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Abstract 
Integrating multi-omics data helps identify disease subtypes. Many similarity-based methods were developed for disease subtyping 
using multi-omics data, with many of them focusing on extracting common clustering structures across multiple types of omics data, 
but not preserving data-type-specific clustering structures. Moreover, clustering performance of similarity-based methods is affected 
when similarity measures are noisy. Here we proposed PartIES, a Partition-level Integration using diffusion-Enhanced Similarities to 
perform disease subtyping using multi-omics data. PartIES uses diffusion to reduce noises in individual similarity/kernel matrices from 
individual omics data types first, and then extract partition information from diffusion-enhanced similarity matrices and integrate 
the partition-level similarity through a weighted average iteratively. Simulation studies showed that (1) the diffusion step enhances 
clustering accuracy, and (2) PartIES outperforms competing methods, particularly when omics data types provide different clustering 
structures. Using mRNA, long noncoding RNAs, microRNAs expression data, DNA methylation data, and somatic mutation data from 
The Cancer Genome Atlas project, PartIES identified subtypes in bladder urothelial carcinoma, liver hepatocellular carcinoma, and 
thyroid carcinoma that are most significantly associated with patient survival across all methods. Further investigations suggested 
that among subtype-associated genes, many of those that are highly interacting with other genes are known important cancer genes. 
The identified cancer subtypes also have different activity levels for some known cancer-related pathways. The R code can be accessed 
at https://github.com/yuqimiao/PartIES.git 
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Introduction 
Disease subtyping using molecular profiles led to numerous 
discoveries [1–3]. Integrating multiple types of molecular profiles 
such as genomic, epigenomic, and transcriptomic profiles 
provides a better understanding of biological mechanisms and 
a more accurate subtyping [4]. Clustering methods like K-means, 
partition around medoids, and hierarchical clustering have been 
widely used. With high-dimensional omics data, dimension 
reduction methods, such as principal component analysis 
(PCA), non-negative matrix factorization (NMF) [5] and  auto-
encoder [6] have been applied to learn low-dimensional feature 
representations before applying aforementioned clustering 
methods. With multi-omics data, many early methods for disease 
subtyping are model-based such as Gaussian latent variable 
models, e.g. iCluster [7] and its extensions [8, 9], which assume 
a common cluster structure across data types. More recent 
methods tend to learn feature representations on multi-omics 
data first and integrate them followed by K-means. For example, 
iNMF [10] applies NMF and pattern fusion analysis [11] uses PCA  
to learn feature representations of individual omics data types 
first, which are then averaged with weights followed by K-means. 

Deep learning methods such as auto-encoder were also used for 
feature representations on individual omics data types, which are 
then concatenated for K-means clustering [12]. 

Another category of methods is similarity-based methods 
[13–18]. For these methods, pairwise similarities between subjects 
are calculated using features of each omics data type, and 
multiple similarity matrices/graphs are integrated into an overall 
similarity matrix, on which spectral clustering is conducted, 
where eigenvectors of the graph Laplacian induced by a similarity 
graph are extracted, and K-means is applied on these graph 
representations. Many similarity-based subtyping methods with 
multi-omics data construct individual similarity matrices from 
individual omics data types through kernels and focus on ways 
to integrate similarity matrices/kernels with the assumption that 
individual omics data types provide similar clustering structures. 
For example, similarity network fusion (SNF) [13] iteratively 
averages elements in one similarity matrix with elements in 
other similarity matrices as weights until convergence and 
then can be averaged. Another popular method CIMLR (Cancer 
Integration via Multi-kernel LeaRning) [16] learns an overall  
similarity matrix from a weighted average of individual similarity
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matrices/kernels with a low-rank constraint, where larger weights 
are learned for kernels with structures closer to the overall simi-
larity, aiming to extract a consensus clustering pattern across data 
types. 

However, disease subtyping studies have suggested that dif-
ferent omics data types might provide distinct cluster structures 
[7, 19, 20]. A breast cancer subtyping study identified different 
subtypes with distinct survival patterns using mRNA expression 
and DNA methylation data separately [19]. An ovarian cancer 
subtyping study suggested that subtypes identified using gene 
expression data only partially agree with those found using DNA 
methylation and microRNA expression data, respectively [20]. 
These data-type-specific cluster structures might be overlooked 
by some current similarity-based integration methods or iClus-
ter and its extensions that assume similar clustering structures 
across data types. Recently, methods were also developed that 
first extract clustering information from individual omics data 
types and then integrate them [21–23]. For example, PINS (Pertur-
bation clustering for data INtegration and disease Subtyping) [21] 
obtains individual pairwise connectivity matrices using clusters 
identified from individual omics data types and averages them 
to have an overall connectivity matrix followed by a similarity-
based clustering method. More recently, partition-level Multi-
View Clustering [22] was developed for imaging data that first 
extracts partition information from individual similarity matrices 
and integrates similarities on the partition level. When different 
omics data types provide distinct clustering structures, we want 
methods that can preserve data-type-specific cluster structures 
before integration. Moreover, as clustering results of similarity-
based methods are greatly affected when similarity measures are 
noisy, different network diffusion methods [24–26] were developed 
to reduce noise or variances of similarity measures using neighbor 
information. 

