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Abstract 
Studying the outcomes of genetic perturbation based on single-cell RNA-seq data is crucial for understanding genetic regulation 
of cells. However, the high cost of cellular experiments and single-cell sequencing restrict us from measuring the full combination 
space of genetic perturbations and cell types. Consequently, a bunch of computational models have been proposed to predict unseen 
combinations based on existing data. Among them, generative models, e.g. variational autoencoder and diffusion models, have the 
superiority in capturing the perturbed data distribution, but lack a biologically understandable foundation for generalization. On 
the other side of the spectrum, Gene Regulation Networks or gene pathway knowledge have been exploited for more reasonable 
generalization enhancement. Unfortunately, they do not reach a balanced processing of the two data modalities, leading to a degraded 
fitting ability. Hence, we propose a dual-stream architecture. Before the information from two modalities are merged, the sequencing 
data are learned with a generative model while three types of knowledge data are comprehensively processed with graph networks 
and a masked transformer, enforcing a deep understanding of single-modality data, respectively. The benchmark results show an 
approximate 20% reduction in terms of mean squared error, proving the effectiveness of the model. 
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Introduction 
After centuries of investigation and revelation in biology, human 
beings are still haunted with a fundamental problem about how 
a cell, the minimal unit of life, works in our body. Besides the 
static portraits of the molecular distribution inside, such as the 
genome, transcriptome, proteome, and metabolome, a more com-
plex attribute of a cell is how these molecules interact with each 
other, which gives rise to the dynamic and diverse functions of 
cells. Currently, genetic perturbation is a crucial method to study 
the genetic interactions and their impact on cellular functions 
[1] and the resulted discoveries are serving as new theoretical 
foundations for biotechnology and disease treatment [2]. 

Thanks to the rapid development of Single-cell RNA sequenc-
ing (scRNA-seq) methods [3, 4], such as high-throughput pertur-
bational screens [5] and CRISPR-based perturbational screens [6], 
which have made notable advancements and gained widespread 
adoption [7], scientists can quickly sample the downstream out-
comes on cell state experimentally[8]. However, due to the vast 
number of human cells and the explosive combination of pertur-
bations, studying cell responses under all possible perturbations 
purely through lab experiments seems to be impossible in terms 
of time and manpower costs. 

Fortunately, because of this immense sample size compared to 
bulk data, single-cell data are well suited for modeling by deep 
learning techniques in various kinds of tasks, e.g. segmentation 
[9, 10], clustering [11], and drug effect prediction [12]. Among 
them, modeling cellular response by predicting gene expressions 
after perturbation are also of significance, including both 
genetic perturbation (knockout or overexpression) and chemical 
perturbations [13]. For instance, scGen [14] employs a variational 
autoencoder (VAE) to predict the perturbation response of 
new cell types by estimating the perturbation in latent space. 
scVAEDer [15] proposes a scalable deep-learning model that 
combines the power of VAEs [16] and deep diffusion models 
[17] to learn a meaningful representation that captures both 
global semantics and local variations in the data. scPreGAN [18] 
integrates autoencoder and Generative Adversarial Network [19] 
to predict the response of single-cell expression to perturbation. 
And GenKI [20] adapts a Variational Graph Autoencoder model to 
predict shifting patterns in gene regulation caused by gene Knock 
Out(KO) perturbation in an unsupervised manner. 

Although generative models are good at capturing the 
underlying distribution of gene expressions; unfortunately, these 
pure data-driven models lack a reliable generalization ability
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neither intuitively nor empirically. On the one hand, we can not be 
informed from the black-box model that whether it has learned 
reasonable genetic relationships, which is a favored biological 
foundation of the prediction. On the other hand, the amount of 
tested unseen perturbations is relatively tiny compared to the 
entire possible space. 

