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Abstract 
Dimension reduction is essential for analyzing high-dimensional data, with various techniques developed to address diverse data 
characteristics. However, individual methods often struggle to capture all intricate patterns and complex structures simultaneously. To 
overcome this limitation, we introduce ADM (Adaptive graph Diffusion for Meta-dimension reduction), a novel meta-dimension reduction 
method grounded in graph diffusion theory. ADM integrates results from multiple dimension reduction techniques, leveraging their 
individual strengths while mitigating their specific weaknesses.ADM utilizes dynamic Markov processes to transform Euclidean 
space results into an information space, revealing intrinsic nonlinear manifold structures that are hard to capture by conventional 
methods. A critical advancement in ADM is its adaptive diffusion mechanism, which dynamically selects optimal diffusion time 
scales for each sample, enabling effective representation of multi-scale structures. This approach generates robust, high-quality low-
dimensional representations that capture both local and global data structures while reducing noise and technique-specific distortions. 
We demonstrate ADM’s efficacy on simulated and real-world datasets, including various omics data types. Results show that ADM 
provides clearer separation between biological groups and reveals more meaningful patterns compared to existing methods, advancing 
the analysis and visualization of complex biological data. 
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Introduction 
Dimension reduction plays a crucial role in visualizing and com-
prehending complex datasets [1, 2]. These techniques aim to con-
dense high-dimensional data into a lower-dimensional represen-
tation while preserving the data’s inherent structure. This process 
is crucial for uncovering inherent similarities and differences 
between data points, facilitating an intuitive understanding of the 
underlying patterns and trends [3, 4]. 

Dimension reduction techniques have become indispensable 
for exploratory analysis and pattern discovery across various 
domains, including computer vision [5], molecular biology [6], 
and diverse omics fields such as genomics, proteomics, and 
metabolomics [7–11]. 

Over the past few decades, researchers have developed 
numerous dimension reduction techniques to reveal the structure 
of noisy, high-dimensional data. Early methods such as Principal 
Component Analysis (PCA) [12], Multidimensional Scaling (MDS) 
[13], Sammon mapping [14], Isomap [15], and kernel PCA (kPCA) 
[16] efficiently delineate with linear or nonlinear characteristics 
by preserving dominant structures, often at the expense of local 
details. Conversely, methods like Locally Linear Embedding [17], 
t-SNE [18], LargeVis [19], and Laplacian Eigenmaps [20] prioritize 
the revelation of local structures but may sacrifice the global 
coherence of data. Subsequent developments, such as UMAP 

[2], Hessian Locally Linear Embedding (HLLE) [21], and Kernel 
Eigenfunction Embeddings [22], have aimed at striking a balance 
between preserving both global and local structures. However, 
their effectiveness can be compromised by sensitivity to noise 
and outliers. Diffusion maps [23] utilize a diffusion operator to 
explore the data’s intrinsic geometry, reducing noise impact but 
facing challenges in preserving multiscale structures [24]. PHATE 
[25] advances this concept by integrating manifold learning and 
information geometry, providing a balanced representation of 
both global and local structures. Recent advancements have led 
to more specialized techniques tailored for specific tasks and 
data types. Deep learning-driven frameworks such as scCRT 
[26], DREAM [27], and SPDR [28] have been designed for targeted 
tasks including trajectory inference and batch effect correction 
in single-cell genomics. Additionally, spectral embedding-based 
techniques like SnapATAC2 have been developed for specific 
data formats, particularly in the analysis of single-cell ATAC-seq 
data [29]. 

Despite these advancements, each technique, developed based 
on distinct principles and paradigms, is tailored to specific data 
characteristics and often struggles to provide a comprehensive 
data representation. Moreover, each method involves hyperpa-
rameters requiring fine-tuning for specific datasets, with different 
parameter configurations potentially leading to vastly different
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outcomes. Furthermore, due to the inherent noisiness and high 
dimensionality of real-world datasets, low-dimensional represen-
tations inevitably contain distortions from the underlying true 
structures, which can vary across different techniques. 

Consequently, there is growing interest in developing meta-
analysis techniques capable of integrating results from various 
individual methods, leveraging their strengths to achieve a more 
robust and comprehensive representation while suppressing dis-
tortions in individual methods. Some approaches, like fuzzy con-
sensus analysis [30] and supervised learning methods [31–35], 
primarily focus on combining classification results from mul-
tiple datasets. However, meta-dimension reduction technologies 
require establishing a common space to align different results of 
the same data accurately. This necessitates further exploration 
and analysis of the intrinsic relationships between results from 
various methods. Recently, Ma et al. introduced Meta-Spec [36], 
which quantifies the relative performance of individual tech-
niques in preserving the structure around each data point in the 
Euclidean space and generates consensus dimension reduction 
results. While Meta-Spec improves upon individual techniques in 
capturing underlying structure, it encounters challenges when 
applied to highly complex, high-dimensional data. Its primary 
limitation lies in offering a static measure that reflects direct 
or physical distances between samples in Euclidean space. This 
approach may struggle to capture the dynamic geometric inter-
actions and complex mechanisms of information transmission 
among samples that are often present in high-dimensional bio-
logical datasets. As a result, Meta-Spec might not completely rep-
resent the intricate relationships and latent structures inherent 
in complex data. 