Here we developed PartIES, a Partition-level Integration 
framework that uses diffusion-Enhanced Similarities. PartIES 
first conducts diffusion on individual similarity matrices from 
individual omics data types to reduce noises and then partitions 
diffusion-enhanced similarity matrices to capture distinct data-
type-specific cluster structures and integrates low-rank partition-
information-induced similarity matrices through a weighted 
average iteratively. We conducted extensive simulation studies 
to evaluate clustering performance of PartIES and competing 
methods SNF and CIMLR, with/without diffusion. We applied 
PartIES and competing methods to identify subtypes of three 
cancers: bladder urothelial carcinoma (BLCA), liver hepatocellular 
carcinoma (LIHC), and thyroid carcinoma (THCA) using mRNAs, 
long noncoding RNAs (lncRNAs), and microRNAs (miRNAs) 
expression data, DNA methylation data, and somatic mutation 
data from the The Cancer Genome Atlas (TCGA) project. 
Subsequent survival analyses suggest that BLCA, LIHC, and THCA 
subtypes identified by PartIES are most significantly associated 
with patient survival across all methods. We further investigated 
biological meanings of the identified subtypes and noticed that 
among subtype-associated genes, many of those that are highly 
interacting with other genes are known important cancer genes. 
The identified cancer subtypes also have different activity levels 
for some known cancer-related pathways. 

Methods 
Figure 1 displays the schematic flowchart of PartIES: (1) con-
struct individual similarity/kernel matrices from individual 

feature matrices; (2) diffusion on individual similarity matrices; 
and (3) learn a partition-level integrative similarity iteratively. 

Diffusion-enhanced similarity matrices 
Given a feature matrix Xs,n×ps , s = 1, ..., S, where  n is the number 
of subjects and ps is the number of features of data type s, we  
calculate the pairwise similarity measure between subjects i and 
j using the following kernel function [15]: 

Ks(i, j) = exp

{
−‖xs,i − xs,j‖2 

2 
2εs(i, j)2

}

εs(i, j) = μs,i + μs,j, μs,i =
∑

l∈Ns,k(i)
‖xs,i − xs,l‖2 

k 
, 

(1) 

where xs,i is subject i’s feature vector of data type s, ‖x‖2 is the 
L2-norm of a vector x, Ns,k(i) is the k nearest neighbors of subject 
i using data type s, μs,i is the average Euclidean distance between 
subject i and his(her) k nearest neighbors using data type s, and
εs(i, j) is the sum of μs,i and μs,j, which reflects similarity ranges 
based on neighbors of subjects i and j using data type s. We further 
express kernel distances between subjects i and j as DKs (i, j) = 
Ks(i, i) + Ks(j, j) − 2Ks(i, j). 

For data type s, to denoise Ks using diffusion, we define a 
local similarity matrix Ps using k nearest neighbors: Ps(i, j) =
Ks(i,j)·I{j∈Ns,k(i)}∑

l∈Ns,k(i) 
Ks(i,l) , and obtain the diffusion-enhanced similarity matrix 

through a one-hop diffusion: KsPT 
s . To have symmetric enhanced 

similarity matrices, we further define Ks,enh = (KsPT 
s + PsKs)/2, and  

the corresponding DKs,enh . 

The proposed PartIES 
With enhanced kernel distance matrices DKs,enh , s = 1, · · ·  , S, we  
propose the following loss function to capture overall cluster 
structure integrating multiple omics data types while preserving 
clustering structures from individual data types: 

min
{{Zs},{Fs},Y} 

S∑
s=1

{
< DKs,enh , Zs >F +β||Zs||2 

F 

+ γ (tr(FT 
s (I − Zs)Fs) + ws||YYT − FsFT 

s ||2 
F)

}

s.t. 
n∑

j=1 

Zs(i, j) = 1, Zs(i, j) ≥ 0; FT 
s Fs = ICs ; 

YT Y = IC; i = 1, 2, · · ·  , n; s = 1, 2, · · ·  , S, (2)  

where Zs,n×n and Fs,n×Cs are the similarity matrix and correspond-
ing partition information from data type s with Cs the number of 
clusters using data type s, Yn×C is the integrated partition infor-
mation with C the number of clusters using all S data types. The 
choices of Cs, s = 1, ..., S and C are guided by the eigengap criterion 
with details included in the Supplementary Materials. Here β and 
γ are non-negative hyper-parameters, which are set such that only 
k nearest neighbors of sample i have nonzero similarities in Zs 

during optimization. That is, Zs is a local similarity matrix. Details 
on tuning β and γ are included in the Supplementary Materials. 
Weights ws are calculated as ws = 1 

2||YYT−FsFT 
s ||F 

, s = 1, ..., S with the 
constraint of summing to 1 and the rationale that the more similar 
a data-type-specific cluster structure is to the common cluster 
structure, the more contribution this data type should have in 
integration. 

