WNN), MOFA+, and MOJITOO using three public 
multiomics datasets. Furthermore, through an exemplar analysis 
using PBMC-10k data, we show TriTan’s utility in identifying 

cell-type-specific signature feature sets, and uncovering cross-
omics associations. 

Materials and methods 
TriTan 
TriTan is designed to address the following problem: A dataset{
Xn ∈ Rm×Dn

}N 
n=1 includes N single-cell data from different omics, 

where m represents the number of cells shared across modalities, 
and Dn represents the number of features in modality n. We  aim  to  
discover K1 cell clusters that are shared across all modalities, and 
simultaneously, find Kn 

2 feature clusters for the nth modality. Note 
that K1 and Kn 

2 are not predetermined but rather learned by Tri-
Tan. Additionally, TriTan discovers modality-specific association 
matrices, representing the weights of feature clusters across all 
cell clusters. 

Overall, TriTan learns a representation for each modality 
denoted as Xn ≈ FSn(Gn)T. In this representation, F is a binary 
matrix shared across all modalities, where each row has a 
single nonzero element indicating the cluster assignment for 
the corresponding cell. Gn is a binary feature cluster matrix 
where each row has a single nonzero element indicating the 
cluster assignment for the corresponding feature. Sn represents 
the modality-specific association matrix. In the paper, ‖·‖ denotes 
the norm ‖A‖2 = Tr(AAT), and  Ai· and A·j represent the ith row 
and jth of column of A, respectively. 

An efficient multiplicative update algorithm for 
nonnegative matrix tri-factorization 
Traditional nonnegative matrix tri-factorization (NMTF) methods 
[10], which infer three nonnegative latent matrices based on mul-
tiplicative update (MU) [11], suffer from slow computational speed
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and considerable memory consumption. To accelerate NMTF on 
large-scale data, we design a novel optimization algorithm to 
speed up the factorization. Firstly, we introduce our factorization 
approach for the scenario of a single matrix X. We aim to minimize 
the loss function 

L = ∥∥X − FSGT
∥∥2 . 

L can be minimized over F, G, and S in an alternating fashion. Since 
F and G are binary cluster assignment matrices, the computation 
of F and G can be simplified. With fixed S and G, letting U = SGT, 
in order to minimize L = ∑m 

i=1 ‖Xi. − Fi.U‖2, it suffices to minimize
‖Xi. − Fi.U‖2 for each row i of X. Since Fi. has only one nonzero 
element, this is equivalent to mink ‖Xi. − Uk.‖2. Therefore, for the 
elements of Fi·: 

Fij = 

⎧⎨ 

⎩ 
1 j = arg min 

k
‖Xi. − Uk.‖2, 

0 otherwise. 

The computation of G, given fixed F and S, follows the same 
strategy as the above. With V = FS, for each column j of X, we  aim  
to minimize ‖X·j − V(GT)·j‖2 = ‖X·j − VGj·‖2, which is equivalent to 
mink ‖X·j − V·k‖2. Therefore, for the elements of Gi·: 

Gij = 

⎧⎨ 

⎩ 
1 j = arg min 

k
‖X·i − V·k‖2, 

0 otherwise. 

The computation of S, given fixed F and G, uses the following 
procedure: 

∂L 
∂S 

= −2FT XG + 2FT FSGT G = 0, 

S = (FT F)−1 FT XG(GT G)−1 . 

Reducing the dimensions during MUs 
To enhance the efficiency of the factorization method described 
above, we propose to use singular value decomposition (SVD) 
to reduce dimensions during MUs. This is mainly designed to 
accelerate the factorization while minimizing the loss of accuracy. 
It also helps to reduce the imbalance in the number of features 
between different modalities (for instance, the number of features 
can vary significantly between scRNA-seq data and scATAC-seq 
data). 

For a given modality n, input matrix Xn ∈ R
m×Dn is firstly 

decomposed using SVD: Xn = Pn�n(Qn)T, where  (Pn)
T Pn = I, 

(Qn)TQn = I and �n is a rectangular diagonal matrix with nonneg-
ative numbers (singular values) on the diagonal. We approximate 
Xn by a truncated SVD, i.e. Xn ≈ Pn 

l �
n 
l (Q

n 
l )

T using the first l SVD-
components where l can be chosen using a scree plot of the 
singular values in �n [12]. In the methodology description, we use 
the notation l consistently. However, in practice, different numbers 
of components are employed for the cell and feature spaces, 
taking into account the specific datasets based on the corre-
sponding singular value scree plots (see details in supplementary 
Table. S4). Also our software package allows for user-defined 
number of components for reducing the feature space through 
SVD decomposition for each modality. To reduce computational 
time and memory usage, Fn and Gn in the previous section are 
updated with Xn projected to the lower dimension spaces XnQn 

l 
and (Pn 

l )
T Xn, respectively (as shown below in the equations (2) 

and (4)). 

