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Abstract 
The Gaussian graphical model (GGM) is a statistical network approach that represents conditional dependencies among components, 
enabling a comprehensive exploration of disease mechanisms using high-throughput multi-omics data. Analyzing differential and 
similar structures in biological networks across multiple clinical conditions can reveal significant biological pathways and interactions 
associated with disease onset and progression. However, most existing methods for estimating group differences in sparse GGMs 
only apply to comparisons between two groups, and the challenging problem of multiple testing across multiple GGMs persists. This 
limitation hinders the ability to uncover complex biological insights that arise from comparing multiple conditions simultaneously. 
To address these challenges, we propose the Omics Networks Differential and Similarity Analysis (ONDSA) framework, specifically 
designed for continuous omics data. ONDSA tests for structural differences and similarities across multiple groups, effectively 
controlling the false discovery rate (FDR) at a desired level. Our approach focuses on entry-wise comparisons of precision matrices across 
groups, introducing two test statistics to sequentially estimate structural differences and similarities while adjusting for correlated 
effects in FDR control procedures. We show via comprehensive simulations that ONDSA outperforms existing methods under a 
range of graph structures and is a valuable tool for joint comparisons of multiple GGMs. We also illustrate our method through the 
detection of neuroinflammatory pathways in a multi-omics dataset from the Framingham Heart Study Offspring cohort, involving 
three apolipoprotein E genotype groups. It highlights ONDSA’s ability to provide a more holistic view of biological interactions and 
disease mechanisms through multi-omics data integration. 
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Introduction 
The rapid advancement of high-throughput omics technologies 
has led to the generation of complex, high-dimensional multi-
omics datasets including genomics, transcriptomics, proteomics, 
metabolomics, epigenomics, etc. Graphical models are powerful 
tools for constructing biological networks from omics data, where 
the nodes can be genes, proteins, and/or metabolites, and the 
edges reflect relationships such as co-expression and interactions 
within or between these omics data [1]. Assuming data with 
multivariate normality, the Gaussian graphical model (GGM) is a 
statistical approach for studying dependency networks. In GGMs, 
two nodes are connected with an edge if and only if they are 
conditionally dependent given all the other nodes in the network 
[2]. Unlike correlation networks, which can be quite dense and 
uninterpretable, GGMs tend to be more sparse since the edges 
represent direct, rather than indirect, associations [3]. There is 

an ever-growing body of literature on GGM estimation in various 
settings, including omics analyses [1, 3–19]. 

Differential network analysis is relevant for biomarker discov-
ery and investigation of molecular mechanisms associated with 
disease onset and progression [20]. Differences in gene, protein, 
and metabolite networks among two or more clinical conditions 
may reflect meaningful biological pathways or interactions [20]. 
We would expect multiple GGMs to be similar when estimated 
from different conditions of the same type of tissue but also 
to have some differential structures regulated by distinct but 
related conditions [21]. In this paper, we focus on identifying 
biological interactions related to distinct conditions through 
entry-wise comparisons of multiple precision matrices that 
represent GGMs. Loosely speaking, recent approaches accounting 
for similar and differential structures in GGMs depend on three 
perspectives: joint estimation of multiple GGMs, direct estimation
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of differences between GGMs, and separate estimation of multiple 
GGMs [22]. The spirit of joint estimation of multiple GGMs relies 
on combining information from all conditions/groups for more 
accurate estimation within each condition. As a generalization 
of the well-known graphical lasso method [6], Guo et al. [23] 
and Danaher et al. [21] proposed hierarchical penalties with 
the group lasso or fused lasso for the negative log-likelihood 
function, encouraging similar coefficients or similar sparsity 
patterns for precision matrices across groups. Zhang and Wang 
[24] studied the regression-based neighborhood selection method 
using the fused lasso penalty. Ha, Baladandayuthapani, and Do 
[25] developed a pathway-based differential network analysis in 
genomics that conducted joint estimations by decomposing into 
global and group-specific components. Cai et al. [26] developed 
a method for joint estimation of multiple precision matrices 
based on a weighted constrained L∞/L1 minimization. When 
the focus is on the differences between networks, Zhao, Cai, 
and Li [27] proposed to estimate the matrix equal to the 
difference between two precision matrices directly, utilizing the 
constrained L1 minimization approach. Haslbeck [28] introduced 
a regression-based method to directly estimate group differences 
based on moderation analysis via group-specific interaction 
terms. 

Most existing methods for estimating group differences in 
sparse GGMs only apply to comparisons between two groups, 
and the challenging problem of multiple testing related to mul-
tiple GGMs in terms of structural differences and similarities 
persists. Even though methods exist for comparisons across more 
than two groups [21, 26, 28], theoretical justifications for the 
performance of the estimators have not yet been derived to 
establish rigorous statistical tests. Furthermore, none of these 
methods provides false discovery rate (FDR) control in the pres-
ence of differential and similar structures regarding more than 
two groups. These limitations hinder the discovery of signifi-
cant structural differences and similarities in biological networks 
across multiple clinical conditions, which is crucial for under-
standing disease mechanisms and identifying potential biomark-
ers associated with disease onset and progression. To address 
these critical gaps, the motivation of this work is to develop 
a rigorous statistical framework capable of performing simul-
taneous comparisons across multiple GGMs with proper FDR 
control. 

FDR, introduced by Benjamini and Hochberg [29] for multiple 
testing problems, is particularly useful in detecting numerous 
significant comparisons while minimizing the occurrence of false 
positives. Most approaches for joint estimation of multiple GGMs 
or direct estimation of differences among them lack theoretical 
performance guarantees. Therefore, to establish formal statistical 
tests with FDR control, it is straightforward to consider single 
GGM estimators incurring asymptotically normal and efficient 
properties for multiple nonoverlapping groups separately. Liu [15] 
developed a regression-based single GGM estimator and proposed 
a procedure for FDR control to simultaneously test the presence 
of all pairs of nodes in one graph. Xia, Cai, and Cai [30] introduced 
a multiple testing procedure for differential edges between two 
groups with FDR control. He et al. [31] tested differential network 
structures between two groups with FDR control based on the 
well-established estimator of Ren et al. [16]. However, jointly com-
paring more than two sparse GGMs with FDR control remains a 
complicated problem. 

We propose a new two-step statistical testing framework with 
FDR control for testing both structural differences and similarities 
across multiple GGMs, with each single GGM estimated by Ren 

et al. [16]. With the implementation and effective application to 
multi-omics data, we refer to this framework as Omics Networks 
Differential and Similarity Analysis (ONDSA). ONDSA conducts 
large-scale multiple testing simultaneously and efficiently, pro-
viding a valuable tool for joint comparisons of multiple biological 
networks that can be leveraged for multi-omics data integra-
tion and pathway identification. Unlike many existing methods, 
ONDSA rigorously performs statistical comparisons across multi-
ple conditions, addressing the methodological gap in multi-group 
GGM analysis with proper FDR control. Liu’s [32] hierarchical 
method to estimate differential and similar structures under FDR 
control, which requires procedures with tuning parameters, is 
a precursor to our method. However, our work focuses on the 
entry-wise equality of precision matrices (partial covariances), a 
methodological approach also adopted by many existing differ-
ential network analysis studies [21, 27, 30, 31, 33]). This focus on 
partial covariances continues to be a significant area of research, 
as evidenced by ongoing studies and advancements [17, 18, 34]. 
Moreover, we propose distinct test statistics based on a compu-
tationally efficient and tuning-free inference method that does 
not require data-driven approaches to determine tuning param-
eters, thereby reducing complexity and computational costs [35]. 
We illustrate the advantages of ONDSA through comprehensive 
simulations and an application to multi-omics data from the 
Framingham Heart Study (FHS) Offspring cohort for identifying 
potential pathways related to neuroinflammation. We conclude 
with a discussion on how the framework of ONDSA is general 
and can be extended in both application and methodological 
perspectives. This well-documented and accessible tool enables 
researchers to accurately identify both differential and similar 
omics network structures across multiple conditions, leading to 
deeper insights into the underlying biological mechanisms and 
facilitating the discovery of novel biomarkers and therapeutic 
targets. 

Materials and methods 
Overview of ONDSA 
Here, we provide an overview of ONDSA, reserving the technical 
details for a later section. The aim of ONDSA is to conduct a two-
step rigorous statistical test for identifying differential and similar 
network structures across precision matrices for multiple groups, 
with control of FDR at desired levels. We begin by introducing 
the notation and definitions that will be used in the rest of the 
paper. 