To address these challenges, we introduce ADM (Adaptive 
graph Diffusion for Meta-dimension reduction), a novel meta-
dimension reduction and visualization technique grounded in 
information diffusion theory. ADM employs a dynamic Markov 
process to simulate information propagation between data 
points, transforming traditional Euclidean space results into an 
information space. This approach reveals intrinsic nonlinear 
manifold structures that conventional distance-preserving 
techniques may not fully capture. 

A key innovation of ADM is its adaptive diffusion mechanism, 
which dynamically selects the optimal diffusion time scale for 
each sample. This feature enables ADM to capture both local 
and global structures within the data, representing intricate 
multi-scale structures more effectively. By integrating outputs 
from multiple dimension reduction methods, ADM mitigates 
noise and reduces technique-specific distortions, leading to more 
reliable outcomes. These capabilities allow ADM to generate 
more robust and higher-quality low-dimensional representations 
of high-dimensional datasets, advancing the analysis and 
visualization of complex biological data across various omics 
data types, including genomics, proteomics, metabolomics, and 
epigenomics. 

To validate ADM’s effectiveness, we conducted comprehensive 
experiments on simulated and real-world datasets across vari-
ous omics types. Quantitatively, ADM consistently outperformed 
existing dimension reduction techniques across multiple metrics, 
including Adjusted Rand Index (ARI), Category Consistency Index 
(CCI), and Average Silhouette Width (ASW). Qualitatively, ADM 
demonstrated superior performance in visualizations, enabling 
clearer separation between biological groups and revealing subtle 
differences between closely related types. These results highlight 
ADM’s potential for uncovering intricate patterns in complex 
biological data across various omics modalities. 

Methods 
Overview of ADM 
For each output from an individual candidate dimension reduc-
tion technique, the ADM approach initiates by transforming the 
Euclidean distance of features into a diffusion operator P . This  
operator quantifies the likelihood of information propagation 
between samples through random walks. Subsequently, a sample-
specific diffusion process is implemented for each sample to sim-
ulate multi-step diffusion. We employ the Breadth-First Search 
algorithm to adaptively select the appropriate diffusion time scale 
for each sample. This adaptive strategy considers the inherent 
heterogeneity within datasets, effectively filters out noise, and 
prevents over-smoothing. The resulting sample-specific propa-
gation probabilities are then utilized to calculate the diffusion 
distances. These diffusion distances leverage the dynamic Markov 
process to link the Euclidean distance with geometric densi-
ties, highlighting the intrinsic similarities and differences among 
samples in the information manifold, serving as a robust met-
ric for quantifying the relative positions within the information 
space [37]. 

Next, we combine the diffusion distance matrices from all 
candidate methods using harmonic averaging and gamma 
distribution-based normalization to construct a comprehensive 
meta-diffusion-distance matrix. This distance leverages the 
advantages of individual candidate techniques, providing a robust 
representation of the dataset and enabling in-depth exploration 
of complex relationships among samples. For visualization and 
further interpretation, the meta-distance matrix can be reduced 
to a low-dimensional embedding via UMAP, producing plots that 
reveal the dataset’s underlying structure. The overall framework 
of ADM is shown in Fig. 1. 

Data preprocessing 
In our method, the input data comprises a set of feature matrices 
generated by various dimension reduction techniques (N×X ,X ∈ 
R

m×n), known as candidates, where N is the number of candi-
dates, m denotes the total number of samples, and n indicates 
the feature dimension. Initially, we preprocess each matrix X to 
remove outliers potentially skewing the dataset’s true structure, 
thereby preserving the data integrity and consistency. Specifically, 
outliers are first discovered using the method proposed by Knorr 
and Ng [38]. 

For each feature x·k (i.e., the kth column) in X , we calculate the 
interquartile range IQR = Q3 − Q1, where  Q3 is the 75th percentile 
and Q1 is the 25th percentile of x·k. We set the neighborhood 
radius threshold to d = IQR/3 for the method by Knorr and 
Ng [38]. We remove all data points detected as outliers from 
x·k to generate a new vector x̃·k. Our objective is to adjust the 
original x·k to resemble the distribution of x̃·k. To achieve this 
goal, we employ quantile normalization of x·k using x̃·k as the 
reference distribution. The effect of this quantile normalization 
is the outliers in the feature dimension shrink towards the data 
cloud, while non-outlier data points are changed very little. 

Affinity matrix 
After preprocessing, we first calculate the Euclidean distance 
matrix D, in which dij is the Euclidean distance between sam-
ple i and j. To eliminate self-comparisons, we set dii as infinity. 
Subsequently, we convert the distance matrix D into a affinity 
measure S: 

S = 1/Dγ , (1)
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Figure 1. The framework of ADM. It takes inputs from various dimension reduction techniques and generates a meta-dimension reduction and 
visualization output that integrates the strengths of these individual results. 

where γ is the parameter for the power transformation, and S sig-
nifies the sample affinities in the Euclidean space. This non-linear 
scaling mitigates the overwhelming impact of larger distances, 
thus emphasizing local neighborhood structures. 