Joint MU for single-cell multiomics data 
In previous sections, we described our efficient implementation 
for NMTF for a single modality. Building on that, here we present 
TriTan’s joint MUs scheme for single-cell multiomics data. 

Considering the variation in data attributes across different 
omics, we have introduced an omic-specific weights matrix, w̃n = 
diag( w̃n 

i ), a diagonal matrix with entry w̃n 
i representing the weight 

for cell i in modality n. 

L̃ = 
N∑

n=1

∥∥w̃n Xn − FSn (Gn )T
∥∥2 . 

Instead of assigning weights to each modality based on prior 
knowledge, we adopt an alternative strategy, approximating the 
omic-specific cell weights w̃n by wn within the updates, as shown 
below in the equations (3). 

The iterative process is outlined as follows. In the (t + 1)th 
iteration, (t+1)F� ∈ Rm×K1

′
(K1

′ is a hyperparameter representing 
the initial estimate for the number of cell clusters, K1

′ < K1), 
an intermediate weighted cell cluster matrix, is constructed from 
two components: (t+1)wn and (t+1)Fn, as per the formula 

(t+1) F�
i· = 

N∑
n=1 

(t+1) wn 
i · (t+1) Fn 

i·. (1)  

In this equation, (t+1)Fn represents the inference of cell types from 
individual omics data and is updated with (t)Un =(t) Sn · (t)GnT 

: 

(t+1) Fn 
ij = 

⎧⎨ 

⎩ 
1 j = arg min 

k
‖(XnQn 

l )i· − ((t) UnQn 
l

)
k.‖2, 

0 otherwise. 
(2) 

And (t+1)wn, which reflects the contribution of each omic to the 
cell, is calculated based on the prior state (t)F�: 

En = ∣∣Xn Qn 
l − (t) F� · (t) S n · (t) GnT Qn 

l

∣∣, 
en 

i = 1
‖En 

i·‖/μ(En 
i·) 

, (t+1) wn 
i = 

en 
i∑N 

n=1 e
n 
i 

. 
(3) 

This wn accounts for both the reconstruction loss and inter-
modality biases (e.g. scRNA-seq data usually have much more 
average counts than scATAC-seq data), aiding in the inference of 
a shared low-dimensional cell representation shown in the next 
section and the integration of different omics. 

(t+1)Gn is then computed for each modality using (t+1)F� and 
(t+1)Vn = (t+1)F� · (t)Sn: 

(t+1) Gn 
ij = 

⎧⎨ 

⎩ 
1 j = arg min 

k

∥∥(Pn 
l 

T Xn)·i − (Pn 
l 

T · (t+1)Vn)·k
∥∥2 , 

0 otherwise. 
(4) 

We then update (t+1)Sn for each modality: 

A =(t+1) F�, B =(t+1) Gn , 

(t+1) Sn = (AT A)−1 (AT Xn B)(BT B)−1 . 
(5) 

This iterative process allows us to progressively infer and inte-
grate the data structure from individual omics. 

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae615#supplementary-data
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Model selection strategy 
After t� iterations described in the previous section (also see 
Algorithm 1), we have obtained an initial weighted shared matrix 
F� ∈ Rm×K1

′
, offering preliminary insights into the cells. We then 

use it to obtain initial cell cluster assignments c for each cell i: 

ci = arg max 
k 

F�
ik (6) 

Subsequently, by employing wn, a shared cell embedding is 
constructed, effectively integrating the information from each 
omic and presenting the unique characteristics to describe 
each cell: 

Z =
[
w1

(
X1Q1 

l

)
, . . . , wN

(
XNQN 

l

)]
. (7)  

Then, we rearrange rows of Z into a row block matrix, denoted as 
Z̃, where  the  kth block Z̃k corresponds to cells being assigned to 
the kth cluster (based on equations (6)), i.e. 

Z̃ = 

⎡ 

⎢⎢⎣ 

Z̃1 
... 

Z̃K1
′

⎤ 

⎥⎥⎦ , Z̃k =
[
Zi.

∣∣∣
ci=k

]
. (8)  

We next input Z̃ to HDBSCAN [13] for a local structure search. For 
each Z̃i, HDBSCAN applies a density-based transformation to the 
data space, allowing it to identify stable dense points. The final 
shared cell cluster assignment matrix F in TriTan’s output is then 
updated: 

Fij = 

⎧⎨ 

⎩ 
1 j = arg min 

k
‖Zi· − Uc 

k.‖2, 

0 otherwise. 
(9) 

Here, Uc ∈ RK1×Nl represents the matrix formed by concatenating 
the centroids of each cluster of dense data points, where K1 

represents the number of centroids. 
Features space is typically more complex compared with cells. 