The first term in the objective function is the Frobenius inner 
product between the enhanced kernel distance DKs,enh and the
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Figure 1. The schematic plot of PartIES: (1) construct individual kernel/similarity matrices from original feature matrices, (2) enhance individual 
similarity/kernel matrices through diffusion, and (3) extract partition information from individual diffusion-enhanced kernels and integrate individual 
partition-level similarity matrices with a weighted average iteratively by minimizing the loss function L. 

learned local similarity matrix Zs for data type s, which aims to 
learn small similarities when distances are large. The second term 
is a regularization term to avoid learned Zs being identity matri-
ces. If there are Cs clusters using data type s, molecular profiles 
of samples in the same cluster should have high similarity, and 
the effective rank of Zs should be ideally Cs. The third term along 
with the constraint on Fs enforces the low-rank structure of Zs to 
preserve the data-type-specific cluster structures [27]. Minimizing 
the third term is equivalent to performing spectral clustering [28] 
on Zs, which extracts Fs,n×Cs , the partition information of data type 
s, i.e. the  first  Cs eigenvectors from the graph Laplacian I − Zs. We  
then have 2FsFT 

s as the partition-level similarity matrix for data 
type s. The last term learns the integrated partition information 
Yn×C using all S data types, assuming C clusters, where minimizing 
this term is equivalent to performing spectral clustering on the 
weighted average

∑
s ws2FsFT 

s . 

Optimization 
We optimize Zs,n×n and Fs,n×Cs for data type s, s = 1, · · ·  , S, and  Yn×C. 
Although the objective function is non-convex, optimizing each 
parameter while holding others constant is convex. We use the 
following optimization steps: 

Steps 0: initialize Zs, Fs, and  Y. With enhanced kernel distance 
matrix DKs,enh , we initialize Zs(i, j) = −DKs,enh (i, j) + maxi,j(DKs,enh (i, j)) 
for s = 1, ..., S. We  initialize  Fs as the first Cs eigenvectors of I − Zs 

corresponding to the Cs smallest eigenvalues for s = 1, · · ·  , S, 
which is equivalent to extracting partition information from indi-
vidual diffusion-enhanced kernels using spectral clustering. We 
initialize Y as the first C eigenvectors of I − ∑S 

s=1 ws2FsFT 
s with 

weights being initialized as ws = 1 
S for s = 1, · · ·  , S. 

We then iteratively update each parameter as follows: 

Step 1: update Zs while fixing Fs, for  s = 1, · · ·  , S separately: 

min 
Zs 

{< DKs,enh , Zs >F +β||Zs||2 
F + γ tr(FT 

s (I − Zs)Fs)} 

s.t.
∑

j 

Zs(i, j) = 1, Zs(i, j) ≥ 0 fori = 1, · · ·  , n. 

This step localizes Zs with each row having around k non-zero 
elements with details in the Supplement Materials. 

Step 2: update Fs while fixing Zs and Y, for  s = 1, · · ·  , S 
separately: 

min 
Fs

{
tr(FT 

s (I − Zs)Fs) + ws||YYT − FsFT 
s ||2 

F

}
s.t. FT 

s Fs = ICs , 

where ws = 1 
2‖YYT−FsFT 

s ‖F 
is calculated using values from the last 

iteration with normalization ws = ws∑S 
s=1 ws 

, and  Fs,n×Cs is the first 
Cs eigenvectors of (I − Zs) + ws(I − 2YYT) corresponding to the Cs 

smallest eigenvalues. 
Step 3: update Y while fixing Fs, s = 1, · · ·  , S: 

min 
Y 

S∑
s=1 

ws||YYT − FsFT 
s ||2 

F 

s.t. YT Y = IC, 

where ws = 1 
2||YYT−FsFT 

s ||F 
and Yn×C is the first C eigenvectors of I −∑S 

s=1 ws2FsFT 
s corresponding to the C smallest eigenvalues. 

Steps are repeated iteratively until converge. The final cluster 
labels are obtained by performing k-means on Yn×C. 

Simulation studies 
We conducted simulation studies to investigate (1) how diffusion 
on the similarity matrix affects clustering performance with one 
data type; and (2) the overall clustering performance of PartIES 
and competing methods SNF and CIMLR, with/without diffusion 
on individual similarity matrices before integration. 

We set each data type to have 10 000 features composed 
of signal and noise features. We simulated signal features in 
data type s for subjects in cluster j from a normal distribution 
N(μs,j, σ 2), s = 1, ..., S, j = 1, ..., Cs, and noise features from N(0, 1) 
for all subjects. We assumed all signal features from one data 
type have the same effect size for simplicity. We set the number 
of neighbors k = n/4 and explored different choices of k and 
included results in the Supplementary Materials. For SNF and 
CIMLR, we set the number of clusters C as the truth. For PartIES, 
the choice of Cs, s = 1, ..., S was guided by the eigengap criterion as
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detailed in the Supplementary Materials, while C was also set as 
the true number of clusters. We conducted 1000 simulations for 
each simulation setting and evaluated clustering performance in 
simulation studies using normalized mutual information (NMI). 