In the context of omics networks, the nodes represent bio-
logical entities and the networks are modeled by sparse GGMs. 
Here, we examine K networks, each corresponding to a distinct 
group represented by a biological condition and observed over a 
set of p biological variables (nodes). We consider nk independent 
and identically distributed (i.i.d.) p-dimensional random vectors, 
denoted as

{
X(k) 

d ∈ Rp : d = 1, . . .  , nk

}
, where each vector represents 

an individual measurement in group k for k = 1, . . . , K. These  
vectors follow a group-specific multivariate normal distribution 
N(μ(k), �(k) ), where  μ(k) is the mean vector and �(k) is the p × p 
covariance matrix. Without loss of generality, we assume μ(k) = 0p. 
Let �(k) = (�(k) )−1 = (ωij,k) denote the group-specific precision 
matrix for group k, where  ωij,k is the (i, j)-th entry (1 ≤ i, j ≤ p). 
The goal of ωij,k is to model the conditional dependency between 
variables i and j in group k while controlling for the influence of 
the other variables in the network. The joint comparisons con-
ducted by ONDSA are based on group-specific precision matrices
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Figure 1. Schematic of the two-step ONDSA. 

estimated from each of the K groups using a single GGM inference 
method [16]. The data harmonization step incorporates all omics 
and phenotypes of interest into the p nodes, merging them into 
a dataset with n samples and p variables; here n represents a 
general notation for the sample size within each single group. The 
core assumptions are that the data from each group conform to 
a multivariate normal distribution, and the observations within 
each group are i.i.d. We assume that each group is measured on 
the same set of biological variables, ensuring that the number 
of variables p remains the same across all groups. Importantly, 
we consider high-dimensional settings where the dimension p 
may grow with the sample size n, accommodating both (p > n) 
and (p < n) scenarios. The number of groups K is fixed in our 
analysis. GGMs are useful for modeling omics networks based on 
continuous variables, assuming that the data can be transformed 
to approximate normality. 

Figure 1 shows the schematic of ONDSA. The estimated 
group-specific precision matrices �̂(k) are used as input for 
ONDSA to describe the network structures for each group. 
Conducting the two-step testing procedures allows us to obtain 
the estimated sets for differential and similar structures across 
multiple nonoverlapping groups, with FDR control at a desired 
level. The ONDSA R package is available at: https://github.com/ 
jiachenchen322/ONDSA. 

Single GGM inference 
Anderson [36] showed that the precision matrix can be con-
structed using linear regression models, and numerous GGM 

estimation methods have been proposed based on regression 
coefficients. Sun and Zhang [37] and Ren et al. [16] developed 
a bivariate penalized regression approach focusing on noise 
level estimation, where an asymptotically efficient estimator for 
the precision matrix entries ωij was proposed under sparseness 
assumptions [16]. To illustrate the estimation for a single group 
with n samples and p variables, we assume that X is the n×p omics 
dataset for a specific biological condition. We are interested in the 
index set E = (i, j) with i < j, and the corresponding entry ωij of 
the precision matrix �. The conditional Gaussian distribution of 
the two selected variables given the remaining variables is given 

by XE|XEC ∼ N(−�−1 
E,E�E,EC XEC , �−1 

E,E), where �E,E =
(

ωii ωij 
ωij ωjj

)
. Here,  

XE represents the n × 2 matrix corresponding to the index set 
E, and  XEC represents the n × (p − 2) matrix excluding the index 
set E. �C,D represents the submatrix of � with row indices C and 
column indices D. If we regress XE on XEC , we will get the equation 
XE = XEC β + εE, where  β = βEc ,E = (βEc ,i, βEc ,j) = −�Ec ,E�

−1 
E,E. Here,  

β = βEc ,E represents a (p − 2) × 2 coefficient matrix. An approach 
using scaled lasso that is tuning-free provides the estimate β̂ 
of β [16]. The residual ε̂E = XE − XEC β̂ can be used to obtain an  

estimator of �E,E: �̂E,E =
(
ω̂ii ω̂ij

ω̂ij ω̂jj

)
= ( 1 

n ε̂′
Eε̂E)

−1. The estimator

ω̂ij is asymptotically efficient within a class of parameter spaces 
modeling sparse precision matrices:

√
n̂Fij(ω̂ij − ωij) 

D−→ N(0, 1), F̂ij/Fij −→ 1. (1)
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Here, F̂ij = (ω̂iiω̂jj + ω̂2 
ij)

−1, and  Fij = (ωiiωjj + ω2 
ij)

−1 represents the 
Fisher information for estimating ωij. 

This estimation process is crucial for capturing the intricate 
dependency structures in omics networks. However, there is a 
trade-off between asymptotic efficiency and sparsity. While the 
estimators are statistically efficient, they may lead to dense net-
works, making it more challenging to compare biological relation-
ships across multiple groups. 

ONDSA: the proposed two-step framework 
The previous section described the GGM estimator for a single 
group. For nonoverlapping samples from multiple groups, the 
precision matrix for each group is estimated as �̂(k) = (�̂(k) 

)−1 = 
(ω̂ij,k) with K ≥ 2. Below, we provide the details of ONDSA for 
testing differential and similar structures sequentially. 

Step 1: test for differential omics network structures 
For omics networks, it is crucial to understand whether specific 
biological relationships change under different conditions. The 
multiple testing problem for detecting differential omics network 
structures across groups is formulated as 

H0ij : ωij,1 = ... = ωij,K vs H1ij : at least one ωij,k differs (2) 

for 1 ≤ i < j ≤ p and 1 ≤ k ≤ K, where the null hypothesis indicates 
no change in the conditional relationship between variables i and 
j across the groups. 

As shown in (1), under certain conditions, for 1 ≤ k ≤ K, 1 ≤ i < 
j ≤ p, 

√
nk(ω̂ij,k − ωij,k)√
ω̂ii,kω̂jj,k + ω̂2 

ij,k 

D−→ N(0, 1). (3)  

This allows us to construct a weighted average ω̄ij =
∑K 

k=1 λij,kω̂ij,k∑K 
k=1 λij,k 

across the K groups, where λij,k = 1
ω̂ii,k ω̂jj,k+ω̂2 

ij,k 
nk 

. Inspired by Cochran Q 

test for heterogeneity, we define Dij =
∑K 

k=1 λij,k(ω̂ij,k − ω̄ij)
2, where  

Dij quantifies the extent to which the relationship between two 
variables changes across different biological conditions. Under 
the null hypothesis of no difference, the test statistic Dij follows 
an asymptotic Chi-squared distribution with K − 1 degrees of 
freedom. To account for the multiple comparisons across the 
network, we apply the FDR control procedure [38] to adjust for 
the correlation among the p(p − 1)/2 test statistics. First, Dij is 
transformed into a z−value as follows: 

Sij,1 = �−1 (�0(Dij)), (4)  

where �0(s) corresponds to the cumulative distribution function 
of the Chi-squared distribution with K−1 degrees of freedom and
� is the cumulative distribution function of the standard normal 
distribution. This transformation ensures that larger values of Sij,1 

indicate more substantial changes in edge strengths (conditional 
dependencies) across groups. 

To correct for correlations among entry-wise test statistics 
caused by overlapping nodes in the network, we apply a con-
ditional FDR adjustment. The conditional FDR is computed as 
follows: FDR(s|A) = FDR0(s)(1 + A |s|ϕ(s)√

2(1−�(s)) 
), where  FDR0(s) is the 

standard unconditional FDR under the null N(0, 1), and  can  be  
expressed as FDR0(s) = (1−�(s))p(1−p)/2 

max(1,
∑

1≤i<j≤p I(Sij,1≥s)) [38]. The factor A is 

computed as A = (P0 − P̂0)/Q0, where  P0 = 2�(1) − 1, P̂0 = 

2
∑

1≤i<j≤p I(|Sij,1 |≤1) 
p(p−1)

, and  Q0 = 
√

2ϕ(1), with  ϕ(x) = 1√
2π e

−x2/2. The  
selection of the null, P0, and  Q0 follows the recommendations 
of Efron [38]. We denote the adjustment factor as A(s) = 1 + 
A |s|ϕ(s)√

2(1−�(s)) 
. Given a pre-specified 0 < α1 < 1, the FDR control 

procedure for estimating differential omics network structures is 
performed using the threshold ŝ1, define as

ŝ1 = inf

{
s ∈ R : 

A(s)(1 − �(s))p(p − 1)/2 
max(1,

∑
1≤i<j≤p I(Sij,1 ≥ s)) 

≤ α1

}
, 

equivalent to FDR(s|A) ≤ α1. (5)  

We reject the null hypothesis H0ij if Sij,1 ≥ ŝ1, indicating a sig-
nificant difference in edge strength between this specific pair of 
nodes across the groups. 

Failure to adjust for the factor A(̂s1) can lead to misleading 
results, as correlations among test statistics may distort the null 
distribution [38]. Assume that the set E1 represents the true set of 
edges with different edge strengths across groups. The aforemen-
tioned procedure produces an estimator Ê1 = {(i, j) : Sij,1 ≥ ŝ1, 1  ≤ 
i < j ≤ p}, identifying omics networks structures where significant 
differences across groups are detected. 