Therefore, we employ an adaptive approach to infer feature clus-
ters. For all omics, Gn are initialized in the space of RK2×Dn , where  
K2, a hyperparameter, is set to 100 by default, which exceeds the 
expected number of feature clusters. During the main factoriza-
tion iterations, the matrices F, Sn, and  Gn are alternately updated, 
with the objective of minimizing the overall objective function. 
Initially, Gn may contain many columns filled exclusively with 
zeros, indicating that no features have yet been assigned to those 
clusters, as per the aforementioned equation. As the iterations 
progress, the number of all-zero columns in these matrices grad-
ually decreases, allowing the inferred number of feature clusters 
to approach the desired count and contributing to the reduction 
of the objective function. When the value of the objective function 
reaches a predetermined threshold, the count of nonzero columns 
in Gn corresponds to the final number of feature clusters Kn 

2 we 
aim to identify. 

This iterative process allows us to flexibly adapt to the com-
plexity and structure of the data, ensuring accurate representa-
tion and meaningful interpretation of the feature space. 

Single-cell multiomics datasets 
We have used multiple publicly available single-cell multiomics 
(two modalities—scRNA and scATAC) datasets of varying sizes 
to comprehensively benchmark TriTan against other methods 

Algorithm 1 TriTan Algorithm 

1: Input: {Xn}N 
n=1, convergence threshold t�, and tolerance ε 

2: Initialization: {Gn}N 
n=1 and {Sn}N 

n=1 are initialized from Uniform 
distribution U(0, 1), weights

{
wn = diag(1/N)

}N 
n=1 

3: Set iteration counter t = 0 
4: repeat 
5: t ← t + 1 
6: for n = 1 to N do 
7: Update Fn using Equation (2) 
8: end for 
9: Update F� using Equation (1) 

10: for n = 1 to N do 
11: Update matrices Gn, Sn, and weights wn using 

Equations(4), (5), and (3) 
12: end for 
13: until t ≥ t�

14: Update clustering assignments c using Equation (6) 
15: Define Z and Z̃ using Equations (7) and (8) 
16: Update F using Equation (9) 
17: repeat 
18: t ← t + 1 
19: for n = 1 to N do 
20: Update matrices Gn and Sn using Equations (4) and (5) 
21: end for 
22: until L = ∑N 

n=1

∥∥Xn − FSn(Gn)T
∥∥2 

< ε

Output: F, Z, {Gn}N 
n=1 , {Sn}N 

n=1 

and leverage the outputs from TriTan for extensive downstream 
analyses. These include data generated using 10X Multiome 
from humanperipheralbloodmononuclearcells and bone marrow 
mononuclear cells (NeurIPS 2021, GSE194122) as well as mouse 
skin cells (GSM4156597) using SHARE-seq protocol [14]. These 
data are summarized in Table 1. 

The NeurIPS 2021 dataset [15], which is currently the largest 
dataset we used, was created as part of the NeurIPS competition 
and is utilized as a benchmark for the computational complexity 
of integration methods. 

Data preprocessing 
We performed uniform preprocessing across all datasets using 
Scanpy package for each method. For scRNA-seq matrices, we 
performed sc.pp.filter_genes(), sc.pp.normalize_total(), 
sc.pp.log1p(), and  sc.pp.highly_variable_genes() to 
filter low quality genes. For scATAC-seq modality, we first ran 
TF-IDF transformation and then used sc.pp.log1p() and 
sc.pp.highly_variable_genes() to filter low-quality peaks. 
We used different parameters in regard to different datasets 
and different omics, respectively, for the above functions. The 
corresponding parameter values are shown in Supplementary 
Table S3. 

Implementation of competing methods 
We selected three most popular and representative methods in 
single-cell multiomics data integration area. Below we describe 
these methods. 

Seurat v4 (WNN): 
The pipeline of Seurat v4 [2] uses WNN approach for single-
cell multiomics datasets. For each modality, it reduces the 
data dimension, learns cell-specific weights, and constructs an 
integrated WNN graph. We followed the recommended tutorial

human peripheral blood mononuclear cells
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae615#supplementary-data


TriTan | 5

Table 1. Multiomics datasets 

Dataset Protocol Species No. of cells No. of cell types 

PBMC-10K 10X Multiome Human 11 787 13 
Skin-SHARE SHARE-seq Mouse 34 774 23 
NeurIPS 2021 10X Multiome Human 69 249 22 

from Seurat v4 website ( https://satijalab.org/seurat/articles/ 
multi-modal_vignette.html) and executed Seurat v4 (WNN) in 
R for all datasets reported in this manuscript. 

MOFA+ 
MOFA+ [4] is a popular method based on factor analysis that 
provides a general framework for the integration of multiomics 
datasets in an unsupervised manner. We followed the recom-
mended tutorial from MOFA+ website (https://biofam.github.io/ 
MOFA2/tutorials.html) and  ran MOFA+ in Python with default 
parameters for all datasets. 