Simulation settings 
To investigate if diffusion helps clustering performance, we con-
sidered one data type with n = 150 and three equal-sized clusters 
with 50 subjects each. We considered two simulation settings 
varying effect sizes: (1) varying the number of signal features 
∈ {40, 70, 100, · · ·  , 220, 250} out of 10,000 features, where all signal 
features have the same effect size and can separate all three 
clusters, i.e. signal features were generated from normal N(1, 1), 
N(2, 1), and  N(3, 1) for samples in the three clusters, respectively; 
(2) fixing the number of signal features as 180 and varying stan-
dard deviation (SD) σ ∈ {0.1, 0.6, 1.1, 1.6, · · ·  , 5.6}, where  signal  
features were generated from N(1, σ 2), N(2, σ 2) and N(3, σ 2) for 
samples in the three clusters, respectively. We conducted spectral 
clustering on similarity matrices with/without diffusion. 

To examine overall clustering performance of PartIES, SNF, and 
CIMLR, we considered three data types all being generated from 
normal distributions each with 10,000 features. We set n = 200 
with four equal-sized clusters each with 50 subjects. We set each 
data type to have the same number of signal features ranging 
from 10 to 200 with a grid of 10. We considered the following three 
simulation settings. 

In simulation setting I, three data types provide the same 
clustering structures with signal features in one data type having 
the same effect size while signal features in different data types 
have similar effect sizes. Specifically, signal features in data type 
1 have means for four clusters (0.5, 0.8, 1.5, 2); signal features in 
data type 2 have means for four clusters (0.5, 1.2, 1.5, 2); and signal  
features in data type 3 have means for four clusters (0.5, 1, 1.3, 2). 

In simulation setting II, three data types provide similar cluster-
ing structures but signal features in different data types have dif-
ferent effect sizes. Specifically, signal features in data type 1 have 
means for four clusters (0.5, 1, 1.5, 2), i.e. data type 1 separates all 
four clusters while it separates clusters 1 and 4 the best. Signal 
features in data type 2 have means for four clusters (2, 0.5, 1, 1.5), 
i.e. data type 2 separates clusters 1 and 2 the best. Signal features 
in data type 3 have means in four clustering (1.5, 2, 0.5, 1), i.e. data  
type 3 separates clusters 2 and 3 the best. PartIES would perform 
well in this setting. 

In simulation setting III, three data types provide different clus-
ter structures. Specifically, signal features in data type 1 mainly 
separate clusters 1 and 2 from clusters 3 and 4 with means in 
four clusters (1, 1.5, 3, 3.5). Signal features in data type 2 mainly 
separate clusters 1 and 2 from clusters 3 and 4, and can further 
separate cluster 1 and cluster 2 with means in four clusters being 
(1, 2, 3, 3). Signal features in data type 3 separate clusters 1 and 
2 from clusters 3 and 4, and can further separate cluster 3 and 
cluster 4 with means in four clusters being (3, 3, 1, 2). This is the 
setting PartIES is designed for. 

We also conducted simulation studies with the three data types 
mimicking real data more realistically. Specifically, features in 
data type 1 were generated from Bernoulli distributions to mimic 
mutation presence/absence data and features in the other two 
data types were generated from normal distributions to mimic 
gene expression data. We considered 200 subjects with four equal-
sized clusters each with 50 subjects and 60 subjects from four 
equal-sized clusters each with 15 subjects and repeated the three 
simulation settings above. Details of these additional simulation 
studies were included in the Supplementary Materials. 

Simulation results 
Clustering performance with diffusion Figure 2 displays NMI 
means with/without diffusion for the two simulation settings 
varying (1) the number of signal features, and (2) σ of signal 
features. We can see that when effect sizes are small, i.e. when 
the number of signal features is smaller than 70 or σ of signal 
features is greater than 4, clustering performance with/without 
diffusion are very similar. As effect sizes increase, better cluster-
ing performance is observed with diffusion as expected. This is 
because when effect sizes increase, k nearest neighbors can be 
more accurately defined. Thus, the diffusion step that relies on 
neighbors can better help denoise. 

Clustering performance of PartIES and competing methods 
Figure 3 displays NMI means of PartIES and competing methods 
for the three simulation settings considered. First of all, we can 
see that the diffusion step improves the clustering accuracy of all 
methods in the three simulation settings considered, especially 
in setting II when three data types provide similar clustering 
structures but signal features in the three data types have dif-
ferent effect sizes, and in setting III when three data types pro-
vide different clustering structures. Moreover, the diffusion step 
helps CIMLR more because the original CIMLR does not use local 
similarities from individual data types, while the original SNF 
uses local similarities when fusing multiple similarity matrices 
from multiple data types. Similarly, PartIES also imposes local 
similarities in the step of learning Zs. 