Step 2: test for similar omics network structures 
While differential structures reveal how relationships between 
variables change, similar omics network structures highlight sta-
ble relationships that persist across groups. These persistent rela-
tionships can provide insights into core biological pathways that 
remain unchanged despite varying biological conditions. 

For all pairs of nodes, the ground truth categorizes all possi-
ble edges into three sets: true differential edges, true common 
nonzero edges, and true common zero edges that are not of 
interest. E1 represents the true differential edges, while its com-
plementary set, Ec 

1, can be divided into two subsets: 

E2 = {(i, j) : ωij,1 = ... = ωij,K 
= 0, 1 ≤ i < j ≤ p}; (6)  

E3 = {(i, j) : ωij,1 = ... = ωij,K = 0, 1 ≤ i < j ≤ p} (7) 

where E2 is the set of true common nonzero edges, and E3 is 
the set of true common zero edges. However, due to the limited 
sample size and theoretical results of minimax rate [16], it is 
challenging to accurately identify edges belonging to E2, where  
the true nonzero ωij,k are exactly the same across all groups. In 
practice, even true common edges in E2 may not yield identical 
estimates across groups. Therefore, following the notation in Liu 
[32], we consider a proxy for E2: Ê2 = {(i, j) ∈ Êc 

1 : (ωij,1, ..., ωij,K) 
= 
0}, which represents nonzero similar edges or structures that 
allow for nearly equal ωij,k across groups. The estimated proxy 
set for E2 should include most common nonzero edges so we 
would rather recover similar structures instead of the common 
nonzero structures that have exactly the same ωij,k across groups. 
The identification of Ê2 involves the following multiple testing 
problem for all pairs (i, j) ∈ Êc 

1: 

H0ij : (ωij,1, ..., ωij,K) = 0 vs  H1ij : (ωij,1, ..., ωij,K) 
= 0, (8) 

where the alternative hypothesis indicates that the variables i 
and j share a similar conditional dependency/edge strength across 
groups.
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As defined in Step 1, the weighted average ωij=
∑K 

k=1 λij,kω̂ij,k∑K 
k=1 λij,k 

is 

computed, where λij,k = 1
ω̂ii,k ω̂jj,k+ω̂2 

ij,k 
nk 

for all pairs (i, j) ∈ Êc 
1. Under 

the null hypothesis, this statistic follows an asymptotic normal 
distribution N(0, 1∑K 

k=1 
1

ω̂ii,k ω̂jj,k 
nk 

). The z-value for the test is computed 

as 

Sij,2 = �−1 

⎛⎜⎝2�

⎛⎜⎝| 
⎛⎝ K∑

k=1 

1
ω̂ii,kω̂jj,k 

nk 

⎞⎠ 

1 
2 

ω̄ij| 
⎞⎟⎠ − 1 

⎞⎟⎠ . (9)  

Similarly, to correct for correlations between test statistics caused 
by overlapping network nodes, we apply a conditional FDR adjust-
ment, where ̂P′

0 = |̂Ec 
1|−1∑

(i,j)∈Êc 
1 

I(|Sij,2| ≤ 1), A′ = (P0 − P̂′
0)/Q0, and  

A′(s) = 1 + A′ |s|ϕ(s)√
2(1−�(s)) 

[38]. Here, |̂Ec 
1| is the number of elements 

in this set. The FDR control procedure for identifying similar 
omics network structures across groups is given by the following 
threshold for a pre-specified 0 < α2 < 1:

ŝ2 = inf

{
s ∈ R : 

A′(s)(1 − �(s))|̂Ec 
1| 

max(1,
∑

(i,j)∈Êc 
1 

I(Sij,2 ≥ s)) 
≤ α2

}
, 

equivalent to FDR(s|A′) ≤ α2. (10) 

We reject the null hypothesis H0ij : (ωij,1, ..., ωij,K) = 0 if Sij,2 ≥ ŝ2, 
indicating that the edge between this specific pair of nodes shows 
a significant similar strength across groups. The estimator ̂̂E2 = 
{(i, j) : Sij,2 ≥ ŝ2, (i, j) ∈ Êc 

1, 1  ≤ i < j ≤ p} for similar omics network 
structures is obtained. 

Remarks on ONDSA 
The procedures in Equations (5) and (10) can be evaluated using 
the empirical false discovery proportion (eFDP) and empirical FDR 
(eFDR), which provide insight into the performance of the tests 
for differential and similar omics network structures. For testing 
differential structures, the eFDP and eFDR are defined as follows: 

eFDP1 =
∑

(i,j)∈Ê1 
I
{
ωij,1 = ... = ωij,K

}
max

(
1,

∣∣∣̂E1

∣∣∣)
and eFDR1 = E [eFDP1] (11) 

For testing similar structures, the corresponding eFDP and eFDR 
are defined as follows: 

eFDP2 =
∑

(i,j)∈̂̂E2 
I
{(

ωij,1, ..., ωij,K
) = 0

}
max

(
1,

∣∣∣̂̂E2

∣∣∣)
and eFDR2 = E [eFDP2] . (12) 

These metrics quantify the control of false discoveries when 
identifying differential and similar edges in omics networks. Addi-
tionally, the empirical power (ePower) measures the ability to 
detect true differential and similar structures, defined as follows: 

ePower1 = E

(∑
(i,j)∈E1 

I
{
(i, j) ∈ Ê1

}
|E1|

)
, (13) 

ePower2 = E 

⎛⎝∑
(i,j)∈E2 

I
{
(i, j) ∈ ̂̂E2

}
|E2| 

⎞⎠ . (14) 

Algorithm 1 ONDSA with FDR Control 
Input: Estimated group-specific precision matrices, representing 
omics networks as defined in Equation (1), and the specified FDR 
control levels α1 and α2 

Step 1: test for differential omics network structures 
(a) Construct test statistics Sij,1 in Equation (4). 
(b) Conduct the multiple testing procedure on all node pairs as 
described in Equation (5) and calculate ŝ1. 
(c) Obtain the estimated set of differential omics network 
structures: Ê1 =

{
(i, j) : Sij,1 ≥ ŝ1, 1 ≤ i < j ≤ p

}
. 

Step 2: test for similar omics network structures 
(a) Construct test statistics Sij,2 in Equation (9). 
(b) Conduct the multiple testing procedure on the set of Êc 

1 as 
described in Equation (10) and calculate ŝ2. 
(c) Obtain the estimated set of similar omics network structures: 
ˆ̂E2 = {(i, j) : Sij,2 ≥ ŝ2, (i, j) ∈ Êc 

1, 1 ≤ i < j ≤ p}. 

Output: Estimated sets Ê1 and ˆ̂E2 for differential and similar 
omics network structures across groups. 

The complete procedure of ONDSA with FDR control is summa-
rized in Algorithm 1. The goal is to estimate the sets E1 and 
E2, corresponding to the differential and similar structures in 
omics networks across multiple groups, which investigates both 
varying and consistent biological relationships across conditions. 
As previously mentioned, when the differences in edge strengths 
across groups are extremely small and the sample size nk is lim-
ited, detecting such differences becomes challenging [16]. Specif-
ically, true differential edges in E1 with small differences across 
groups may not reach statistical significance and may be clas-
sified as similar edges in ̂̂E2. Similarly, even with FDR control, 
some true zero edges in E3 may be falsely identified as nonzero 
edges and misclassified into ̂̂E2 due to estimation errors and the 
high dimensionality of the data, especially when sample sizes are 
limited [16, 32]. 

Under some circumstances, it may be of interest to com-
pare the K omics networks for entry-wise partial correlations 
rather than partial covariances/precision matrix entries [21, 32]. 
In the Supplementary Materials, we further show the extension 
of ONDSA to work on the scale of partial correlations. 

Simulation setup 
We demonstrate the performance of the ONDSA framework 
through simulation studies, evaluate its empirical FDR and power 
as previously defined, and compare it with two existing methods. 
The single GGM estimation in ONDSA is straightforward to imple-
ment using FastGGM [39], an efficient R package developed for the 
asymptotically normal and efficient estimator established by Ren 
et al. [16]. The scaled-lasso penalty level λ =

√
(2/n) log (p/

√
n) is 

provided as the default value with statistical justifications, where 
p represents the number of variables (nodes) and n is used as a 
general notation for the sample size within each single group. 
Our implementation of ONDSA is developed into an R package. 
Installation, dependencies, and detailed usage instructions for 
reproducible research are available on GitHub. 