Adaptive connectivity 
In information diffusion theory, connectivity between nodes is 
crucial for mapping out the routes and patterns of information 
propagation. To accommodate the complexity of the relationships 
between samples and capture multi-scale structure, we introduce 
a two-step procedure to construct a sample connectivity matrix 
A based on the distance matrix. This method considers both the 
overall trends and patterns across the entire dataset, as well as 
the local context surrounding individual samples. Globally, we 
set a global percentile threshold α to identify crucial sample 
interactions across the dataset. For example, setting α = 5% 
designates the shortest 5% of distances in D as globally signif-
icant, with thres = percentile(D, α). If  dij ≤ thres, the connection 
between samples i and j is considered substantial on a global 
scale, indicated by Aij = 1; otherwise, Aij = 0. 

Locally, the percentile threshold β is used to adjust the connec-
tivity of each sample according to its immediate neighbors, with 
thresi = percentile(di·, β) determining local connections, where di· 
represents distances from sample i to all others. If dik ≤ thresi 

(where 0 < k ≤ n, k �= i), we set Aik = 1. Using the two-
step procedure to construct the connectivity matrix helps to 
strike a balance between global exploration and local structure 
sensitivity. 

To establish sample-specific affinity relations, we further gen-
erate a sparse adaptive affinity matrix (U ) by applying an element-
wise multiplication between the affinity matrix S and the connec-
tivity matrix A: 

U = A � S. (2)  

This operation effectively strengthens the connections between 
samples of high similarities while diminishing the influence of 
those between dissimilar samples. In addition, this affinity mea-
sure only accounts for the local distance between samples. Ulti-
mately, we transform these weighted connectivities to a weighted 
undirected graph G = {V, E}, where  V represents individual 

samples, and E denotes the connections defined by matrix A, 
with edge weights given by U . 

Sample-specific diffusion 
We employ the Markov random walk process to explore the 
nonlinear manifold structure of the dataset. The transition 
probabilities in this random walk are calculated through row-
normalization of matrix U , which renders the adaptive affinity 
into a Markov-based diffusion operator P : 

pij = 
Uij∑
k(Uik) 

, for 1 ≤ j, k ≤ n, (3)  

where pij ∈ P denotes the probability of information propagating 
from sample point i to point j. We refer to P as the diffusion oper-
ator, which quantifies the likelihood and intensity of information 
propagation across the weighted graph. 

The time scale τ , depicting the depth of information propa-
gation in a random walk, plays a crucial role in balancing the 
trade-off between capturing local details and global information. 
A smaller value of τ emphasizes local structures, often associated 
with noisy information, while a larger τ captures global structures 
but may smooth out important details. Hammond et al. [39] 
pointed out that nodes within a densely connected graph may 
exchange information more efficiently than their sparsely con-
nected counterparts. Therefore, our approach adaptively selects 
the optimal τ for each sample by evaluating its spatial position 
and connectivity to ensure a balanced representation of local and 
global characteristics. 

To achieve this goal, we initially compute the shortest path 
lengths across all sample pairs within graph G. We record the 
results in a matrix L ∈ Rm×m, where  m is the total number of 
samples, and each element lij ∈ L denotes the shortest path length 
from node i to node j. 

We then calculate the average path length for each sample as 
a metric of its connectivity within the overall graph: 

l̄i = 
1 

m − 1 

m∑
j=1,j �=i 

lij, (4)  

where l̄i denotes the average shortest path length for sample i 
relative to others.
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The diffusion steps of sample i are then set to a value that is 
proportional to its average steps, 

τi = l̄i × ζ , (5)  

where ζ is a pre-determined scaling constant. By employing this 
approach, we ensure the diffusion process is finely tuned to 
reflect the unique connectivity and structural properties of each 
sample. Samples on the periphery of the point cloud are allowed 
more diffusion steps, while samples in the center use fewer 
diffusion steps. This adaptive process enhances the model’s sensi-
tivity to local and global connectivity patterns, facilitating a more 
precise depiction 
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study, we use three variants of this indicator, CCIraw, CCIumap, and  
CCIpca, which measure the preservation of category similarity 
within the raw distance matrix, as well as the feature matrices 
after dimension reduction by UMAP and PCA, respectively. 

Structural consistency index (SCI): the SCI metric evaluates the 
structural fidelity of data after dimension reduction relative to the 
original, noise-free structure: 

SCI(Do,Dr) = 
1 
m 

m∑
i=1

〈do, dr〉
|do| · |dr| , (11) 

where Do and 
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Figure 2. Comparative Performance of the ADM and Meta-Spec Methods on Simulated Data. (A–F) CCI values of ADM and Meta-Spec on simulation data 
of different dimension-reduction outputs. (A–C) The CCIraw, CCIumap, and  CCIpca under different noise conditions, given fixed ranking parameters r. (D–F)  
Giving different groups of noise, the CCIraw, CCIumap, and  CCIpca under varying ranking parameters. (G–I) The 15 comparative results of the Structural 
Consistency Index (SCI) across varying signal strengths for the Smiley Dataset, Mammoth Dataset, and Gaussian Dataset, respectively. HLLE is omitted 
due to very low consistency. 

Meta-Spec method. Fig. 2(B) and 2(C) demonstrates the results 
after applying dimension reduction to the distance matrices 
using UMAP and PCA, respectively. The results indicate that while 
both ADM and Meta-Spec experience a decrease in CCI scores 
with an increase in low-quality group sets, ADM consistently 
achieves higher CCI scores than Meta-Spec across various levels of 
noise. 