MOJITOO 
MOJITOO [5] is a highly efficient method published recently, 
which uses CCA to detect a shared representation for single-cell 
multiomics data. MOJITOO takes SeuratObject as the input and 
implements CCA for the identification of a shared representation 
of cells. We ran MOJITOO in R for all the datasets, following 
the tutorial (https://github.com/CostaLab/MOJITOO/blob/main/ 
vignettes/SeuratObject_integration.Rmd). 

Results 
Benchmarking of single-cell multi-modal 
integration methods 
We evaluated TriTan and existing methods described above using 
three publicly available multiomics datasets (Table 1). 

Assessing the computational requirements of processing 
single-cell multiomics data with an ever-increasing number of 
cells is a highly important metric in evaluating the effectiveness 
of methods. To do this, we randomly sampled cells from NeurIPS 
2021 data and generated six datasets with an increasing number 
of cells, from 3000 to 69 249. We evaluated TriTan and three 
methods using these seven datasets and analyzed the time and 
memory requirements in our benchmark by running them on a 
parallel 16-core job with a 512GB RAM/core node. For all methods, 
we used their default settings. Computational running time and 
memory comparisons are shown in Fig. 2A where TriTan shows 
a very competitive performance overall. It is the fastest among 
all the methods, except in 60 000 cells dataset with MOJITOO is 
slightly faster. However, TriTan is not the most efficient method 
regarding memory requirements. WNN and MOJITOO, which are 
quite similar, have the lowest memory requirements across all 
seven datasets and TriTan ranks third. 

Next, we used ground truth labels to evaluate the ability of 
TriTan and other methods to accurately recover cell clusters. We 
employed the Adjusted Rand Index (ARI) [16], which considers all 
pairs of samples and counts pairs that are assigned in the same 
or different clusters in the predicted and ground truth labels, 
and Normalized Mutual Information (NMI), which measures how 
much information the clustering result shares with the ground 
truth. TriTan achieves the highest ARI scores in both the PBMC-
10K and Skin-SHARE datasets, while ranking close second in the 
NeurIPS 2021 dataset. Regarding NMI scores, TriTan holds the 

second-highest scores in the PBMC-10K and Skin-SHARE datasets, 
but slightly worse than MOJITOO and WNN in the NeurIPS 2021 
dataset, as shown in Fig. 2B. 

Besides, we employed silhouette scores, using ground truth 
labels and inferred shared cell embedding from each method, 
to measure how compact cells of the same type are in the joint 
embedding. As shown in Fig. 2B, TriTan obtains the second rank 
in all datasets, while WNN is the best in all datasets. Additionally, 
the structure preservation score is an important metric used to 
evaluate how well a method maintains the structure of individual 
modalities (e.g. RNA and ATAC) after data integration. As seen 
in Fig. 2B, TriTan consistently demonstrates competitive and bal-
anced performance in preserving the structures of both RNA and 
ATAC modalities. In PBMC-10K dataset, it has the highest ATAC 
structure preservation score, while it performs the best in RNA 
structure preservation in NeurIPS 2021 dataset. In Skin-SHARE 
dataset, TriTan ranks first for both RNA and ATAC preservation 
scores. MOJITOO also captures information from all individual 
modalities uniformly and performs the best in ATAC structure 
preservation in the NeurIPS 2021 dataset. WNN shows better 
performance than TriTan in RNA structure preservation in the 
PBMC-10K dataset but less in ATAC preservation. 

Overall, this benchmarking analysis shows that TriTan is 
highly competitive against state-of-the-art methods in terms 
of the accuracy of clustering recovery, the inference of the 
informative latent embedding. Importantly, TriTan distinguishes 
itself by offering advantages in terms of speed and interpretability, 
which enhances downstream analysis and facilitates hypothesis 
generation, as discussed in the following sections. 

TriTan finds signature feature sets for each cell 
topic using association matrices 
In this section, we explored the utility of association matrices 
produced by TriTan for different modalities, highlighting the addi-
tional information they provide that is lacking in the typically 
used two-matrix NMF methods. 

Association matrices show the associations of multiple feature 
clusters with cell topics, as illustrated in Fig. 3A. The  two  
heatmaps on the top display normalized association matrices 
derived from scATAC-seq and scRNA-seq data. The bottom 
two heatmaps present binarized association matrices using a 
fixed threshold (we have chosen a strict threshold of 0.9 in this 
instance), highlighting those feature sets that are most significant 
in defining and differentiating cell types. 