We design simulation scenarios to assess the proposed ONDSA 
framework under various conditions, using network structures 
commonly applied in GGM simulations [5, 10, 27, 32, 40]. We 
consider both low-dimensional (n ≥ p) and high-dimensional 
(n < p) settings with K = 3 groups. Simulated data sets for
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these three groups are generated from multivariate normal dis-
tributions with different network structures, including various 
common graphs and individual edge structures, under balanced 
and imbalanced group scenarios. The common graph precision 
matrix is denoted by �. The corresponding common adjacency 
matrix is denoted by � = (γij), where each entry is binary, repre-
senting the presence (1) or absence (0) of an edge between nodes 
i and j. Group-specific precision matrices are denoted by �k. The  
simulation pipeline consists of three steps. First, a common graph 
structure is generated for all groups using random, hub, band, 
or scale-free graphs. Second, individual group-specific edges are 
assigned to each group by randomly selecting either individual 
edges or block structures. Group-specific precision matrices �k 

are obtained from these two steps. Finally, we invert these pre-
cision matrices to covariance matrices and generate nk samples 
from a multivariate normal distribution N(0p, �−1 

k ) for k = 1, 2, 3. 
The common graph and individual edge structures used to con-
struct the symmetric precision matrices are defined as follows. 

(1) Common graph structures 

(a) Random graph: Each pair of nodes is randomly selected as 
an edge denoted as γij = γji = 1 with probability 0.02 when 
n ≥ p or 0.008 when n < p, and  γij = γji = 0 otherwise. 

(b) Hub graph: The p nodes are evenly divided into max(10, p/20) 
disjoint clusters. In each cluster, there is a central node i, and  
for all other nodes j within the same cluster, γij = γji = 1 when 
j 
= i, and  γij = γji = 0 otherwise. 

(c) Band graph: For all pairs of nodes, γij = γji = 1 if 1 ≤ |i− j| ≤ 2, 
and γij = γji = 0 otherwise. 

(d) Scale-free graph: This graph is generated by the Barabási– 
Albert algorithm. Based on the initial two connected nodes, 
each new node is connected to one existing node, with the 
probability of connection being proportional to the degree of 
the existing node. 

Then we set the diagonal entries of � to 0 and the smallest 
eigenvalue of �×0.3 is denoted as e. The positive definite common 
precision matrix is obtained as � = �×0.3+(|e|+0.1+0.1)Ip, which 
is implemented by the R package huge [41] (v.1.3.5). The strength 
of common edges is set to 0.3. 

(2) Individual edge structures 

(a) Random: For each group k, the zero entries in the common 
graph � are randomly selected as group-specific individual 
edges with a probability of 200/p2. The nonzero entries ωij,k 

are drawn from a uniform distribution, either U(0.2, 0.4) or 
U(−0.4, −0.2) with equal probability of 0.5. 

(b) Block-wise: Group-specific individual edges are introduced 
by adding a block diagonal matrix to the common graph 
precision matrix. Each block is a 4 × 4 symmetric matrix, and 
is repeated p/4 times along the diagonal. For the off-diagonal 
entries within each block, the probability of being nonzero 
is 0.4 for each pair of nodes, and the corresponding ωij,k is 
generated from a uniform distribution U(0.2, 0.4). 

The average absolute strength of the individual edges is 0.3. 
If, in any instance, the group-specific precision matrix does not 
satisfy the condition of positive definiteness, it is regenerated 
until the condition is satisfied. 

Compared methods 
As discussed in the Introduction, few existing methods allow for 
the joint comparison of more than two sparse GGMs. Among 
these, the joint graphical lasso (JGL) [21] and the moderated 

network model (MNM) [28] are well implemented for applications. 
Our proposed FDR control framework, ONDSA, tests for differen-
tial and similar edges in precision matrices for omics networks 
within a single analysis. This approach is comparable with the 
joint estimation methods JGL and MNM in that joint comparisons 
could be conducted effectively. Therefore, simulations are con-
ducted to compare the performance of the ONDSA framework 
with these two alternatives. JGL is implemented by the R-package 
JGL (v.2.3.1), and MNM is implemented by the R-package mgm 
(v.1.2–13). 

Multi-omics dataset from FHS Offspring cohort 
To demonstrate the application of the ONDSA framework, we use 
data from the FHS Offspring cohort [42] at Exam 7 to investigate 
associations within multi-omics networks, focusing on two omics 
data: circulating immune cell abundance and plasma (blood) 
protein biomarkers. Peripheral blood mononuclear cell samples 
from 608 dementia-free individuals were profiled for 43 primary 
immune cell phenotypes [43], and plasma samples from the same 
individuals were profiled for 68 protein biomarkers using the 
OLINK Inflammation panel (https://olink.com/). For illustrative 
use, we ignore the kinship relationships among the sample indi-
viduals. 

The apolipoprotein E (APOE) gene remains the strongest genetic 
risk factor for Alzheimer’s disease (AD) [44]. The APOE ε4 allele 
significantly increases AD risk, while the ε2 allele has protective 
effects compared with the common ε3 allele. Previous studies, 
such as Soares et al. [45], demonstrated variations in plasma 
biomarker profiles among individuals with different APOE geno-
type carrier groups in AD dementia patients and cognitively nor-
mal participants. Immune activation and fluctuations in circulat-
ing immune cells have been linked to the production of cytokines 
and chemokines involved in neuroinflammation [46]. 

We are particularly interested in analyzing the multi-omics 
networks to identify conditionally dependent pairs between 
inflammatory protein biomarkers and immune cell phenotypes 
that are differential or similar across the three APOE genotype 
groups, with implications for understanding the mechanisms 
underlying cognitive aging. We exclude individuals with APOE
ε2ε4 genotype or those with missing values and classified the 
remaining participants into three groups: ε2 carriers (ε2ε2 and
ε2ε3 genotypes, n=78), ε4 carriers (ε3ε4 and ε4ε4 genotypes, 
n=121), and ε3ε3 genotypes (n=409). Age and sex information 
were ascertained at Exam 7. Cytomegalovirus (CMV), a common 
pathogen known to affect T cell subsets in infected individuals, 
was also measured. Before performing GGM estimations, we 
adjust the 111 nodes, including immune cell phenotypes and 
proteins, for sex, age, and CMV level effects using linear 
regression. Then, we use the ONDSA framework to estimate 
differential and similar omics network structures across the three 
APOE groups under FDR control levels α1 = α2 = 0.05. 

Results 
Simulation studies 
Performance of ONDSA for balanced groups 
For each scenario, we generate a balanced group design with 
n1 = n2 = 333, n3 = 334 independent samples from group-specific 
precision matrices with p = 100, 500 for 100 replicates, respec-
tively. The empirical FDR and power for testing differential omics 
network structures are denoted as eFDR1 and ePower1, while 
those for testing similar omics network structures are denoted

https://olink.com/
https://olink.com/
https://olink.com/
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as eFDR2 and ePower2 (see Equations (11–14)). We obtain the 
sets Ê1 and ̂̂E2 for each replication, and compute eFDR1, eFDR2, 
ePower1, and ePower2 using the corresponding equations. We plot 
eFDR1 and eFDR2 against a reference line f (α) = α to assess if 
the proposed ONDSA framework effectively controls the FDR at 
the desired level. We consider FDR control at various levels, with 
α = α1 = α2 = 0.05, 0.1, 0.15, 0.2. The empirical FDR and power 
curves are shown with α value as the x-axis. 

Empirical results for all eight scenarios, combining the four 
common omics network graph structures and two individual edge 
structures, are presented in Figs 2 and 3 and Figs S1 and S2. In low-
dimensional settings (p = 100, Figs 2 and 3), our proposed ONDSA 
effectively controls the FDR at both steps and achieves especially 
conservative performance when the true common omics network 
graph structures are random, hub, and scale-free graphs (Fig. 2). 
Slight inflation in eFDR2 occurs when identifying similar struc-
tures in the band graph, likely due to the violation of sparseness 
conditions of common edges in the omics networks (Fig. 2(c)(g)). 
The ePower2 for testing similar structures is close to 1 across all 
scenarios, while the ePower1 for testing differential structures 
ranges from ˜0.25 to ˜0.9, depending on α levels and scenarios 
(Fig. 3). The lower ePower1 can be attributed to several differential 
edges whose differences across groups are near 0. Therefore, they 
may be misclassified as similar edges, and fewer true positives 
are retained. Band and hub graphs with block-wise individual 
edges are particularly susceptible to this issue due to the specific 
graph structures (Fig. 3(b)(c)(f)(g)). In high-dimensional settings 
(p = 500, Figs S1 and S2), eFDRs are slightly inflated, particularly 
for eFDR2, when identifying similar omics network structures due 
to finite sample estimation bias (Fig. S1). Scenarios with scale-
free common network structures are detected accurately, with 
well-controlled eFDRs at both steps (Fig. S1(d)(h)). The ePower2 for 
testing similar structures may show modest overestimation due 
to slight inflation in eFDR2, though it still maintains a generally 
high level. The ePower1 for testing differential structures may be 
lower than 0.5 when the α is controlled at a lower level, which is 
also explained by the limited sample size when n < p (Fig. S2). 