Figure 2(D–F) displays the CCI values obtained by the two meta-
dimension reduction methods at different r values, ranging from 
1 to 20. Simultaneously, we randomly selected ten numbers from 
the range of 1 to 100 as the number of low-quality sets. It is 
observed that the CCI values for both ADM and Meta-Spec decrease 
as r increases, which is expected as the value of r determines 
how many neighbors are considered. However, it is evident that 
ADM outperforms Meta-Spec in terms of CCIraw, CCIumap, and  CCIpca 

across all tested r settings. 
These experimental findings directly demonstrate ADM’s supe-

rior capability in mitigating the impact of noise from low-quality 
candidate methods while preserving signal from high-quality 
methods. More fundamentally, since CCI measures the consis-
tency between sample distances and category labels, the results 
essentially indicate that the integration of diffusion distance 
matrices in ADM better captures the distribution of the original 
data compared to the integration of Euclidean distance matrices 
in Meta-Spec. 

Simulation to test structure restoration 
Dimension reduction plays a crucial roal in retaining essential 
and representative data features while mitigating complexity. 

In some specific fields, such as single-cell data analysis, high-
noise environments pose significant challenges to dimen-
sion reduction techniques in ext.
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Figure 3. The Quantitive analysis results of real data. (A) The ARI and NMI results on real dataset. (B) The ASW score across real datasets. The silhouette 
width score of each dataset on different clusters can be found in Fig. S3 in the supplementary materials. (C) The CCI results across various datasets. 

In the experiment, we introduce varying noise levels by 
adjusting the signal-to-noise ratio ϕ to simulate realistic high-
dimensional, high-noise data. Specifically, we randomly select 
20 values of ϕ from [0.0001, 1] to generate a series of noise 
Zi, i = 1, ..., 20 for each dataset. For the Smiley dataset {Y1 

Zi
}i=1,...,20, 

we set the total number of observation points n as 550 and 
the feature dimension p as 300. Similarly, for the Mammoth 
{Y2 

Zi
}i=1,...,20 and Gaussian Mixture dataset {Y3 

Zi
}i=1,...,20, we  set  p to 

be 300, and 500, respectively, and n at 1000, and 900, respectively. 
Then, we apply 12 individual dimension reduction techniques 

(including PCA, UMAP, PHATE, etc.) and a meta-dimension reduc-
tion technique Meta-Spec as comparative methods. We test some 
of these individual techniques with 2 different parameter settings, 
and finally obtained 15 individual candidates. ADM and Meta-
spec use these 15 candidates as inputs. We evaluate the perfor-
mance of ADM, against these 15 comparative methods using the 
SCI metric. 

Figure 2(G–I) displays the performance comparison of 16 dif-
ferent methods applied to three distinct datasets {Y1 

Zi
}i=1,...,20, 

{Y2 
Zi

}i=1,...,20, and  {Y3 
Zi

}i=1,...,20, respectively. Each boxplot shows the 
distribution of the achieved SCI values under 20 different levels 
of noise. The results show that meta-visualization techniques, 
including ADM and Meta-Spec, outperform individual dimension 
reduction methods in maintaining the core structure of the data. 
Across the three data sets, the SCI values of ADM are higher than 

those of Meta-Spec. Notably, ADM is characterized by narrower 
boxplots, which is more pronounced in the Mammoth and Gaus-
sian Mixture datasets, indicating its superior consistency across 
datasets with varying levels of noise. This highlights ADM’s strong 
capacity for noise reduction, signal detection, and accurate recon-
struction of the data’s original structure through its dynamic 
information diffusion mechanism. 

Results on real data 
To comprehensively evaluate the performance of our proposed 
ADM method in dimension reduction and visualization, we 
conducted an extensive analysis across eight diverse publicly 
available datasets. These datasets span a wide range of single-
cell and spatial omics modalities, including single-cell RNA 
sequencing data from various tissues and species, multi-omics 
data combining scRNA-seq and miRNA-seq, single-cell ATAC-seq 
data, metabolomics and spatial proteomics data. This diverse 
selection enables us to assess the versatility and effectiveness 
of ADM in handling various types of high-dimensional biological 
data. 

Our analytical approach involves a systematic comparison 
of ADM with Meta-spec and 12 individual dimension reduction 
methods. For each dataset, we initially applied 12 individual tech-
niques with varying parameter settings, generating 16 candidate 
outputs that we save for further analysis. Subsequently, we utilize
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Figure 4. Visualization of the Oihane dataset. The abbreviations in the figure correspond to their full names: Astro: astrocytes, Endo: endothelial, Epend: 
ependymal, Hyb: hybrid, Micro: microglia, Neur: neurons, Oligo: oligodendrocytes. Due to space limitations, we present the outcomes of 16 randomly 
selected individual techniques. The complete comparative results can be found in Fig. S7 in the supplementary materials. 

meta-dimension reduction methods, including ADM and the com-
parison method Meta-Spec, to integrate these results. The overall 
accuracy in terms of preserving between-cell type differences 
based on true cell labels is summarized by ARI and NMI, which 
are calculated after UMAP dimension-reduction of the respective 
distance matrices (Fig. 3A). Additionally, we employed the ASW 
score to evaluate clustering quality, measuring both intra-cluster 
cohesion and inter-cluster separation, shown as Fig. 3(B). To  avoid  
artifacts caused by clustering techniques, we also analyzed the 
preservation of true cell class information in the distance matri-
ces before and after further dimension reduction (Fig. 3C). We 
discuss the detailed results for each of these real datasets in the 
following sub-sections. 