For the overall clustering performance, under simulation set-
ting I when three data types provide the same cluster structures 
and signal features in different data types have similar effect 
sizes, PartIES and CIMLR have similar performance and are much 
better than that of SNF. This is because the granular differences in 
clustering structures due to small differences in effect sizes in dif-
ferent data types are not captured by the SNF fusing step that uses 
individual similarity matrices directly. Under setting II when three 
data types provide similar cluster structures but signal features 
in different data types have different effect sizes and setting III 
when three data types provide different cluster structures, PartIES 
that integrates data-type-specific partition information performs 
much better than the two competing methods as expected. 

For the additional simulation studies with three data types 
being generated from different distributions and with a much 
smaller sample size, we observed very similar results as being 
reported above. Details were included in the Supplementary Mate-
rials and Figs S3–4. 

Real data applications 
Data processing 
We applied PartIES and competing methods with/without diffu-
sion to identify BLCA, LIHC, and THCA subtypes using mRNA, 
lncRNA, miRNA expression, DNA methylation and somatic muta-
tion data from TCGA. We downloaded omics data using the R 
package ‘TCGAbiolinks’ and used tumors with all five omics data 
types, leading to 401 BLCA tumors, 362 LIHC tumors, and 484 
THCA tumors (Table 1). The original 450K DNA methylation data 
have measures on 485,577 CpGs. We excluded CpGs (1) on sex 
chromosomes, (2) overlapping with known single nucleotide poly-
morphisms, and (3) with > 30% missing rates. We ended up with 
405 336 CpGs in BLCA data, 399 476 CpGs in LIHC data, and 415 
378 CpGs in THCA data. We further corrected type I/II probe bias 
using the R package ‘wateRmelon’ and imputed missing values 
using k-nearest neighbors. There is no missingness in three types

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae609#supplementary-data
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Figure 2. Effect of the proposed diffusion step with mean NMIs across 1000 simulations. 

Figure 3. Clustering performance of PartIES and competing methods with mean NMI across 1000 simulations for the three simulation settings considered. 

of gene expression data and somatic mutation data. Note that 
somatic mutation data summarizes numbers of non-synonymous 
mutations per gene per tumor sample. We summarized numbers 
of features of each omics type in Table 1. After data processing 
steps, we normalized each feature with a mean 0 and an SD 1. 

Overall performances of PartIES 
Table 2 displays cancer subtypes identified by PartIES and 
competing methods and corresponding log-rank P-values that 
associate subtypes and patient survival. We can see that subtypes 
identified by PartIES are most significantly associated with 
patient survival among all methods for all three cancers BLCA, 
LIHC and THCA. The six BLCA subtypes by PartIES are associated 
with patient survival with a P-value 2.30 × 10−5. The four LIHC 

subtypes by PartIES are associated with patient survival with 
a P-value 9.08 × 10−4. The four THCA subtypes by PartIES are 
associated with patient survival with a P-value 1.43 × 10−3. In  
general, PartIES and CIMLR that use diffused kernels have better 
subtyping performance (in terms of associating with patient 
survival) than that without diffusion, while the performances 
of SNF with/without diffusion are very similar, consistent with 
observations in simulation results. 

Individual cancer studies 
The Cancer Genome Atlas bladder urothelial carcinoma 
Studies have identified BLCA subtypes using omics data of TCGA 
BLCA tumors. For example, using mRNA expression data of 
412 TCGA BLCA tumors, five subtypes were identified that are
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Table 1. Summary of TCGA omics data for BLCA, LIHC, and THCA tumors 

Cancer Types BLCA LIHC THCA 

Number of tumor samples 401 362 484 
Number of deaths 175 132 14 
Median survival days 1008 1694 NA 
Number of omics features after QC mRNA expression 19 962 19 962 19 962 

lncRNA expression 16 901 16,901 16 901 
miRNA expression 1881 1,881 1881 
DNA methylation 405 336 399 476 415 378 
Somatic mutation 16 299 12 761 3193 

Table 2. TCGA BLCA, LIHC, and THCA cancer subtyping with (i) numbers of subtypes, and (ii) log-rank survival P-values 

Methods PartIES CIMLR SNF 

Diffusion Yes No Yes No Yes No 

BLCA number of clusters 6 6 4 4 4 4 
Survival P-values 2.30 × 10−5 3.76 × 10−4 3.67 × 10−4 0.06 7.39 × 10−3 1.52 × 10−3 

LIHC number of clusters 4 4 3 3 2 2 
Survival P-values 9.08 × 10−4 3.69 × 10−3 0.19 0.24 7.81 × 10−3 9.72 × 10−3 

THCA number of clusters 4 4 3 3 3 3 
Survival P-values 1.43 × 10−3 0.11 0.67 0.58 0.93 0.56 

associated with patient survival with a P-value 4 × 10−4 [29]. 
Another study identified two major BLCA subtypes using mRNA 
expression, DNA methylation, DNA copy number, and somatic 
mutation data of 388 TCGA BLCA tumors with the iclusterBayes 
method. These two major subtypes are associated with patient 
survival with a P-value 4.2 × 10−4 [30]. Here we used mRNA, 
lncRNA, and miRNA expression data, DNA methylation data, and 
somatic mutation data of 401 TCGA BLCA tumors and identified 
six subtypes using the proposed PartIES with a survival P-value 
2.30 × 10−5. Figure 4a presents Kaplan–Meier curves of the six 
BLCA subtypes by PartIES. We can see that subtype 5 with 106 
tumors has the worst survival and a median survival time of 623 
days. Subtype 1 with 37 tumors has the best survival where more 
than 50% of subjects were alive at the end of the follow-up. 