Performance of ONDSA for imbalanced groups 
For each scenario, we generate three groups of independent sam-
ples with sizes n1, n2, and  n3 in an imbalanced design with p = 
100, 500 for 100 replicates. The total sample size remains 1000, 
while the group sizes vary across five imbalanced configurations: 
n1 = 50, n2 = 150, and  n3 = 800; n1 = 100, n2 = 150, and  n3 = 750; 
n1 = 150, n2 = 250, and  n3 = 600; n1 = 200, n2 = 300, and  n3 = 500; 
n1 = 300, n2 = 300, and  n3 = 400. Setting FDR control levels at 
α1 = α2 = 0.05, we compute eFDR1, eFDR2, ePower1, and ePower2 
as defined earlier, and assess how these metrics change as the 
group design becomes less imbalanced. We plot eFDR1, eFDR2, 
ePower1, and ePower2 versus the group sample sizes as the x-axis 
for each scenario, respectively, in Figs 4 and S3. 

In low-dimensional settings (Figs 4(a)–(d) and S3(a)–(d)), when 
the three groups are extremely imbalanced (n1 = 50, n2 = 150, 
and n3 = 800), the eFDR1 for identifying differential structures 
is substantially higher than the expected level, ranging from ˜0.2 
to ˜0.7. However, eFDR1 decreases drastically when n1 = 100, 
n2 = 150, and  n3 = 750, and is controlled near or below 0.05 as 
the groups become more balanced. The corresponding ePower1 
for differential structures is <0.3 when the smallest group size 
is around 100 or smaller, but increases to ˜0.5 as the group sizes 
become more balanced, except in scenarios with a band graph 
and block-wise individual edges (Fig. S3(c)). This extremely low 

ePower1 may be attributed to the violation of the sparseness con-
ditions for this specific graph structure. Furthermore, when indi-
vidual edges follow block-wise structures (Figs S3(a)–(d)), ePower1 
initially decreases slightly before increasing as the smallest group 
size grows, reflecting the interacting effects between block-wise 
edge structures and imbalanced group sizes. In contrast, eFDR2 
for identifying similar structures remains only slightly inflated 
in the most imbalanced designs and decreases to or below 0.05 
as the group design becomes more balanced. The corresponding 
ePower2 increases as groups become more balanced and remains 
at high levels ˜0.9. Therefore, in imbalanced designs where there 
are groups comprising <15% of the total sample size, particularly 
those with modest sample sizes, the identified differential net-
work edges should be interpreted with caution, while conclusions 
regarding similar structures tend to be more reliable. 

In high-dimensional settings (Figs 4(e)–(h) and S3(e)–(h)), the 
imbalanced design shows a moderate to slight inflation in eFDRs 
for identifying differential (eFDR1) and similar (eFDR2) network 
structures, especially for eFDR2 when the smallest group has 
a sample size of 100 or less. However, eFDR1 is generally well 
controlled around or below 0.05, and ePower1 increases to ˜0.5 
as the groups become more balanced. This indicates that more 
differential edges are being correctly identified, though false pos-
itives may still occur due to the modest sample sizes in high-
dimensional settings. For identifying similar edges, eFDR2 steadily 
decreases to around 0.05 in more balanced designs but may 
remain slightly inflated as sample sizes are limited. The ePower2 
remains high from ˜0.8 to ˜0.9 even in imbalanced designs. Differ-
ent from low-dimensional settings, conclusions on both differen-
tial and similar omics network structures should be interpreted 
cautiously, particularly when dealing with modest group sizes, 
including imbalanced groups with <15% of the total sample. 
Although slight inflation in eFDR1 is present, differential edges 
identified are more likely to be accurate compared with low-
dimensional settings. However, ePower1 still suffers from the 
limited sample sizes. 

Comparisons with existing methods 
We consider the low-dimensional settings (n1 = n2 = 333, n3 = 
334, p = 100) and high-dimensional settings (n1 = n2 = n3 = 
150, p = 180) for the eight scenarios of graph structures, each 
with 100 replicates. The proposed ONDSA framework is applied 
with FDR control levels α1 = α2 = 0.05 and requires no tuning 
procedures. We apply JGL with fused graphical lasso using tuning 
parameters from cross-validation on the first replicate, then use 
them for all subsequent replicates. Similar network structures 
in JGL are defined by edges with absolute differences in pre-
cision matrix entries of <0.01. For MNM, we use the extended 
Bayesian information criteria for model selection, and transform 
the regression estimates to precision matrix entries for identifying 
differential and similar structures. To assess the overall perfor-
mance of methods, the true positive rate (TPR) and false positive 
rate (FPR) for recovering the differential and similar structures 
in omics networks are denoted as TPR1, FPR1, TPR2, and FPR2, 
respectively. The average TPR and FPR for both steps are presented 
in Table 1, and the conclusions are further validated by empirical 
95% confidence intervals. 

As shown in Table 1, our proposed ONDSA framework outper-
forms both JGL and MNM on TPR2 and FPR2 in identifying similar 
structures across nearly all scenarios of omics networks. For iden-
tifying differential structures, JGL demonstrates a higher TPR1 but 
its FPR1 is also higher, while ONDSA has a higher or similar TPR1
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Figure 2. Empirical FDR performance of the ONDSA framework for p = 100 with balanced group sizes. We consider eight scenarios of the combination 
of four common graph structures and two individual edge structures. The x-axis denotes the α value and the y-axis denotes the empirical FDR 

(eFDR) for testing differential structures (eFDR1) and similar structures (eFDR2). eFDP1 =
∑

(i,j)∈Ê1 
I
{
ωij,1=...=ωij,K

}
max

(
1,

∣∣̂E1
∣∣) and eFDR1 = E [eFDP1]. eFDP2 =∑

(i,j)∈̂̂E2 
I
{(

ωij,1 ,...,ωij,K

)
=0

}
max

(
1,

∣∣∣̂̂E2

∣∣∣) and eFDR2 = E [eFDP2] . 

Figure 3. Empirical power performance of the ONDSA framework for p = 100 with balanced group sizes. We consider eight scenarios of the combination 
of four common graph structures and two individual edge structures. The x-axis denotes the α value and the y-axis denotes the empirical power (ePower) 

for testing differential structures (ePower1) and similar structures (ePower2). ePower1 = E
( ∑

(i,j)∈E1 
I
{
(i,j)∈Ê1

}
|E1 |

)
, ePower2 = E

( ∑
(i,j)∈E2 

I
{
(i,j)∈̂̂E2

}
|E2 |

)
. 
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Figure 4. Performance of the ONDSA framework for p = 100/500, evaluated under imbalanced group sizes and FDR control levels at α1 = α2 = 0.05, 
for scenarios with random individual edges. Each panel shows the empirical FDR (eFDR) and empirical power (ePower) across five imbalanced group 
size configurations A-E. 

with better FPR1 compared with MNM. These trends are consis-
tent across both low-dimensional and high-dimensional settings, 
and are confirmed by empirical 95% confidence intervals. 

Our simulation scenarios provide a comprehensive comparison 
across methods, evaluating performance under various realis-
tic conditions. We assume different network sizes in both low-
dimensional and high-dimensional settings, illustrating the dis-
tinct challenges posed by large-scale datasets (n < p) versus  
traditional datasets (n > p). In these scenarios, JGL shows weaker 
performance with higher FPR1 and lower TPR2, especially in 
high-dimensional settings. Similarly, MNM struggles with lower 
TPR2 in these settings. In contrast, ONDSA demonstrates con-
sistently superior performance across both network sizes, main-
taining robust results regardless of the dimensionality of the 
data. 

We also explore different sparsity levels through various com-
mon graph structures. Random and scale-free graphs adhere to 
the sparsity conditions ideal for ONDSA, as mentioned by [16], 
while hub and band graphs, being denser, do not meet these 
sparsity conditions. This is reflected in Table 1, where ONDSA 
exhibits slightly reduced TPR1 in scenarios with hub or band 
graphs, highlighting the impact of deviations from ideal sparsity 
conditions on ONDSA’s performance. Despite these challenges, 
ONDSA still outperforms JGL and MNM in overall effectiveness. 

Furthermore, we consider different noise levels through two 
distinct individual edge structures and various individual edge 
strength levels. The individual edge structures introduce varia-
tions in the group-specific precision matrices, simulating different 
“noise levels” that diverge from the shared common network 
graph structure. Random individual edges, which are more scat-
tered, and block-wise individual edges, which tend to form smaller 
clusters, pose unique challenges. The results in Table 1 indicate 
that ONDSA shows robust performance for all metrics compared 
with its alternative, even in scenarios with block-wise individual 

edges, which tend to introduce more structured noise. To further 
evaluate the influence of varying individual edge strengths, we 
focus on scenarios where the common graph is scale-free and 
consider cases where the average absolute strength of individual 
edges is lower than, equal to, or greater than that of the common 
edges. Detailed descriptions of these additional scenarios are 
provided in the Supplementary Materials. Table 1 reflects the 
scenarios where the average absolute strength of individual edges 
is equal to that of the common edges. As shown in Table S1, when 
the average absolute strength of individual edges is lower than 
that of common edges, ONDSA’s TPR1 is similar to MNM. However, 
as the average absolute strength of individual edges increases, 
TPR1 improves significantly, matching the performance of JGL. 
Additionally, ONDSA consistently outperforms both JGL and MNM 
in terms of FPR1, TPR2, and FPR2 while also demonstrating a 
better balance of FPR1 to TPR1 compared with JGL. These patterns 
suggest that while ONDSA’s TPR1 may not be as high when indi-
vidual edge strengths are weaker than common edge strengths, 
its overall competitive performance remains evident across other 
metrics. 