Since a reliable evaluation on massive combinations of possible 
perturbations is costly, many researchers have turned to intu-
itively more generalizable approaches, i.e. forcing the model to 
predict based on biological knowledge. Kenji et al. [21] utilizes Gene  
Regulatory Networks (GRNs) [22] inferred from data to model 
perturbation response, but the fitting ability of the model is 
limited with a simple architecture. Wu et al. [23] improve the pre-
diction performance by integrating GRNs into a deep variational 
causal inference framework. However, it could only predict the 
outcomes of single perturbations, whereas multiple perturbations 
are more representative of real-world experiments. Roohani et al. 
[24] propose GEARS to infer multi-gene perturbation response 
by directly stacking the unperturbed gene expressions to post-
perturbation embeddings which are learned from Gene Ontology 
(GO) and gene co-expressions respectively through Graph Neural 
Networks(GNNs). However, it integrates information among genes 
after the GNN only through a few dense layers, and then directly 
adds the unperturbed gene expressions to the graph processed 
perturbation gene embeddings to obtain the final predictions, 
which limits the model’s ability to capture the latent distribution 
and uncertainty of gene expressions, reducing its generalization 
capability. 

To overcome the aforementioned challenges and improve 
model performance, we propose a novel Biological knowledge 
guided Dual-Stream Neural Network (BioDSNN) model to predict 
multi-gene perturbation response. In contrast to GEARS, our 
model introduces a data-driven stream that leverages generative 
models to capture the intrinsic distribution of gene expressions 
within cells. Simultaneously, the knowledge-driven stream 
incorporates three distinct types of biological information to 
guide the model, and an attention encoder is utilized to enhance 
the understanding of the relationships between genes and 
perturbations. The proposed model has demonstrated a higher 
level of accuracy in predicting the outcomes of perturbations 
in individual genes or gene combinations, even without prior 
experimental perturbation data. 

Materials and methods 
Problem Formulation and Model Framework 
This work aims to enhance the performance of novel perturbation 
response prediction. Given a perturbation dataset of n cells D ={(

gi, pi
)}n 

i=1, where  gi ∈ Rm is the gene expressions vector of cell 
i with m genes, and pi =

(
Pi 

1, ..., Pi 
z

)
is the set of perturbations of 

size z performed on cell i. The objective of BioDSNN is to predict 
the perturbed gene expressions outcome, which is a new gene 
expressions vector g. 

For the data-driven stream, BioDSNN first collects the unper-
turbed gene expressions data and initialize a gene expressions 
matrix X ∈ Rn×m, where  n is the number of cell samples and 
m is the number of genes. The matrix is subsequently regen-
erated by reparameterizing it from the latent space through a 
VAE flow. 

In the knowledge-driven stream, gene and perturbation 
embeddings are initialized with dimensions n × m × d and z × d, 
respectively. A GNN encoder, parameterized by θg, augments each 

gene embedding by integrating information from Ggene, while 
another GNN encoder, θp, enhances perturbation embeddings 
using Gpert. BioDSNN then combines specific perturbation 
embedding with each of the gene embeddings, and the resulting 
postperturbation gene embeddings are processed through a 
transformer-like masked encoder for further refinement. Since 
the postperturbation gene embeddings need to be added 
to the gene expressions matrix in the data-driven stream, 
BioDSNN sums over the last dimension of the postperturbation 
gene embeddings, reshaping them into n × m. Finally, the 
postperturbation gene embeddings is added to the n × m 
gene expressions matrix to generate the final gene-specific 
predictions. 

We adopt the gene relationship graph and perturbation rela-
tionship graph from GEARS. Following this, GEARS employs a 
simple cross-gene MLP layer to process the postperturbation gene 
embeddings. In contrast, we incorporate the Reactome pathway 
database into a masked attention encoder. This encoder cap-
tures the perturbation and its relationships to other genes, gen-
erating an augmented Postperturbation gene embeddings. This 
approach enables the model to better capture complex features 
and enhance its representational capacity. Additionally, while 
GEARS directly adds the unperturbed gene expressions to the 
postperturbation gene embeddings, we utilize a VAE during this 
process to regenerate the unperturbed gene expressions, which 
helps capture the appropriate data distribution and the uncer-
tainty more effectively. 

Our methods overview is shown in Fig. 1. 

Data-driven Stream 
Compared to GEARS, our model incorporates a novel Data-driven 
Stream. In GEARS, after obtaining the augmented postperturba-
tion gene embeddings through a GNN, it is directly added to the 
gene expressions in the unperturbed state. Instead, we aim to 
utilize a VAE to capture the uncertainty and variability inherent 
in the gene expressions data, which is demonstrated as effective 
in subsequent experiments. 