Through binarized association matrices, we have identified 
some feature clusters that are unique to certain cell types. 
For example, geneset-38, geneset-0, and geneset-28, along 
with peakset-13, peakset-18, and peakset-24, exhibit a unique 
association with plasmacytoid dendritic cells (pDCs), geneset-
9 and peakset-6 are double negative T (DNT) cells specific, 
while peakset-26 and geneset-46 and geneset-48 exclusively 
identifies natural killer (NK) cells. These signature gene sets 
and peak sets are collectively associated with a specific cell 
type and potentially domains of regulatory chromatin (DORCs).
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Figure 2. (A) Time and memory usage for TriTan and three competing methods against different number of cells (x-axis) randomly sampled from the 
NeurIPS 2021 data. For each method, the left subplot shows elapsed time (log10 of seconds) and the right subplot shows peak memory (Gigabytes) 
required by each method. (B) Comparisons of methods in terms of ARI, NMI, silhouette scores, and structure preservation scores for three different 
datasets. The top-ranked method is outlined with red boxes. 

Besides, effective integration of multiomics data can enhance 
cell type identification compared with mono-omic analyses. 
As observed in Supplementary Fig. S1, scRNA-seq alone could 
not effectively distinguish between CD-8 effector and NK cells. 
However, the incorporation of scATAC-seq significantly improves 
the separation between these two cell types. Peakset-26, peakset-
4, and peakset-23 are uniquely associated with NK cells, while 
peakset-37, peakset-0, and peakset-43 demonstrate marked 
differences in CD-8 effector cells compared with other cell types. 
In addition to identifying signature gene sets and peak sets with 

known cell types, TriTan can also identify potential subtypes 
within the ground truth. For example, cell clusters 8, 10, and 
18 detected by TriTan were all labeled as pro-B cells according 
to the ground truth; however, their gene expression levels and 
peak counts varied, suggesting potential differentiation or distinct 
stages within the pro-B cell population. 

To validate that the signature gene sets we identified are 
truly cell-type-specific and can serve as, or include, markers for 
specific cell types, we performed cell marker enrichment analysis 
using clusterProfiler 4.0 [17]. We use CellMarker 2.0 [18] human

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae615#supplementary-data
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Figure 3. (A) Clustered heatmaps (top row) visualize normalized association matrices from each modality. Normalization was done row-wise, dividing 
by the maximum value. For heatmaps, each row represents a feature cluster (Y-axis) and each column represents a cell cluster (X-axis). We also show 
two binarized association matrices with a threshold of 0.9 at the bottom, allowing us to define signature feature sets for each cell type. Each cell is 
color-coded based on its ground truth from the literature, as indicated at the color legend. Please note that the heatmaps may not display the full labels 
on the X-axis and Y-axis. Complete heatmaps with full labels are shown in the Supplementary Fig. S1. (B) Cell Marker over-representation analysis 
is performed with clusterProfiler 4.0 [17] using CellMarker 2.0 human dataset [18]. Here we present the dotplots for signature gene sets of pDC cells 
(geneset-38, geneset-0, and geneset-28) and DNT cells (geneset-9). More examples are shown in Supplementary Fig. S4. (C) DNA accessibility visualization 
using the CoveragePlot() function in Signac [19] for the signature peak sets of pDCs (peakset-13, peakset-18, and peakset-24), DNT cells (peakset-6), 
NK cells (peakset-26, peakset-4, peakset-23), B cells progenitor (peakset-19, peakset-25, and peakset-45), pre-B cells (peakset-2, peakset-11, peakset-12), 
and CD8 effector cells (peakset-37, peakset-0, and peakset-43). 

database, which provides a manually curated collection of exper-
imentally supported markers of various cell types in different 
human tissues. As shown in Fig. 3B, we presented the analysis 
on pDC-specific gene sets (as described above) and DNT-specific 
gene sets, showing highly relevant terms enriched. This analysis 
validates that these gene sets not only differentiate cell types but 
are also linked to significant biological functions. Additionally, we 
selected one peak from the signature peak set for each cell topic 
and visualized DNA accessibility information using the Cover-
agePlot() function in Signac [19], which computes the averaged 
frequency of sequenced DNA fragments for different groups of 
cells within a given genomic region. They all exhibit high signal 
in the corresponding cell types, as seen in Fig. 3C. More  examples  
are shown in Supplementary Fig. S3. 

These results demonstrate TriTan’s ability to capture both 
modality-unique and modality-shared information and show that 
TriTan’s outputs, especially the middle association matrices, pro-
vide a unique advantage over existing methods for characterizing 
cell topics based on distinct combinations of gene sets and peak 
sets, enabling a deeper understanding of regulatory mechanisms 
underlying cell states. 