In addition to evaluating performance metrics, we also assess 
the computational efficiency of each method. For this analysis, 
we record the computational time required for 100 replicates 
from each of the eight scenarios within low-dimensional and 
high-dimensional settings, respectively. We then compute the 
average computational time required for one replicate, sepa-
rately for each method—ONDSA, JGL, and MNM—across these 
eight scenarios. Table 2 provides a straightforward comparison 
of computational efficiency across methods, underscoring 
ONDSA’s advantages in significantly reducing computational 
cost. 

In conclusion, the proposed ONDSA framework demonstrates 
excellent performance by maintaining reasonably high TPRs, 
ranging from ˜0.45 to ˜0.99, in both discovering differential and
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Table 1. Comparison of ONDSA with other existing methods on estimating structural differences and similarities across omics networks 

Individual 
edge structure 

Common graph 
structure 

Methods TPR1 FPR1 TPR2 FPR2 

K = 3, n1 = n2 = 333, n3 = 334, p = 100 

Random Random ONDSA 0.735 0.002 0.997 0.006 
JGL 1.000 0.248 0.281 0.006 
MNM 0.598 0.003 0.910 0.013 

Hub ONDSA 0.625 0.002 0.998 0.007 
JGL 0.982 0.180 0.373 0.010 
MNM 0.460 0.004 0.877 0.012 

Band ONDSA 0.446 0.002 0.993 0.012 
JGL 0.995 0.219 0.316 0.010 
MNM 0.465 0.007 0.820 0.013 

Scale-free ONDSA 0.863 0.002 0.996 0.005 
JGL 0.999 0.258 0.255 0.007 
MNM 0.627 0.004 0.870 0.015 

Block-wise Random ONDSA 0.798 0.001 0.999 0.004 
JGL 0.993 0.174 0.306 0.005 
MNM 0.673 0.002 0.960 0.005 

Hub ONDSA 0.738 <0.001 0.998 0.006 
JGL 0.982 0.128 0.207 0.004 
MNM 0.704 0.004 0.835 0.005 

Band ONDSA 0.423 <0.001 0.999 0.011 
JGL 0.986 0.236 0.243 0.010 
MNM 0.660 0.004 0.846 0.006 

Scale-free ONDSA 0.843 0.001 0.996 0.003 
JGL 0.986 0.172 0.288 0.005 
MNM 0.691 0.003 0.931 0.005 

K = 3, n1 = n2 = n3 = 150, p = 180 

Random Random ONDSA 0.836 <0.001 0.999 0.001 
JGL 1.000 0.315 0.187 0.006 
MNM 0.689 0.001 0.958 0.001 

Hub ONDSA 0.454 <0.001 0.997 0.001 
JGL 1.000 0.275 0.241 0.005 
MNM 0.678 <0.001 0.973 <0.001 

Band ONDSA 0.638 <0.001 0.999 0.003 
JGL 1.000 0.296 0.223 0.007 
MNM 0.669 <0.001 0.947 0.001 

Scale-free ONDSA 0.881 <0.001 0.668 0.001 
JGL 1.000 0.306 0.175 0.006 
MNM 0.695 <0.001 0.534 0.001 

Block-wise Random ONDSA 0.824 <0.001 0.997 0.001 
JGL 0.995 0.347 0.182 0.007 
MNM 0.673 0.001 0.962 0.001 

Hub ONDSA 0.772 <0.001 0.854 0.003 
JGL 0.998 0.447 0.140 0.011 
MNM 0.739 0.001 0.735 0.002 

Band ONDSA 0.607 <0.001 0.880 0.002 
JGL 0.990 0.413 0.083 0.009 
MNM 0.595 0.002 0.633 0.002 

Scale-free ONDSA 0.853 0.001 0.705 0.001 
JGL 0.996 0.347 0.174 0.007 
MNM 0.657 <0.001 0.617 0.001 

Note: ONDSA, our proposed framework with FDR control; TPR1, true positive rate for identifying differential structures; FPR1, false positive rate for identifying 
differential structures; TPR2, true positive rate for identifying similar structures; FPR2, false positive rate for identifying similar structures. 

similar network structures with negligible FPRs. The proposed 
ONDSA framework has similar or higher TPRs with similar FPRs 
compared with MNM, and a better balance of FPR to TPR than 
JGL under all the simulation scenarios. The robustness to various 
realistic conditions, combined with its computational efficiency, 
makes ONDSA a superior option for researchers aiming to analyze 
complex omics networks efficiently and accurately. 

Application of ONDSA to FHS Offspring cohort 
multi-omics data 
The FHS Offspring cohort is well characterized for cognitive aging 
outcomes. This cohort provides a unique opportunity to explore 
the mechanisms of neuroinflammation in cognitive aging by 
leveraging multi-omics data, specifically circulating immune cell 
abundance and inflammatory protein biomarkers. Our previous
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Table 2. Average computational time (in minutes) for one 
replicate across the eight scenarios considered in Table 1 

Settings ONDSA JGL MNM 

Low-dimensional settings 0.04 0.24 2.39 
High-dimensional settings 0.12 0.70 11.26 

Note: ONDSA, our proposed framework with FDR control. Low-dimensional 
settings: K=3, n1=n2=333, n3=334, p=100; high-dimensional settings: K=3, 
n1=n2=n3=150, p=180. 

Table 3. Differential edges across APOE genotype groups 
identified by the ONDSA framework for the illustrative FHS data 

Differential edge ε2 carrier ε4 carrier ε3ε3 

CD4 Tn - CD4 Tcm −24.11 −7.97 −16.31 
CD8+ T cells1 - CD4/CD8 118.72 93.77 53.90 
CD8 Tn - CD8 Tn/Tm −40.57 −28.94 −16.64 
NK cells - CD38+ T cells 2.22 3.98 0.93 
NK cells - CD8+Tc17/Treg −0.86 3.27 −1.39 
CD14 total2 - NCM −9.78 −7.89 −4.11 
CM - NCM 11.95 10.84 5.81 

Note: Positive edge strength indicates negative dependency, while negative 
edge strength indicates positive dependency. ; Tn, T naïve cells; Tcm, T 
central memory cells; CD4/CD8, CD4 T helper cells / CD8 Cytotoxic T cells; 
Tm, memory T cells; NK cells, natural killer cells; Tregs cells, CD8 T 
regulatory cells. 1 CD8 Cytotoxic T cells. 2 Total monocytes. 

work has demonstrated that inflammatory protein biomarkers 
are associated with cognitive function, as well as the risk of 
incident dementia and AD [ 47]. We also showed that the activation 
of innate and adaptive immunity, along with changes in the 
composition of circulating immune cells, especially subtypes of 
immunosenescence, is associated with aging [43]. In this appli-
cation, we focus on the cross-talk among immune cells and 
inflammatory proteins, stratified or shared across different APOE 
genotypes, to enhance our understanding of neuroinflammatory 
mechanisms contributing to cognitive aging. 

The three APOE genotype groups are ε2 carriers (n=78), ε4 carri-
ers (n=121), and ε3ε3 genotypes (n=409). Using ONDSA to analyze 
these multi-omics networks, we identify seven differential edges 
across APOE genotype groups (Table 3), all of which are among 
immune cell pairs, i.e. none of them are between protein and 
immune cell nodes or between protein pairs. We identify 437 
similar edges across groups, of which 20 are between protein and 
immune cell phenotypes, as presented in Table 4. Due to the defi-
nition of partial correlations based on precision matrices, positive 
edge strengths correspond to negative conditional dependencies, 
and vice versa, allowing for the interpretation of overall edge 
strengths across groups in this context [3]. 