We apply it to obtain representative embedding for raw gene 
expressions, and then only regenarate the gene expressions that 
are originally non-zero values in the control group. 

VAE measures the divergence between the learned distribution 
of the latent variables (given the raw gene expressions data) and 
a prior distribution, typically a Gaussian prior distribution N(0,1). 
Specifically, VAE maximizes the lower bound on the evidence, 
known as the Evidence Lower Bound(ELBO), as the marginal 
likelihood is intractable, the variational lower boundary of the 
marginal likelihood of input data is the objective function of VAE. 
The marginal likelihood is obtained by summing of the marginal 
likelihood of distinct data points as below: 

log pθ

(
x(1), . . .  , x(N)

) = 
N∑

i=1 

log pθ

(
x(i)

)
(1) 

The marginal likelihood of distinct data points can be reformu-
lated as follows: 

log pθ (x(i) ) ≥ LELBO(θ , φ; x(i) ) 

= −DKL(qφ(z | x)‖pθ (z)) 

+ Eqφ (z|x(i))[log pθ (x | z)] (2)  

LELBO = Eqφ (z|x(i)) [− log qφ(z | x) + log pθ (x | z)] (3) 
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Figure 1. Illustration of an interpretable dual-stream framework. (a) The main architecture of BioDSNN consists of two streams. In the data-driven 
stream, the input is the unperturbed gene expressions, which are encoded and resampled during training and then regenerated for the final prediction. 
In the knowledge-driven stream, gene and perturbation embeddings are initialized and fed into a GNN, enhanced by gene correlations and perturbation 
relationships. The specific perturbation embeddings are then combined with each gene embedding. Next, the postperturbation gene embeddings are 
processed by a transformer-like masked encoder, with the mask constraining attention to relevant genes. Since the postperturbation gene embeddings 
need to be added to the gene expressions matrix in the data-driven stream, BioDSNN sums over the last dimension of the postperturbation gene 
embeddings, reshaping them into n × m. The postperturbation gene embeddings then combine with the regenerated gene expressions matrix to 
produce the final gene-specific predictions. (b) The attention mask is constructed by feeding the gene set into ReactomeNet to identify gene pairs 
in the same pathway. For these pairs, the corresponding positions in the mask matrix are set to zero, while all other positions are set to negative 
infinity, preventing attention computation in the Knowledge-driven stream’s Attention Encoder because of the softmax function. For genes not 
in the database, Pearson correlations with other genes are calculated, and only correlations above a certain threshold have their positions set 
to zero. 

The likelihood of the input data x, given the latent variable z, is  
represented as pθ (x|z). 

LKL = DKL = 
1 
2 

d∑
j=1

(
1 + log(σ 2 

j ) − μ2 
j − σ 2 

j

)
(4) 

DKL is the Kullback–Leibler divergence between the approximate 
posterior and the prior of the latent variable z. qφ(z | x) is the 
approximate posterior distribution over the latent variable z with 
mean μ and variance σ 2. pθ (z) is the prior distribution over the 
latent variable z, typically assumed to be N (0, I). μj and σj are the 
mean and standard deviation of the jth dimension of the latent 
variable z in the approximate posterior. d is the dimensionality of 
the latent variable z. 

The output of the decoder is a new representation of gene 
expressions data. And the scRNA-seq data are characterized 
by its high sparsity, with critical cell information primarily 
concentrated in the non-zero expression values [25]. In our 

approach, we retain the original zero values in the gene 
expressions data and regenerate only the non-zero portions. 
This method, though simple, effectively addresses the long-tail 
effect in genome-wide expression predictions, as each cell type 
transcribes only a small fraction of genes to fulfill its specific 
functions. 

Knowledge-driven Stream 
To improve performance, we integrate a transformer-like encoder 
into our knowledge-driven stream, incorporating three categories 
of biological prior knowledge. 

Applying co-expression patterns for identify genetic 
relationship 
Genetic relationship includes various kinds of interactions and 
regulations. A common method to capture parts of them is to 
identify gene pairs with strong co-expression patterns [26]. There-
fore, in our model, we construct a gene co-expression graph Ggene
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Figure 2. Illustrates the main function of ReactomeNet. 

by computing the Pearson correlation coefficients Pu,v between 
genes u, v in the datasets. 