TriTan identifies DORCs 
In this section, we further explored gene-peak associations by 
utilizing association matrices from RNA and ATAC modalities. For 
each gene set, Pearson correlations were computed against peak 
sets using their respective weights in association matrices across 
all cell topics.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae615#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae615#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae615#supplementary-data
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We visualized the correlation matrix with absolute Pearson 
correlations in Fig. 4A. Correlation matrix without the application 
of absolute function can be found in Supplementary Fig. S5A. 
We identified certain gene sets and peak sets that are strongly 
correlated and have the potential to be functionally linked as 
DORCs. To validate this hypothesis, we used the Peak-set Enrich-
ment of Gene-Sets (PEGS) tool [20] to test the mutual enrichment 
of identified gene and peak sets in the genome and contrasted 
the output against the correlation matrix obtained from scRNA 
and scATAC association matrices. Here, using PEGS, input peaks 
are extended to ± 2kb (promoter-proximal peaks) and ± 10kb 
(promoter-proximal peaks&enhancer-distal peaks). The enrich-
ment of the input gene set is calculated among the genes whose 
TSSs overlap with the extended peaks. We constructed the enrich-
ment matrix that contains the P-values for each gene set’s enrich-
ment for each peak set as shown in Fig. 4B and Supplementary 
Fig. S5. The color of each cell in the heatmap represents the P-
value of enrichment, and the x-axis and y-axis correspond to the 
gene sets and peak sets, respectively, in the same order as in the 
correlation matrix in Fig. 4A. Remarkably, the correlation matrix 
and the enrichment matrix exhibit a high degree of similarity, as 
shown in Fig. 4A and B, showing gene and peak sets with a high 
degree of correlation and enrichment. So we can use DORCs to 
represent these high correlated and significant enriched gene sets 
and peak sets. 

In the clustered heatmap of the correlation matrix (Fig. 4A), the 
rectangles drawn using different colors represent these DORCs. 
Given our modality-specific association matrices, we observed 
that they correspond to the cell-type groups, such as pro-B and 
pre-B cells group, CD14+ mono and CD16+ mono group, among 
others. Thus, we selected these DORCs and examined their enrich-
ment again using PEGS with varying peak extending distances (up 
to ± 150kb). As shown in Fig. 4C, the combined signature gene 
sets of these clusters exhibited strong mutual enrichment to the 
combined signature peak sets. 

Based on our analysis, we have demonstrated that the highly 
related feature sets identified by TriTan across different omics 
exhibit regulatory interactions. Building on this, we will further 
predict cell-type-specific regulons (TFs and their target genes), as 
described in the next section. 

TriTan predicts cell-type-specific gene regulatory 
network and delineates B cell trajectories at 
single-cell resolution 
To further demonstrate that the outputs of TriTan can improve 
the understanding of gene regulation, we use PBMC-10K dataset 
to perform regulatory networks analysis for B cell populations. 
B lymphopoiesis, such as differentiation from pro-B cell (B-
lymphoid progenitors) to pre-B cell (B cell precursors), is a 
genetically and epigenetically highly regulated process [24]. 
Therefore, it is suitable for study on the transcription factor (TF) 
regulatory networks. 

Firstly, we used signature peak sets identified by TriTan for B 
cells to enrich motifs by Multiple EM for Motif Elicitation (MEME). 
Then, using the Tomtom tool within MEME suite [25], we com-
pared the identified motifs with JASPAR database and retained 
only the ChIP-verified human TFs. The top five enriched motifs 
were identified and they correspond to five functional domains, 
respectively (see examples in Fig. 4H). 

These motif and domain pairs suggest various interactions 
between promoters and TFs during B lymphopoiesis. SPIB, 
corresponding to the ETS domain and PU-box motif pair, inhibits 
human plasma cell differentiation by repressing BLIMP1 and 

XBP-1 expression [26], while the double mutation of its orthologs 
in mice develops pre-B cell acute lymphoblastic leukemia [27]. 
MEF2C, a transcriptional activator of DNA repair, regulated the 
genome integrity and cell survival of pro-B, and its deficiency 
leads to a reduced chromatin accessible state in target regions in 
pre-B [28]. TEAD1/2, a member of the Hippo signaling pathway, 
regulated the growth and self-renewal of nonlymphoid cells, was 
upregulated in leukemia, and was inhibited by IKAROS, which 
regulates pre-B development [29]. EGR1 is also related to the 
early differentiation of B cells [30]. PAX5 is a master regulator 
in the development of B cells [31]. After losing IL7 signaling, pro-
B cells lacking Pax5 can differentiate into other hematopoietic 
cell types, instead of entering B-cell lineage [32–34]. As Pax5 is 
activated, it can enter the pre-B stage, while differentiation from 
pre-B into plasma cells reduces the expression of Pax5 [31, 35]. 
Furthermore, conditional deletion of Pax5 in pre-B resulted in the 
retrodifferentiation of cells into pro-B [31, 36]. 