Oihane dataset: mouse midbrain and striatum scRNA-seq 
data. 
The first dataset is the single-cell RNA sequencing data of the 
mouse midbrain and striatum, named Oihane [40]. This dataset 
comprises expression profiles from 1337 single cells and 13 446 
genes, encompassing various cell types including oligodendro-
cytes, microglia, neurons, astrocytes, endothelial cells, ependymal 
cells, and hybrid cells. After filtering for genes expressed in at least 
20% of cells, we retained 217 genes for downstream analysis. 

Figure 4 illustrates the visualization outcomes of various indi-
vidual dimension reduction techniques and two meta-reduction 

techniques applied to the Oihane dataset. Among the individ-
ual techniques, UMAP and t-SNE excel in separating different 
categories, with t-SNE exhibiting poor intra-class compactness. 
PHATE, Isomap, and LEIM capture the global manifold structure of 
the data but are less effective in differentiating between cell types. 
In contrast, meta-dimension reduction techniques can leverage 
the strengths of individual reduction techniques to maintain 
proximity relationships among data points while revealing the 
overall manifold structure of the dataset. 

In comparison to Meta-Spec, ADM demonstrates superior per-
formance by further expanding the distance between cell types 
while simultaneously maintaining intra-class tightness. In the 
visualization, the distances produced by Meta-Spec tend to identify 
oligodendrocytes as two distinct categories, one of them overlap-
ping with microglia, whereas the diffusion distance generated by 
ADM closely arranges oligodendrocyte cells and creates clear sep-
aration from other categories. For Endothelial and neurons, ADM 
exhibits a clear boundary, whereas in the Meta-Spec visualization, 
these two cell types overlap with blurred boundaries. Additionally, 
in Meta-Spec, some astrocytes intertwine with neurons in the 
visualization, while the ADM results form two distinct clusters 
with clear boundaries between them. 

Additionally, Fig. 3(A) demonstrates that ADM is superior in 
clustering accuracy. It offers significantly higher clustering pre-
cision with an ARI of 0.7314 and NMI of 0.7331 compared to
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Figure 5. Visualization of Gutierrez dataset. The complete comparative results can be found in Fig. S8 in the supplementary materials. 

the ARI (0.4070) and NMI (0.5517) of Meta-Spec. ASW score of 
ADM is nearly 0.65, substantially higher than Meta-Spec’s score of 
approximately 0.35, indicating better-defined and more cohesive 
clusters. Furthermore, Fig. 3C illustrates that ADM consistently 
outperforms Meta-Spec in preserving category similarities. This 
suggests that the adaptive diffusion distance produced by the 
proposed ADM can serve as a robust representation of cells for 
subsequent analysis. 

Gutierrez dataset: human lymphocyte population. 
The dataset is single-cell RNA sequencing (scRNA-seq) data from 
human lymphocyte populations [41]. The original data contains 
2,036 cells and 33,694 genes. After filtering for genes expressed 
in at least 30% of cells, we retained 631 genes for downstream 
analysis. This dataset includes various cell types such as iNKT, 
MAIT, γ δT cells, NK cells, and CD4+ and CD8+ T cells, which 
demonstrated a high degree of functional and phenotypic 
similarity. 

As shown in Fig. 5, current individual dimension-reduction 
techniques such as UMAP, t-SNE, iMDS, and PHATE face signifi-
cant challenges in distinguishing these subtypes. They struggle 
to segregate any one subtype distinctly or allocate these cells to 
appropriate categories. 

ADM can reveal subtle differences between cell subtypes. 
In the visualization analysis, we identified four clear clusters 
representing a continuum of lineages from adaptive to innate 
characteristics. Cluster 1 primarily consists of adaptive T cells 

(CD4+ and CD8+) expressing molecules related to antigen 
presentation and specificity recognition. Cluster 2 encompasses 
iNKT, MAIT, and Vδ2 T cells, subtypes that express genes 
associated with rapid immune responses, reflecting their innate-
like T cell features. Cluster 3 includes λδ1 and  λδ2 T cells, which 
are characterized by gene expressions related to innate immune 
surveillance and cytotoxic functions. Cluster 4 is composed of 
NK cells, whose expression profiles are directly linked to innate 
immune responses. 

Compared to the Meta-Spec method, which could partially dis-
tinguish some cell subtypes, ADM is notably clearer in terms of 
category boundary definition and inter-class distance. The ARI 
and NMI values of ADM are slightly higher than those of Meta-Spec 
(Fig. 3A). By leveraging the mechanism of information diffusion, 
ADM not only enhanced the accuracy of cell type identification 
but also provided new perspectives on the functional balance 
of immune cells in immunological defense, offering important 
insights for a deeper understanding of the complexity of the 
immune system and the development of targeted immune thera-
peutic strategies. 

Quake dataset: mixed cell types of human immune and 
respiratory systems. 
The dataset from Isakova et al. [42] initially comprised 1,676 
single cells profiled across 23,341 genes. We applied a filtering 
criterion to retain genes expressed in at least 25% of the cells, 
resulting in a final set of 3,431 genes for subsequent analyses.
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Figure 6. Visualization of the Brain5k dataset. The complete comparative results can be found in Fig. S9 in the supplementary materials. 