Utilizing GO for biological insights 
We adopt the approach of handling GO [27] from GEARS.  More  
specifically, GO pathways are utilized to measure the functional 
similatiry between genes. For instance, Nu is the set of pathways of 
gene u, then Jaccard index between a pair of genes u, v is computed 
as Ju,v = |Nu∩Nv | 

|Nu∪Nv | , which measures the fraction of shared pathways 
between them. For each gene, we select top Hpert gene with the 
highest Jindex to construct perturbation similarity graph Gpert. 
After that, all initialized possible gene perturbations embeddings 
will be fed into a simplified graph convolutional networks [28] 
to augment. In this way, neighboring perturbations’ information 
could be integrated in every perturbation embedding. 

Leveraging Reactome for pathway analysis 
In this paper, we incorporate Reactome[29], a new source of biolog-
ical prior knowledge not utilized in GEARS. Reactome provides a 
comprehensive framework for mapping and visualizing molecular 
interactions and pathways, allowing for a deeper understanding 
of complex biological processes. We obtain hierarchical pathway 
information for Homo sapiens from the database [29] and imple-
ment a tool called ReactomeNet to construct a directed graph 
from raw data. It provides all pathway levels associated with any 
gene or gene list. ReactomeNet can also retrieve all genes asso-
ciated with any pathway from the database. Figure 2 illustrates 
ReactomeNet. The upper section demonstrates that when a single 
gene is input, ReactomeNet retrieves all the pathways associated 
with that gene at various levels. The lower section shows that 
when a pathway is input, the network returns the set of genes 
involved in that pathway. The peripheral colored circles represent 
genes, all of which belong to the L1 level pathways. L3 represents 
the highest level of pathways, with L2 and L1 being lower-level 
pathways. Additionally, L2 is a sub-pathway of L3, while L1 is a 
sub-pathway of L2. 

In Fig. 1(b), the attention mask is constructed by feeding the 
gene set into ReactomeNet to identify gene pairs in the same 
pathway. For these pairs, the corresponding positions in the mask 
matrix are set to zero, while all other positions are set to neg-
ative infinity (represented as gray blocks), preventing attention 

computation in the Knowledge-driven stream’s Attention Encoder 
because of the softmax function. 

Masked attention 
Building on GEARS’ approach of embedding prior knowledge, 
we have introduced a self-attention mechanism through a 
transformer-like architecture. This approach enhances both 
the model’s fitting ability and interpretability. Our trials show 
significant performance improvements, mainly because of the 
enhanced fitting capability of the self-attention mechanism 
and the more focused attention space, which is constrained by 
pathway masks when modeling perturbation effects. 

More concretely, this module uses the self attention mecha-
nism and the core part is scaled dot-product attention. Its cal-
culation formula can be described as follows: 

Attention(Q, K, V) = Softmax

(
QKT√

dk

)
V (5) 

where dk is the dimension of matrix Q and K.  Self attention first  
performs h times linear transformation on Q, K, and V respectively, 
where the parameter matrix of each linear transformation is 
different. We add the mask to the scaled dot product QKT before 
computing the softmax function. Typically, the values of the mask 
are set to a very large negative number such as −∞. This setting 
ensures that the weights associated with these positions are close 
to zero after passing through the softmax function, effectively 
prevents the model from attending to not relevant areas, which do 
not contain meaningful information. In this way, we could obtain 
high-level gene representations I ∈ Rc×m×d via the self attention 
mechanism. 

I ∈ Rc×m×d = Trm(fQ(I), fK(I), fV(I)) (6) 

where c is the num of cells, m is the num of genes, d means the 
dimension of embeddings, and fQ , fK, fV are the project functions. 
Trm denotes the transformer block. 