TCGA BLCA subtyping using a single omics data type vs. five 
omics data types 

Figure 4(b)–4(e) display heatmaps of top 500 features of mRNA, 
lncRNA, miRNA expression levels, and DNA methylation levels 
ranked by P-values from the Kruskal–Wallis (KW) test comparing 
feature levels across the six BLCA subtypes by PartIES. Figure 4f 
displays the heatmap of mutation profiles of top 20 most 
frequently mutated genes across 401 BLCA tumors. Subtypes 
identified by single omics data types with diffused kernels 
were also indicated, where two subtypes were identified using 
mRNA expression data, four using lncRNA expression data, two 
using miRNA expression data, two using DNA methylation data, 
and three using mutation data. This information was further 
displayed in Fig. 5. 

We can see that overall, for the six BLCA subtypes by PartIES, 
mRNA and miRNA data provide very similar subtype structures 
and mainly separate PartIES subtypes 3 and 5. LncRNA data pro-
vide a distinct subtype structure that separates PartIES subtypes 
1, 5 from 3, 4, and 6. Mutation data further separate PartIES 
subtypes 1, 2, and 5. DNA methylation data, on the other hand, 
do not provide clear subtype information. Only with all types of 
omics data, PartIES identifies current six BLCA subtypes. 

When comparing the six PartIES subtypes to the four lncRNA 
subtypes, majority (85.5%) of tumors in PartIES subtype 4 are in 

lncRNA subtype 1, 84.9% of tumors in PartIES subtype 5 are 
in lncRNA subtype 2, 70.2% of tumors in PartIES subtype 3 are in 
lncRNA subtype 3, while all tumors in PartIES subtype 6 are in 
lncRNA subtype 4 (Fig. 4c). Using somatic mutation data, we 
further separate PartIES subtypes 1 and 2 from others. Although 
mRNA and miRNA expression data and DNA methylation data 
provide overlapping subtyping information as that of lncRNA 
expression data, only when we use all five types of omics data, 
we can identify current six BLCA subtypes. More details on 
single omics data subtyping results and important omics profiles 
that differentiate the six BLCA subtypes are included in the 
Supplementary Materials. 

Investigate subtype-differentiated important genes using the 
PPI network 

To investigate biological meanings of the six BLCA subtypes 
by PartIES, we examined omics features that differentiate them 
at a Bonferroni-adjusted KW test P-value threshold 0.01. From 
a collection of differentially expressed genes (mRNA, lncRNA, 
and miRNA genes), differentially methylated genes (CpGs were 
mapped to genes), and differentially mutated genes, we identified 
important genes that are highly interacting with others using 
protein-protein interaction (PPI) network [17] from the  STRING  
database [31] where we kept edges having interaction scores > 0.4 
using Cytoscape (version 3.10.1) [32]. 

Details of mapping differential omics profiles to the PPI net-
work are included in the Supplementary Materials. Briefly, we 
selected top 200 differential profiles from each omics data type 
and ended with a network with 455 genes and 1,054 edges after 
removing overlapping genes. Using the Largest Subnetwork app 
in Cytoscape, we partitioned this network into sub-networks such 
that nodes in the same sub-network are connected while those in 
different sub-networks are not, and worked with the largest sub-
network with 328 genes. 

We then used three metrics to measure interactions among 
the 328 genes: degree, stress, and betweenness centrality. Degree 
of a gene is the number of genes it connects. Stress of a gene is 
the number of shortest paths between two other genes that this 
gene passes. Betweenness centrality of a gene is the normalized
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Figure 4. (a) Kaplan–Meier curves of the six TCGA BLCA subtypes by PartIES. (b)–(f) Heatmaps of top 500 features by KW test comparing feature measures 
across the six BLCA subtypes. (g) Mutation landscape of top 20 most frequently mutated genes across all BLCA tumors. 