It includes a diverse range of cell types, including stromal cells, 
lung epithelial cells, lung endothelial cells, B cells, leukocytes, 
monocytes, T cells, classical monocytes, ciliated columnar cells of 
the tracheobronchial tree, myeloid cells, and natural killer cells. 
These cell types represent various components of the human 
immune and respiratory systems. 

Figure 7 shows the visualization of ADM and representative 
comparison methods. TSNE, LEIM, and UMAP demonstrate their 
ability to distinguish T cells and lung endothelial cells from 
other cell types with noticeable clarity. However, the intra-class 
aggregation of these individual methods is not as good as meta-
dimension reduction methods Meta-Spec and ADM. 

Compared to Meta-Spec, ADM exhibits more apparent separa-
tion between cell types such as lung epithelial cells, epithelial cells 
and stromal cells while maintaining higher inter-class separation 
and intra-class cohesion. Particularly, the distinction between 
classical monocyte and monocyte is more pronounced in ADM’s 
visualization. 

Quantitative metrics, including ARI and NMI, further support 
the performance differences between ADM and Meta-Spec. ADM 
demonstrates an ARI of 0.32 and an NMI of 0.526, whereas Meta-
Spec exhibits an ARI of 0.30 and an NMI of 0.510. Additionally, ADM 
also achieves higher CCI scores than Meta-Spec on this dataset. 

CCLE dataset: cancer cell lines bulk sequencing data. 
The CCLE dataset [43] is a comprehensive cancer cell line 
resource, encompassing over 20 different types of cancer cell lines 

derived from a variety of tissues, including skin, central nervous 
system, soft tissue, ovary, blood, and lymphoid tissues. Integrating 
multimodal data such as gene expression, micro-RNA expression, 
and protein expression, CCLE offers a rich information resource 
for the study of cancer mechanisms, identification of biomarkers, 
and discovery of new therapeutic targets. In this work, we 
focused particularly on the gene and micro-RNA expression data 
provided by CCLE, analyzed as CCLE_mRNA and CCLE_miRNA, 
respectively. The CCLE_mRNA dataset details the expression 
levels of genes within different cancer cell lines, while the 
CCLE_miRNA dataset provides the expression profiles of micro-
RNAs, using bulk RNA sequencing technique. We analyzed mRNA 
and micro-RNA expression sequencing results from 901 cell lines 
within CCLE, which include 14 997 mRNA and 700 micro-RNAs, 
respectively. 

As shown in supplementary Fig. S5 and Fig. 8, dimension-
reduction and visualization based on mRNA and miRNA expres-
sion data indicate that most clustering methods effectively differ-
entiated cancer cell lines derived from blood and lymphoid tissues 
from others. Meta-reduction techniques, especially ADM, exhibits 
excellent intra-group compactness, reflecting cellular similarity 
at the molecular level. Single dimension-reduction techniques, 
although capable of identifying blood and lymphoid cells, result 
in more blurred cluster boundaries and lower overall density 
separation. 

In the visualization of central nervous system cells, the output 
of ADM is clustered into a tight group, whereas the Meta-Spec
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Figure 7. Visualization of the Quake dataset. The abbreviations in the figure correspond to their full names: BC: B cell, CCCT: ciliated columnar cell 
of tracheobronchial tree, ClMono: classical monocyte, EpLung: epithelial cell of lung, Leuk: leukocyte, LungEnd: lung endothelial cell, Mono: monocyte, 
Myel: myeloid cell, NK: natural killer cell, Strom: stromal cell, TC: T cell. The complete comparative results can be found in Fig. S10 in the supplementary 
materials. 

technique displays more dispersed data points. ADM also demon-
strates superior performance in clustering colon cells, whereas 
the Meta-Spec technique failed to differentiate this cell category 
distinctly. These observations suggest that ADM is more effective 
in maintaining intrinsic cellular similarity. Quantitatively, the 
ADM technique outperformed Meta-Spec for mRNA, with an ARI of 
0.3123 and a NMI of 0.5452 (Fig. S4 of supplementary materials), 
compared to the ARI of 0.2664 and NMI of 0.5019 for Meta-Spec 
(Fig 3). For CCLE_miRNA, ADM’s ARI is 0.2233, and NMI is 0.4015, 
surpassing Meta-Spec’s ARI of 0.2081 and NMI of 0.3652. 

Performance of ADM on Other types of omics data 
To further evaluate the broad applicability of ADM across vari-
ous omics datset, we analyzed its performance on three distinct 
datasets: ATAC-seq, metabolomics, and spatial proteomics data. 
Brain5k Dataset: the scATAC-seq of mouse cortical neurons 
The Brain5k dataset consists of 10x ATAC-seq data from adult 
mouse cortical neurons [44], comprises 2317 cells with 155 093 
features, categorized into 10 distinct cell types. As shown in Fig. 6, 
traditional dimension reduction methods (e.g., Isomap, Sammon 
mapping, UMAP) struggle to effectively differentiate cell types, 
while methods like kPCA, MDS, t-SNE, and PHATE only broadly dis-
tinguish major cell groups. In contrast, meta-dimension reduction 

methods like Meta-Spec and ADM successfully capture the hierar-
chical relationships among cell types. These methods clearly sep-
arate major neuronal subtypes (such as L2/3 IT, L4, L6 CT) while 
maintaining continuity between closely related cell types. ADM 
further refines these results, precisely distinguishing annotated 
cell types and revealing potential developmental and functional 
associations,such as the gradual relationships among L2/3 IT, L4, 
L5 IT, and L6 CT neurons, aligning with their spatial arrangement 
and functional connections within the cortex. 