Next, we demonstrated that the gene sets containing these 
transcription factors exhibit differential expression correspond-
ing to changes in B cell development. For example, the relative 
expression level of geneset-15 containing PAX5 is very low in 
non-B lymphocytes, but it is highly expressed in pro-B and pre-B, 
and the expression in pre-B is higher than that in pro-B (Fig. 4E), 
which is consistent with the above. EBF1 is also a key regula-
tory factor for the early development of B cells, which specifi-
cally binds to the promoter of Cd79a [37, 38]. Geneset-42 (Fig. 4E) 
contains EBF1, CD79a, and CD79b, and its relative expression 
levels in pre-B and pro-B are much higher than those in other cell 
types, which well reflects the relationship and characteristics of 
the three genes in the early development of B cells. IL7R, the cell 
surface receptor, exists in geneset-35 (Fig. 4E), and its expression 
is higher in pro-B cells than in pre-B cells. It is consistent with 
its function. Under the IL7 environment, IL7R activates the down-
stream JAK1/3 and STAT5a/b pathways, promotes the prolifera-
tion of pro-B, and prevents apoptosis and cell movement [39, 40]. 
The pre-BCR signaling reduces the adhesion of pre-B by increasing 
CXCR4 and reducing FAK, which indirectly leads to reduced expo-
sure of IL7 in pre-B cells and attenuates IL7R signaling [39, 40]. 
Besides, the high expression of IL7R in T cells is also consistent 
with its previously reported role in T cell development [39, 41]. 
In this gene set, Bcl-2, which can be activated by IL7, and Foxo1, 
which acts as an enhancer to regulate the expression of IL7R, were 
also found [39, 42, 43]. This indicates that our method enables the 
enrichment of gene sets with biological function correlation. 

Following the previous analysis, we pick the transcription 
factor PAX5, construct PAX5 regulon, and detected the differ-
ence in the PAX5 regulons between pro-B and pre-B (seen in 
Supplementary Tables S1 and S2) to show how gene expression 
is regulated by TFs. To construct the PAX5 regulons specific to 
pro-B and pre-B cells, we used the cell-type-specific signature 
gene sets identified by association matrices outputted by TriTan. 
For pre-B cells, geneset-4, geneset-39, and geneset-15 were used, 
while for pro-B cells, geneset-2 and geneset-45 were used. For 
each cell type, we first used the Ensembl tool [44] to locate 
the TSS of each gene and then use MEME suite to select those 
genes with PAX5 motifs enriched within ± 2kb of their TSS as the 
target genes for the PAX5 regulons. We performed a comparative 
enrichment analysis (Seen in Fig. 4F and G). The main enriched 
GO terms in pro-B are related to B cell proliferation, cell receptor 
signal transduction, and B cell activation, which may be related 
to IL7-mediated signal transduction [39, 41]. The GO terms of 
MHCII and SYNTAXIN are specifically enriched in pre-B, which 
may be related to the production process of pre-BCR receptor in

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae615#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae615#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae615#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae615#supplementary-data
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Figure 4. Downstream analysis of TriTan’s output. (A) The clustered heatmap of the correlation matrix, obtained from RNA and ATAC association 
matrices, highlighting clusters of gene sets and their potentially regulating peak sets (DORCs), which can be traced back to specific cell-type groups. 
The x-axis shows the gene sets, and the y-axis shows peak sets, and the color represents the absolute value of their Pearson correlations. (B) Clustered 
heatmap of the enrichment matrix from PEGS analysis, x-axis shows the gene sets, and y-axis shows peak sets (expanded to ± 2kb) with the same 
order as of correlation matrix. (C) PEGS analysis for enrichment of signature gene sets (x-axis) and peak sets (y-axis, expanded to different genomic 
distances (2000, 5000, 10 000, 50 000, 150 000)) derived from rectangles in (A). Axis labels show their corresponding cell type groups. The cell color 
represents -log10(p-value) of enrichment. (D) Cartoon diagram illustrating the transition of B cells from the pro-B stage to the pre-B stage, which is 
regulated by PAX5 and the interaction between IL7 and IL7R. (E) The barplots showing some important gene sets’ expressions reflected by their weights 
in association matrix across each cell type. (F) Comparative enrichment analysis was performed on PAX5 regulon (pre-B) and PAX5 regulon (pro-B). The 
regulons of PAX5 in pre-B and pro-B were analyzed by GO enrichment, and the GO database used was from Molecular Signature Database (MSigDB) 
C5 [21, 22]. The enrichment results were compared by the compareCluster() function of the clusterProfiler package, and visualized by dotplot() 
function. The size of the circle represents the gene ratio, which is obtained by the number of genes belonging to the corresponding GO term compared 
with the total number of genes. The color represents the P-value. (G) Gene-Concept Network Plot of PAX5 regulon (pre-B) and PAX5 regulon (pro-B). The 
regulons of PAX5 in pre-B and pro-B were analyzed by GO enrichment, and the GO database used was from Molecular Signature Database (MSigDB) C5 
[21, 22]. The enrichment results were compared by the compareCluster() function of the clusterProfiler package, and visualized by the centplot() 
function. Centplot shows the relationship between genes and GO terms. Red represents genes from pre-B and corresponding enriched GO terms, and 
blue represents genes from pro-B and corresponding enriched GO terms. The size of the GO circle represents the number of enriched genes. (H) Five  
motifs correspond to five functional domains, respectively. Motifs were enriched by MEME based on the set of sequences identified by TriTan from B 
cells located ± 2kb of the TSS. The top five motifs were selected to be compared with the JASPAR database through Tomtom, retaining only those motif 
and TF pairs that have been validated by ChIP-seq data from human sources. The obtained TFs were put into the SMART [23] database for domain 
identification. Motif 1: mainly enriched to proteins with EST (E twenty-six) domains, such as SPIB, ELF1, and ETV1; motif 2: PAX (paired box) domain, 
such as PAX5; motif 3: TEA domain, such as TEAD1, TEAD2, and TEAD4; motif 4: MADS domain, such as MEF2A and MEF2C; motif 5: ZnF_C2H2 (Zinc 
finger C2H2-type) domain, such as EGR1 and KLF9. The bottom row in the figure represents the motifs enriched by our analysis, the middle row displays 
the best-matched motifs detected in the database by Tomtom, and the top row corresponds to the associated protein domains. 
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pre-B and the corresponding membrane fusion [45, 46]. Through 
this analysis, we showed that signature feature sets enriched by 
TriTan reflect changes during B cell development. Additionally, 
the regulons identified using TriTan appear to be functionally 
relevant, highlighting its potential for studying the regulatory 
mechanisms underlying cell types. 