Figure 5. TCGA BLCA subtypes identified by PartIES and competing methods using five types of omics data vs. that using one type of omics data. Samples 
are ordered by PartIES subtypes. 
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Table 3. Top 10 genes ranked by degree, stress, and betweenness centrality 

Top 10 Genes Degree Top 10 Genes Stress Top 10 Genes Betweenness Centrality 

RBM39 45 EGFR 129 808 EGFR 0.290 
RBM25 38 DHX9 64 208 DHX9 0.101 
HNRNPH1 36 HNRNPH1 50 206 YBX1 0.077 
SRSF2 36 YBX1 47 262 HNRNPH1 0.076 
EGFR 35 RBM39 41 542 NF1 0.063 
PRPF8 35 SRSF2 37 924 PRPF8 0.060 
CDC5L 35 CDC5L 36 762 TNRC6A 0.057 
DHX9 35 PRPF8 36 374 RBM39 0.056 
LUC7L3 33 TNRC6A 35 366 SRSF2 0.056 
SRSF11 33 SFPQ 30 360 RUNX1 0.055 

ratio of the number of shortest paths between two other genes 
that this gene passes over all the shortest paths between the two 
genes. Table 3 displays top 10 genes ranked by each of the three 
metrics. Genes rank on top are potentially important BLCA genes. 
For instance, gene HNRNPH1 has the highest mRNA expression 
levels in tumors in PartIES subtypes 3 (Fig. 4b), who had relatively 
good survival. Studies have suggested that low expression levels 
of HNRNPH1 are associated with poor survival in BLCA [33]. Gene 
CDC5L (mapped from CpG cg05318503) has relatively high methy-
lation levels in PartIES subtype 6 tumors and low levels in subtype 
4 tumors (Fig. 4e), which has been found to be related to the 
apoptosis and migration of bladder cancer cells [34]. Gene YBX1 
(mapped from CpG cg07603685) has relatively high methylation 
levels in PartIES subtype 6 tumors and low levels in subtype 4 
tumors (Fig. 4e) and has been found to be associated with bladder 
cancer progression [35]. 

Pathway activities of the six BLCA subtypes by PartIES 
We further compared pathway activities across the 6 BLCA 

subtypes of 11 cancer-related pathways (EGFR, MAPK, PI3K, VEGF, 
JAK-STAT, TGFb, TNFa, NFkB, Hypoxia, p53-mediated DNA damage 
response, and Trail (apoptosis)) calculated using mRNA expres-
sion levels with the R package ‘PROGENy’ [36]. PROGENy (Pathway 
RespOnsive GENes) assigns pathway scores to tumors using the 
fitted coefficients matrix and tumors’ mRNA expression levels. 
We compared pathway activity scores across the six BLCA sub-
types using the KW test where all 11 pathways are significant 
after Bonferroni correction. We examined top 6 most significant 
pathways (Fig. 6). We can see that tumors in PartIES subtype 5, 
which have the worst survival, have the highest PI3K activity 
scores but the lowest p53 activity scores. Hyper-activations of 
the PI3K pathway was linked to various malignant cancer pro-
gresses such as tumor cell proliferation, metastasis, and drug 
resistance [37]. Accumulations of p53 protein is important to sup-
press cancer development and abnormal changes in p53 pathway 
activities potentially due to TP53 gene mutation are significantly 
associated with poor patient survival [38]. Moreover, tumors in 
PartIES subtypes 5 and 6 with worse survival have relatively high 
EGFR activities, which is an indicator of more aggressive cancer 
behavior and poor survival outcomes in bladder cancer [39]. 

The Cancer Genome Atlas liver hepatocellular carcinoma 
Much research has been done to identify liver cancer subtypes. 
TCGA research network identified three liver cancer subtypes 
using copy number variants, DNA methylation, mRNA expression, 
miRNA expression, and reverse-phase protein array data of 183 
TCGA LIHC tumors with iCluster [40]. The three subtypes are 
not significantly associated with patient survival. We previously 
developed abSNF [41] to integrate mRNA expression, DNA 

methylation, and somatic mutation data of 161 TCGA LIHC 
tumors and identified five subtypes that are associated with 
patient survival with a P-value 0.046. Here PartIES used mRNA, 
lncRNA, miRNA expression data, DNA methylation data, and 
somatic mutation data of 362 TCGA LIHC tumors and identified 
four subtypes that are associated with patient survival with a 
P-value 9.08×10−4. We similarly investigated biological meanings 
of the four LIHC subtypes with details in the Supplementary 
Materials and Table S1, Figs S5–7. 

The Cancer Genome Atlas thyroid carcinoma 
Using 496 TCGA THCA tumors, TCGA research network iden-
tified two major subtypes based on driver mutations with no 
patient survival analysis being done. Here PartIES used mRNA, 
lncRNA, miRNA expression data, DNA methylation data, and 
somatic mutation data of 484 TCGA THCA tumors and identi-
fied four subtypes that are significantly associated with patient 
survival with a P-value 1.43 × 10−3. We similarly investigated 
biological meanings of the four THCA subtypes with details in the 
Supplementary Materials and Table S2, Figs S8–10. 

Sensitivity analysis 
We conducted sensitivity analyses using subsets of the five omics 
data types. We examined PartIES and competing methods when 
removing data types with (1) similar clustering structures, and (2) 
distinct clustering structures. For example, from Fig. 5 for BLCA, 
we see that lncRNA and somatic mutation data provide distinct 
clustering structures, while mRNA expression, miRNA expression 
and DNA methylation data provide similar cluster information. 
Therefore, we repeated the analyses removing (i) mRNA data, (ii) 
mRNA and DNA methylation data, (iii) mutation data, and (iv) 
mutation and lncRNA data. Table 4 displays these BLCA subtyping 
results. When removing data types with similar structures, all 
methods have similar clustering results as that using five omics 
data types where PartIES performs the best in terms of patient 
survival (Table 4, Analysis 1–3). When removing data types with 
distinct cluster structures, all methods have worse clustering 
results than that using all five omics data types (Analysis 4–5) as 
expected. Similar patterns were observed for LIHC and THCA with 
details in the Supplementary Materials Tables S3–4. 