Quantitative metrics further support these visual observations. 
ADM’s ARI of 0.5152 is significantly higher than Meta-Spec’s 0.3443. 
Similarly, ADM’s NMI of 0.5343, compared to Meta-Spec’s 0.5018, 
better reflects its efficacy in preserving the information within 
the dataset. 
Hbrc dataset: the metabolomics data of Human Breast Cancer To 
demonstrate ADM’s versatility across different omics modalities, 
we analyzed a human breast cancer metabolomics dataset 
[45], comprising 1327 samples with 489 features, categorized 
into 7 different cancer subtypes or stages. The visualization 
(Supplementary Fig. S6) shows that ADM technique tends to 
cluster the basal and claudin-low subtypes closely, which is 
consistent with their shared triple-negative status. Similarly, 
Luminal A (LumA) and Luminal B (LumB) subtypes show 
proximity in the reduced space, reflecting their underlying
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Figure 8. Visualization of the CCLE_miRNA dataset. The abbreviations in the figure correspond to their full names: AG: autonomic ganglia, Bo: bone, Br: 
breast, CNS: central nervous system, En: endometrium, Fb: fibroblast, HL: haematopoietic and lymphoid tissue, Ki: kidney, LIN: large intestine, LIV: liver, 
LUN: lung, Oe: oesophagus, Ov: ovary, Pa: pancreas, Sk: skin, STI: soft tissue, STO: stomach, Th: thyroid, UAT: upper aerodigestive tract, UT: urinary tract.  
The complete comparative results can be found in Fig. S11 in the supplementary materials. 

hormonal similarities (both typically ER+ and/or PR+). These 
observations demonstrate ADM’s ability to capture and represent 
biologically relevant relationships in the reduced dimensional 
space, potentially aiding in the identification of metabolic 
signatures associated with different breast cancer subtypes. 
Spleen Dataset: the spatial proteomics data of mouse spleen The 
spatial proteomics data from mouse spleen [46] comprises 2568 
spots and 21 proteins. Visualization results show that traditional 
techniques struggle to differentiate between various categories or 
represent their relationships effectively (Fig. 9). In contrast, meta-
dimensionality reduction methods, Meta-Spec and ADM not only 
distinguish different immune cell types but also capture their 
spatial developmental relationships. Marginal Zone Macrophages 
are visually positioned as a bridge between Red Pulp Macrophages 
in the red pulp and Marginal Metallophilic Macrophages near 
the white pulp, reflecting their intermediate location in the 
spleen. Furthermore, ADM clearly separates T cells and B 
cells in the visualization, further demonstrating its robustness 
in capturing underlying data structures through information 
diffusion. 

Across all three datasets, visualization results and quanti-
tative analysis using ARI, NMI, ASW, and  CCI metrics consis-
tently demonstrate ADM ’s superior performance over Meta-Spec 
(Fig. 3 and Figs S2, S4 of supplementary materials). ADM excels 
in revealing intra-class compactness, inter-class differentiation, 

and preserving category consistency. In summary, while Meta-Spec 
provides valuable data insights, ADM demonstrates superior per-
formance in clustering purity and fidelity of data representation. 

Efficacy of ADM in single-cell annotation 
To assess the practical utility of the ADM method, we analyzed 
several single-cell transcriptomics datasets, which comprised var-
ious cell types with initially concealed labels. The dimension 
reduction and visualization were executed as outlined in Sec-
tion 3.3. Subsequently, we applied the DBSCAN algorithm [47] 
for density-based spatial clustering to delineate distinct clusters 
within the two-dimensional projection. We hypothesized these 
clusters correspond to either homogeneous cell types or similar 
cellular states. Differential expression analysis across these clus-
ters was conducted using Seurat [48], providing the foundation for 
each cluster’s annotation. 

Figure 10(A) and 10(B) shows that ADM highlighted the upreg-
ulated expression patterns of the MAG and APOD genes in Cluster 
1, both identified as markers for oligodendrocyte cells [49–54]. 
This suggests that this cluster predominantly consists of oligo-
dendrocyte cells, aligning with experimental findings from the 
dataset [40]. However, alternative dimension reduction methods 
depicted more dispersed expressions of MAG and APOD across 
clusters. Additionally, in Clusters 5 and 6, differential expression 
patterns of PLPP3 (Fig. 10C) and PLTP (Fig. 10D) were observed,
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Figure 9. Visualization of the Spleen dataset. The complete comparative results can be found in Fig. S12 in the supplementary materials. 

which are markers for astrocytes [ 51] and endothelial cells [52], 
respectively. These patterns are consistent with the cell annota-
tion labels [40]. 

ADM’s ability is further corroborated by the precise align-
ment of key gene expression with established cellular markers, as 
demonstrated in the visualized clusters. This effectively validates 
ADM’s robust capability to perform stable dimension reduction 
and highlights its effectiveness in preserving the intricate struc-
tures of biological data. 