Conclusions 
Here, we have presented TriTan, a triple nonnegative matrix 
factorization algorithm for integrative analysis of single-cell 
multiomics. TriTan is highly competitive against three state-
of-the-art methods in term of the accuracy of cell clustering 
recovery, inferring the informative latent embedding, and 
computational efficiency within our benchmark study using three 
single-cell multiomics datasets from two different experimental 
technologies. It is important to note that clustering evaluation 
metrics (e.g. ARI scores) requires ground truth labels, which may 
be biased toward the methods used to derive those labels, such 
as WNN. 

Importantly, we want to highlight the biological interpretation 
TriTan can provide to support downstream analysis. TriTan pro-
vides both middle association matrices and correlation matrices. 
Association matrices represent the weights of each feature set 
across different cell types, enabling users to explore how feature 
sets from different omics identify or differentiate a cell type. 
Correlation matrices, showing the association between feature 
sets across omics, can identify gene-peak linkages and DORCs. 
Finally, by scanning the motifs over the specific DORCs for each 
cell type, we enable the prediction of cell-type-specific regulons 
and the inference of gene regulatory networks. This powerful 
feature of TriTan will enable researchers to gain deeper insights 
into the complex interactions across different molecular fea-
tures. While TriTan’s factorization output can currently be used 
to generate hypotheses in bespoke analyses, a valuable future 
direction would be to extend the implementation with enhanced 
downstream analysis capabilities. This would help create a more 
user-friendly and integrated platform to make it widely accessible 
to researchers. 

TriTan is available as a Python package, with extensive 
documentation and Jupyter notebook based tutorials at https:// 
tritan-tutorial.readthedocs.io/en/latest/. TriTan is highly versatile 
and simple to apply across different paired multiomics datasets, 
including those with more than two modalities. A detailed 
tutorial demonstrating its application to a CITE-seq dataset 
(available at https://openproblems.bio/events/2021-09_neurips/ 
documentation/data/dataset) is provided at https://tritan-tuto 
rial.readthedocs.io/en/latest/notebooks/Cite-seq.html. We  have  
also expanded its use case to a tri-modal PBMC-DOGMA dataset 
(RNA/ATAC/protein), with an accompanying tutorial available at 
https://tritan-tutorial.readthedocs.io/en/latest/notebooks/PBMC-
DOGMA.html. 

Key Points 
• TriTan is a highly efficient and interpretable triple non-

negative matrix factorization method for multiomics 
data integration, showing good performance in clus-
tering cells, identifying signature features for each cell 
type, and uncovering feature associations across dif-
ferent omics layers, which facilitates the identification 

of Domains Of Regulatory Chromatin (DORCs) and the 
prediction of cell-type-specific regulatory networks. 

• TriTan uses a novel joint multiplicative update algorithm 
to significantly enhance its processing speed and employ 
an automatic model selection procedure for both cells 
and features clustering. 

• We showed a range of downstream analyses conducted 
utilizing the outputs from TriTan, showing its capacity to 
facilitate interpretation in biological discovery. 

Supplementary data 
Supplementary data is available at Briefings in Bioinformatics 
online. 
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