Discussion 
In this paper, we developed PartIES, a Partition-level Integration 
framework that uses diffusion-Enhanced Similarities to preserve 
data-type-specific cluster structures for a more accurate clus-
tering result using multi-omics data. PartIES denoises individual

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae609#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae609#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae609#supplementary-data


Disease subtyping with PartIES | 9

Figure 6. Boxplot of top 6 cancer-related pathways’ activity scores ranked by KW test comparing scores across the six BLCA subtypes by PartIES. Also 
displayed are the P-values of the three pairs of subtypes with the most significant difference from the Wilcoxon rank sum test comparing pathway 
activities between each pair of subtypes. 

Table 4. Sensitivity analysis of TCGA BLCA subtyping with different omics data types 

Cancer Analysis Omics Data types PartIES CIMLR SNF 

BLCA 1 LncRNA, mutation, miRNA, DNA 
methylation, mRNA 

Number of clusters 6 4 4 

Survival P-value 2.30E-05 3.67E-04 7.39E-03 
2 LncRNA, mutation, miRNA, DNA 

methylation 
Number of clusters 6 4 4 

Survival P-value 1.09E-05 2.61E-03 3.04E-03 
3 LncRNA, mutation, miRNA Number of clusters 6 3 4 

Survival P-value 3.19E-05 4.75E-04 3.09E-03 
4 LncRNA, miRNA, DNA methylation, 

mRNA 
Number of clusters 5 3 3 

Survival P-value 3.17E-03 0.030 0.038 
5 miRNA, DNA methylation, mRNA Number of clusters 4 3 3 

Survival P-value 0.18 0.04 0.11 

similarity matrices through diffusion and partitions denoised 
similarity matrices before integrating them iteratively. 

Simulation studies suggested a much-improved cluster 
accuracy with the proposed diffusion step as a general strategy, 
especially on the competing method CIMLR, which only uses 
global similarity in the original algorithm. SNF has only granular 
improvement with diffusion because local similarities were 
applied in fusing multiple similarity matrices in SNF. For overall 
clustering performance, PartIES performs the best under settings 
when three data types provide different subtype structures, the 
scenario PartIES was designed for. Under settings when three 
data types provide the same subtype structures, PartIES performs 
similarly as CIMLR, with both better than SNF. 

We applied PartIES and competing methods to identify BLCA, 
LIHC, and THCA subtypes using mRNAs, lncRNAs, and miRNAs 
expression data, DNA methylation data, and somatic mutation 
data from TCGA. The six BLCA subtypes, the four LIHC subtypes, 
and the four THCA subtypes by PartIES can most significantly 

differentiate patient survival across all methods. More impor-
tantly, some omics data types provide different subtype struc-
tures from others. When integrating data-type-specific partition 
level information, we can preserve distinct subtype structures 
and more accurately subtype all tumors. Further investigations 
on biological meanings of the identified subtypes suggest that 
among subtype-associated genes, many of those that are highly 
interacting with other genes are known important cancer genes. 
The identified cancer subtypes also have different activity levels 
for some known cancer-related pathways. 

One limitation of PartIES is that we need to determine numbers 
of subtypes using individual omics data types. There are currently 
no universal rules to select the number of clusters. We used the 
eigengap criterion to guide our selections. While being a limita-
tion, eigengap can also help determine if a data type is informative 
for clustering. We conducted additional simulation studies and 
showed that when no cluster is in a data type, eigengaps do not 
change with different numbers of clusters (see Supplementary
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Materials). A perturbation method was recently developed [21] 
to determine the number of clusters. For further work, we will 
explore using perturbations with spectral clustering to deter-
mine the number of clusters. Another limitation is that we only 
use counts of non-synonymous mutations per gene across the 
genome as a sample’s mutation profile, which ignores mutation 
types. With the current TCGA tumor sample sizes, only few genes 
have more than one mutations per gene. We will explore meta-
analysis with a much larger sample size to allow finer analyses 
with mutation types for future work. We also want to mention 
that PartIES is computationally efficient and uses comparable 
computational time as that of SNF and CIMLR. Details are in the 
Supplementary Materials Table S6. 

Key Points 
• The proposed PartIES integrate partition level informa-

tion iteratively from individual types of omics data to 
better preserve distinct data-type-specific cluster struc-
tures. 

• The proposed PartIES uses a diffusion step to denoise 
individual similarity matricies. 

• The proposed PartIES has the best clustering perfor-
mance when different types of omics data provide dis-
tinct clustering structures or provide with similar struc-
ture but different effect sizes, and performs similarly as 
competing methods when different types of omics data 
provide similar clustering structures. 
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