Discussion and conclusion 
In this study, we presented ADM, a novel meta-dimension 
reduction method designed to tackle the challenges associated 
with comprehending and visualizing complex, high-dimensional 
datasets. 

ADM leverages graph diffusion theory and integrates outputs 
from multiple dimension reduction methods, addressing three 
major limitations of existing approaches while providing a more 
robust framework for data analysis and visualization. 

• First, ADM excels at capturing both local and global 
structures within the data. Its adaptive diffusion mechanism 
dynamically selects the optimal diffusion time scale for 
each sample, enabling it to represent intricate multi-scale 
structures more effectively. 

• Second, ADM is proficient in mitigating noise and distor-
tions. By integrating information from diverse dimension 
reduction techniques and applying a dynamic Markov pro-
cess, it reduces the influence of noise and method-specific 
distortions, leading to more reliable outcomes. 

• Third, ADM reveals dynamic nonlinear structures by trans-
forming results from Euclidean space into an information 
space. This transformation allows ADM to uncover intrinsic 
nonlinear manifolds and capture dynamic geometric rela-
tionships between samples—interactions that traditional 
static methods often fail to identify. 

ADM’s performance has been extensively evaluated on both 
simulated and real-world datasets, spanning various domains, 
include single-cell RNA sequencing (scRNA-seq) and other omics 
data such as proteomics, metabolomics, and epigenomics. On 
the one hand, findings from simulated datasets demonstrated 
ADM’s efficacy in mitigating interference from low-quality 
outputs and restoring the underlying true data structure. On 
the other hand, extensive results from real-world datasets 
confirmed that ADM generates higher-quality low-dimensional 
representations, providing clearer separation between biological 
groups and revealing more meaningful patterns across various 
omics data types compared to existing dimension reduction 
methods. 

However, ADM faces two main challenges that warrant future 
research. First, due to the necessity to process multiple dimension
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Figure 10. Visualization of marker genes on the dimensionality reduction results of kPCA, iMDS, t-SNE, UMAP, meta-spec, and ADM. (A) Visualization of 
the distribution of MAG in the Oihane dataset. (B) Visualization of the distribution of APOD. (C) Visualization of the distribution of PLPP3. (D) Visualization 
of the distribution of PLTP. 

reduction results and perform graph diffusion, the computa-
tional cost of ADM may be higher than that of single dimension 
reduction methods. This trade-off between computational com-
plexity and representation quality should be considered when 
applying ADM to very large datasets. Second, while ADM has the 
ability to discern and prioritize high-quality outputs, it can still 
be influenced by extreme inputs, such as the HLLE results. Thus, 
efforts to improve the computational efficiency of ADM, particu-
larly for large-scale datasets, through algorithm optimization or 
parallel computing techniques would be beneficial. Additionally, 
enhancing ADM’s robustness against extreme inputs by refining 
the algorithm to more effectively identify and mitigate the influ-
ence of outlier results would further improve its performance and 
reliability. 

In conclusion, ADM represents a promising approach in meta-
dimension reduction, offering a robust, adaptive, and comprehen-
sive solution for researchers analyzing complex high-dimensional 
datasets. By addressing key challenges in capturing multi-scale 
structures, mitigating noise, and revealing dynamic nonlinear 
relationships, ADM enhances our ability to visualize intricate 
data patterns across various scientific domains. With continued 
development and optimization, ADM has the potential to become 
a powerful, general-purpose tool for high-dimensional data 
analysis. 

Key Points 
• We develop a novel meta-dimension reduction method 

called ADM, which utilizes graph diffusion theory and 
dynamic Markov processes to integrate multiple dimen-
sion reduction techniques, enhancing visualization and 
data analysis. 

• ADM adapts the time scale of information diffusion 
according to sample-specific characteristics, transform-
ing spatial metrics into dynamic diffusion distances to 
explore the dataset’s intricate patterns and structures. 

• ADM demonstrates superior robustness in analyzing 
high-dimensional and noisy datasets compared to cur-
rent techniques. 

• Extensive evaluations on simulations and diverse public 
omics datasets demonstrate ADM’s capability to achieve 
clearer separation among different biological conditions 
and groups, thus improving biological interpretations 
and insights. 
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Supplementary data is available at Briefings in Bioinformatics 
online. 
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Availability of data and materials 
The ADM package source code is available at https://github. 
com/Seven595/ADM. For full result reproduction, including 
code and datasets, please refer to https://github.com/Seven595/ 
ADMReproduce. The datasets presented in this study can be also 
acquired from the following websites or accession numbers: (1) 
the mouse midbrain and striatum scRNAseq data (GSE148393); 
(2) the human lymphocyte population dataset (GSE81772); (3) 
the mixed cell types of human immune and respiratory systems 
(GSE151334); (4) the spatial proteomics data from mouse spleen 
data (GSE198353). (5) the cancer cell lines bulking sequencing 
data (https://depmap.org/portal/data_page/?tab=allData); (6) the 
scATAC-seq data of mouse cortical neurons is available at http:// 
download.gao-lab.org/GLUE/dataset/10x-ATAC-Brain5k.h5ad ; (7)  
the metabolomics data of human breast cancer is available at 
https://github.com/EddieFua/medNet. 
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