Table 3 shows the seven differential edges identified by the pro-
posed ONDSA framework, suggesting different compositions of 
immune cell phenotypes and variations in the conditional depen-
dencies between immune cell pairs across the three APOE groups. 
The immune cells were measured as proportions of live lym-
phocytes or gated monocytes, following hierarchical structures 
based on cell subtype definitions. Consequently, some immune 
cell subtypes have inherent relationships with their parent or 
sibling cell types. For instance, classical monocytes (CM) and non-
classical monocytes (NCM) are sibling subsets of total monocytes 
(CD14 total), potentially introducing inverse correlations when 
controlling for CD14 total. Additionally, some immune cell phe-
notypes are defined as ratios of two cell types, imposing inherent 
relationships due to this definition. As a result, our observations 
of a negative dependency between CD8 Cytotoxic T cells and the 

CD4/CD8 (CD4 T helper cells / CD8 Cytotoxic T cells) ratio, and 
between CM and NCM, and a positive dependency between CD8 T 
naive (Tn) cells and the CD8 Tn/Tm ratio (where CD8 Tm = CD8 
Teff + CD8 Tem + CD8 Tcm; Tm, memory T cells; Teff, T effector 
cells; Tem, T effector-memory cells; Tcm, T central memory cells), 
and between CD14 total and NCM are consistent with subtype 
hierarchical definitions but vary across APOE groups. 

Moreover, immune responses or aging processes can drive the 
differentiation of Tn cells into more senescent phenotypes [48]. 
Thus, the different strengths of dependencies across APOE groups 
for these immune cell pairs indicate varying levels of immune 
activation, potentially contributing to the neuroinflammatory 
mechanisms underlying cognitive aging. Particularly, our findings 
of differential conditional dependencies between CD8 Tn and 
CD8 Tn/Tm ratio show variations in the shift from naive cells to 
differentiated memory cells across APOE groups. In ε2 carriers, 
the positive dependency between CD8 Tn cells and CD8 Tn/Tm 
ratio has a stronger strength than in the other two groups. This 
stronger dependency suggests fewer senescent Tm cells in this 
group, aligning with the potential protective effect of ε2 alleles. 
Similarly, CD4 Tn cells are activated to differentiate into CD4 Tcm 
cells in adaptive immune responses [49]. As shown in Table 3, 
differentiation levels vary across APOE groups between CD4 Tn 
and CD4 Tcm cells, with the strongest positive dependency in
ε2 carriers and the weakest in ε4 carriers. Tcm cells are known 
to have long-term protective effects against pathogens [50], and 
our results indicate ε2 carriers have more persistent CD4 Tcm 
cells, while ε4 carriers have the fewest. Furthermore, we observe 
differential associations between natural killer (NK) cells and 
CD38+ T cells, as well as between NK cells and the CD8+Tc17/Treg 
ratio (Treg refers to CD8 T regulatory cells, CD8+CD25+FoxP3+), 
with these two interactions being stronger in ε4 carriers. NK cells 
are responsible for the surveillance and elimination of senescent 
cells [51]. CD38 is an activation marker for T cells, and NK cells 
possess receptors that recognize CD38 [52], facilitating cell–cell 
interactions. Activated CD38+ T cells can secrete cytokines that 
interact with NK cells during immune responses [53, 54], poten-
tially leading to heightened immune activation and inflammation 
in ε4 carriers. Tc17 cells, characterized by the production of pro-
inflammatory cytokine IL-17, and CD8 Treg cells, which increase 
in the blood of older individuals and induce T-cell senescence 
[55, 56], are both known to interact with NK cells [57], with 
exacerbated interactions observed in ε4 carriers. It is noteworthy 
that APOE is more often discussed in the context of cognitive 
aging than immunosenescence, and the roles of innate and 
adaptative immunity in cognitive aging are still largely unknown 
[58]. Interestingly, the cross-sectional conditional dependency 
might not fully capture the transition and differentiation of 
cell types over time. In conclusion, the cell-to-cell interactions 
identified from differential edges have implications for molecular 
mechanisms in neuroinflammation. However, interpreting 
whether the cell-to-cell dependency strengths reflect exacer-
bated or attenuated neuroinflammation due to APOE genotype 
differences will require further investigation. Additionally, the 
absence of differential edges between proteins and immune cells 
is unsurprising, given the limited power for detecting differential 
edges in imbalanced group designs similar to this sample (ε2 
carriers account for <15% of the total sample and group sample 
sizes are relatively modest). 

Among the 437 similar edges within or between omics iden-
tified by ONDSA (Fig. 5), 250 of them are between protein pairs, 
167 of them are between circulating immune cell pairs, and 20 
of them are between immune cell and protein pairs. The edges
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Table 4. Twenty similar edges across APOE genotype groups between protein and circulating immune cell phenotypes identified by the 
ONDSA framework for the illustrative FHS data 

Protein Protein full name Circulating immune cell phenotype Overall edge strength 

CD8A T-cell surface glycoprotein CD8 alpha chain T cells −0.48 
SCF Kit ligand CD4 Tcm −0.24 
TGF-alpha Protransforming growth factor alpha CD8 Tn 0.85 
TGF-alpha Protransforming growth factor alpha CD8 Tn/Tm −1.74 
MCP-4 C-C motif chemokine 13 CD8+ TEMRA −0.58 
MCP-4 C-C motif chemokine 13 CD8+Tc17/Treg −0.92 
FGF-21 Fibroblast growth factor 21 CD38+ T cells −0.41 
FGF-21 Fibroblast growth factor 21 CD38+HLADR+ T cells 0.49 
IL-15RA Interleukin-15 receptor subunit alpha CD8 Tn/Tm 1.69 
IL-10RB Interleukin-10 receptor subunit beta CD8+CD25+ −0.38 
CXCL5 C-X-C motif chemokine 5 HLA-DR+ T cells −0.56 
TNF Tumor necrosis factor CD8+CD27− −1.39 
CD5 T-cell surface glycoprotein CD5 CD4+CD28−CD27− −0.48 
CD5 T-cell surface glycoprotein CD5 CD8+CD28−CD27− −1.28 
CCL3 C-C motif chemokine 3 CD8 Teff −1.02 
INF-gamma Interferon gamma CD8+ TEMRA 0.47 
MCP-2 C-C motif chemokine 8 CD4 Tn −1.77 
CASP-8 Caspase-8 CD38+ T cells 0.50 
CASP-8 Caspase-8 CD38+HLADR+ T cells −0.68 
TNFB Lymphotoxin-alpha NK cells 0.30 

Note: Positive edge strength indicates negative dependency, while negative edge strength indicates positive dependency. Tcm, T central memory cells; Tn, T 
naïve cells; Tm, memory T cells; TEMRA cells, T effector memory cells; Tregs cells, CD8 T regulatory cells; Teff, T effector cells; NK cells, natural killer cells. 

identified between protein pairs reflect the shared conditional 
dependency across the full sample, providing a perspective of pro-
tein–protein interactions (PPIs). These PPI networks are validated 
against public databases, such as BioGRID [ 59] and STRING [60], 
which include both experimentally confirmed and predicted pro-
tein interactions. The majority of identified edges are supported 
by curated database annotations, co-expression patterns, or co-
mentions in scientific literature. Notably, a number of interactions 
are corroborated by experimental data, such as IL8 and MCP-
1 [61], OPG and TRANCE [62], MCP-1 and MCP-4 [61], CCL4 and 
CCL3 [63], and CD6 and CD5 [64]. The similar edges between cir-
culating immune cell pairs, on the other hand, highlight potential 
intercellular communication networks across the full sample. As 
discussed earlier, the immune cells in this study were calculated 
based on hierarchical structures, reflecting inherent relationships 
between immune cell subtypes and their parent or sibling types. 
Many of the interactions identified between immune cell pairs 
align with well-established patterns of immune communication 
via cytokines, direct cell-cell contact, and signaling pathways 
[65, 66]. Thus, the interactions we identified among circulating 
immune cells are consistent with known immune dynamics and 
functional hierarchies. 

Table 4 focuses on all 20 similar edges identified between 
immune cell and protein pairs. Some inflammatory biomarkers 
are known to be secreted by immune cells and can activate 
immune cells, with these protein biomarkers engaging in intricate 
interactions with immune cells [67–69]. However, few studies 
have assessed the associations between the two omics—immune 
cell phenotypes and inflammatory protein biomarkers—in large 
community-based samples. To validate the biological relevance 
of these 20 similar edges identified, we sought both direct and 
indirect evidence from existing literature. For example, CD8A 
encodes the alpha chain of the CD8 antigen, a co-receptor on 
cytotoxic T lymphocytes (CD8+ T cells) that facilitates antigen 
recognition and T-cell receptor signaling [69]. SCF enhances the 
function of dendritic cells, which are crucial for T-cell activa-
tion [70]. IL-15RA is essential for IL-15 signaling, critical for the 

Figure 5. Similar structures identified by ONSDA in the FHS multi-
omics data application. The red nodes represent the 43 immune cell 
phenotypes and the black nodes represent the 68 inflammatory protein 
biomarkers. The strength of edges is represented by the overall condi-
tional dependency across all the three APOE genotype groups, where 
positive dependency is in brown and negative dependency is in green. 

homeostasis of memory CD8+ T cells [ 71]. IL-10RB is part of 
the receptor complex for IL-10, an anti-inflammatory cytokine 
broadly expressed by various immune cells [72], including CD8+ 
T cells that express CD25, a marker of activation [73]. TNF is a 
pro-inflammatory cytokine that plays a crucial role in immune
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regulation, including T-cell activation, proliferation, and apopto-
sis, through its interaction with TNF receptors (TNFR) [74]. The 
TNFR family member CD27, expressed by naive human CD8+ 
T cells, is lost during clonal expansion and differentiation into 
CD8+CD27− cells as part of this regulatory pathway [75]. CCL3 
is produced by activated T cells and recruits additional effector 
T cells to sites of inflammation [76].  MCP-2 serves as an inflam-
matory mediator stimulating the directional migration of CD4+ 
T cells [77]. TNFB can influence the development and function of 
NK cells [78]. These results support the biological plausibility of 
the conditional associations identified by ONDSA across the full 
sample. 

Our findings contribute to the understanding of neuro-
inflammation and cognitive aging by revealing how APOE geno-
types influence immune cell interactions and their associations 
with inflammatory proteins. The differential edges identified 
among immune cell pairs across APOE groups suggest that 
the APOE genotype affects the communication and conditional 
dependencies between circulating immune cells (Table 3). These 
variations may reflect differences in immune activation or 
regulation that contribute to neuroinflammatory processes 
associated with cognitive aging. The similar edges—including 
those between immune cells and proteins—that are consistent 
across APOE groups may indicate common pathways that 
influence inflammatory protein levels (Table 4). Our previous 
work demonstrated that certain inflammatory proteins, such 
as TGF-alpha, MCP-4, and FGF-21, are associated with exec-
utive function or visuospatial cognitive domain scores, and 
higher levels of TGF-alpha, TNF, CCL3, and TNFB are linked 
to increased risks of incident dementia or AD, with some 
associations varying by APOE genotype [47]. By integrating 
these findings, we propose that APOE genotypes modulate 
immune cell interactions, which in turn influence inflammatory 
protein levels, ultimately affecting cognitive aging outcomes. The 
identification of these network structures provides insight into 
the mechanisms by which immune dysregulation may contribute 
to neuroinflammation and cognitive decline in an APOE genotype-
dependent manner. However, due to the imbalanced group 
design and limited sample size, replication studies with larger 
samples are needed to further validate these potential biological 
pathways. 

Discussion 
In this paper, we propose a novel statistical testing framework, 
ONDSA, for identifying differential and similar structures 
targeting multiple omics networks, represented by sparse GGMs, 
in a two-step procedure that effectively controls FDRs at a 
desired level. By addressing the limitations of existing methods 
that are restricted to two-group comparisons or lack theoretical 
guarantees, ONDSA enables rigorous statistical tests across 
precision matrices from multiple conditions. This advancement 
enhances our ability to uncover meaningful inter- and intra-omics 
pathways associated with disease onset and progression. Ren 
et al. [16] developed a tuning-free estimator for the precision 
matrix of a single GGM and proved its asymptotic normality 
and efficiency; however, non-sparse estimators were obtained 
for sparse GGMs. This creates a tradeoff between asymptotic 
properties and interpretability since dense networks make it 
difficult to evaluate GGMs across multiple groups without formal 
comparisons. ONDSA builds on the estimators from Ren et al. [16] 
to sequentially estimate differential and similar omics network 

structures while adjusting for the correlated effects of entry-
wise comparisons in the FDR control procedures. Other existing 
methods for joint estimation of multiple sparse GGMs lack 
rigorous tests to compare across groups. Our proposed ONDSA 
demonstrates superior performance, achieving a better balance 
between TPR and FPR than existing methods. 

Simulation studies demonstrate that ONDSA’s performance 
varies for different graph structures in balanced groups. When 
the common graph structures are band or hub graphs, sparseness 
assumptions might fail, making structures of interest harder to 
detect. Limited sample sizes in high-dimensional settings can lead 
to slight FDR inflation and reduced power However, when the 
common graph is scale-free, FDR is well controlled, and power 
remains at reasonably high levels across balanced scenarios. 
Recent studies on omics networks such as metabolomic, tran-
scriptomic, and proteomic networks have shown that their topolo-
gies belong to scale-free networks [79]. Our simulation studies 
for balanced groups show that ONDSA performs particularly well 
when the common graph follows a scale-free structure. Thus, 
by applying ONDSA to high-throughput omics data, we provide 
a valuable tool for integrating large-scale multi-omics data and 
identifying pathways regulating biological mechanisms across 
different subgroups. 

We further demonstrate through simulation studies that 
ONDSA significantly reduces computational costs compared 
with alternative methods. ONDSA leverages a computationally 
efficient and tuning-free GGM estimation approach, feasible 
for handling tens of thousands of variables [16, 35, 39]. We 
acknowledge that as the number of variables in omics networks 
increases, the number of statistical tests will also increase, which 
could impact the computational time of ONDSA. However, this 
challenge can be effectively mitigated using parallel computing 
techniques. 

The limitations of ONDSA arise in imbalanced group settings, 
particularly with extremely modest sample size groups, where 
caution is required. Simulations show inflated FDR and limited 
power for identifying differential omics network structures in low-
dimensional and high-dimensional settings, though inflated FDR 
is less pronounced in the latter. In imbalanced designs, some 
differential edges may be misclassified as similar due to minor 
group differences or limited sample size, and conclusions on 
similar structures are more reliable in low-dimensional settings. 
Our real data application on FHS multi-omics data highlights the 
challenges posed by small and imbalanced group sizes, such as in 
the APOE ε2 carriers group. 

To summarize, several practical limitations should be con-
sidered when applying ONDSA. As mentioned earlier, ONDSA 
may be sensitive to highly imbalanced group sizes (with groups 
comprising <15% of the total sample), particularly when these 
groups have extremely modest sample sizes. In such cases, 
caution is required when interpreting results, especially for 
differential edges in low-dimensional settings and both differ-
ential and similar structures in high-dimensional settings. The 
minimum sample size per group should scale proportionally 
with the number of variables p. Following Ren et al. [16], we 
recommend that the group sample size n grows as p increases, 
particularly in high-dimensional settings, to ensure consistent 
estimation of precision matrices and reliable use of ONDSA. 
Additionally, ONDSA relies on a sparsity assumption in the 
precision matrix estimator [16]. When applied to highly connected 
networks, such as hub or band graphs, the accuracy in identifying 
differential edges may decrease, though the method remains 
effective for identifying similar structures. Users should be
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mindful of this limitation when applying ONDSA to denser 
networks. Furthermore, it is important to note that ONDSA is 
based on GGMs, where conditional independence is equivalent to 
a zero precision matrix entry for multivariate normal data [3]. If 
this normality assumption is violated, such equivalence breaks 
down, and conditional independence may not correspond to a 
zero entry in the precision matrix. This complexity is beyond the 
scope of this work, and researchers are encouraged to consult 
relevant literature on conditional dependency for non-normal 
data (e.g. [80]) to ensure the appropriate use of ONDSA, especially 
when normal transformations are not feasible. Future research 
could investigate extending our proposed methodologies to 
mixed graphical models, which accommodate both Gaussian and 
multinomial variables. 

This ONDSA framework also shows great promise in identifying 
shared mechanisms across ancestry groups, analyzing brain con-
nectivity based on functional magnetic resonance imaging data 
across individuals, and investigating interactions among single-
cell omics data across tissues. Recently, a debiasing procedure 
with entry-wise confidence intervals based on asymptotic nor-
mality is proposed [34], which can be coupled with many other 
existing precision matrix estimators. Since one of the essential 
prerequisites for constructing the proposed test statistics is the 
use of a GGM estimator with asymptotic normality properties, the 
ONDSA framework offers a truly unified approach. This frame-
work is not only designed for the specific estimator we employ 
[16], but is also generalizable to several other state-of-the-art de-
sparsified or debiased precision matrix estimators [17, 18, 34]. This 
flexibility makes ONDSA a powerful and versatile tool for high-
dimensional omics network analysis, broadening its applicability 
across a range of cutting-edge methodologies. 

Key Points 
• We propose a rigorous statistical testing framework, 

ONDSA, for differential and similarity analyses targeting 
multiple omics networks represented by sparse GGMs. 

• ONDSA addresses a critical gap in multi-group precision 
matrix comparisons with proper FDR control, allowing 
us to identify meaningful inter- and intra-omics path-
ways associated with disease onset and progression. 

• The robustness to various realistic conditions, combined 
with its computational efficiency, makes ONDSA a supe-
rior option for researchers aiming to analyze complex 
omics networks efficiently and accurately. 

• We provide a valuable tool for integrating large-scale 
multi-omics data and have developed an efficient and 
well-documented R package for ONDSA, available at: 
https://github.com/jiachenchen322/ONDSA. 
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