Autofocus and direction loss 
We employ an autofocus loss, which mainly inherits from mean 
squared error (MSE) loss. It could automatically give a higher 
weight to differentially expressed (DE) genes by elevating the
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Table 1. Composition of the datasets 

Datasets Cell_samples Genes Perturbations 

K562 162 751 5000 1092 
RPE1 162 733 5000 1543 
Norman 91 205 5045 131 (2-gene) 

exponent of the error, and it is defined as follows: 

Lautofocus = 
1 
T 

T∑
k=1 

1 
Tk 

Tk∑
l=1 

1 
K 

K∑
u=1

(
gu − ĝu

)(2+y) , (7)  

Given a minibatch of T perturbations, each perturbation k has Tk 

cells and each cell has K genes with predicted perturbed gene 
expressions gu and true expression ĝu. 

Due to the Lautofocus is insensitive to directionality, an additional 
direction-aware loss is incorporated: 

Ldirection = 
1 
T 

T∑
k=1 

1 
Tk 

Tk∑
l=1 

1 
G 

K∑
u=1 

h(u)
2 (8) 

h(u) = sign(gu − gctrl 
u ) − sign( ĝu − gctrl 

u ) (9) 

We summarize above loss functions and get the overall joint 
prediction loss function as shown below: 

L = LKL + βLautofocus + λLdirection, (10) 

where β adjusts the weights for the autofocus loss and λ adjusts 
the weights for the directionality loss. 

Results 
We now present our experiments to validate the effectiveness of 
the proposed framework. 

Datasets 
To predict transcriptional outcomes caused by perturbations, we 
select three publicly available perturbation sets consisting of 
single-gene or multiple genes. For single-gene, We use data from 
two different genetic perturbation screens consisting of 1543 
(RPE1 cells) and 1092 (K562 cells) perturbations, respectively, with 
each measuring over 170 000 cells (Replogle et al.[30]). In addition, 
the evaluated data set (Norman et al.[31]) contains 131 two-gene 
perturbations, then we could assess the performance across dif-
ferent perturbation levels. The summary of the datasets is shown 
in Table 1. 

Experimental settings 
In our experiments, the BioDSNN model was trained with data 
split into training(70%), validation(20%), and test sets(10%) to 
capture single and combinatorial perturbations. A hidden size of 
64 was used throughout, with one GNN layer each for gene co-
expression and gene ontology graphs. A Transformer Encoder 
layer replaced the cross-gene module to compute attention 
between nodes, utilizing a hidden dimension of 64, a 512-
dimensional feedforward network. 

To regularize gene expressions, a VAE with a latent dimension 
of 16 and an intermediate size of 32 was applied before pertur-
bation, minimizing both reconstruction loss and KL divergence. 

The model was trained for 20 epochs with the Adam optimizer 
(lr=0.001, weight decay=5e-4), and a step learning rate scheduler 
(step size=1, decay=0.5). The loss function combined MSE and 
directional loss to ensure consistent gene expressions changes 
relative to the control. Hyperparameters were tuned on validation 
performance for optimal accuracy and interpretability. 

Algorithm 1 Dual stream learning for Multi-Gene Perturbation 
Response Prediction 

Require: Unperturbed gene expressions data, Pearson correla-
tions threshold δ, number of epochs E and batches B; 

Ensure: perturbed gene-specific expression; 
1: Construct genetic relationship graph Ggene based on threshold 

δ; 
2: Select top Hpert genes with highest Jaccard index to form 

perturbation graph Gpert; 
3: Use ReactomeNet to find genes in same L1 pathways and 

obtain mask; 
4: while e �= E do 
5: while b �= B do Data-driven Stream: 
6: Encode unperturbed gene expressions data to learn 

latent distribution and construct LKL loss via Eq. (4); 
7: Decode to regenerate gene expressions representations 

gctrl; Knowledge-driven Stream: 
8: Randomly initialize gene and perturbation embeddings; 
9: Learn gene node representations from Ggene and pertur-

bation node representations from Gpert; 
10: Apply corresponding perturbation representations to 

each gene; 
11: Compute masked attention scores of genes and 

generate postperturbation gene embeddings via Eq. (5,6); 
Combine the results of two streams: 

12: Combine postperturbation gene embedding with gctrl to 
obtain perturbed gene expressions; 

13: Construct Lautofocus and Ldirection loss via Eq. (7,8); 
14: Optimize total loss L via Eq. (10) using back propagation 

and update parameters; 
15: b ⇐ b + 1; 
16: end while 
17: e ⇐ e + 1; 
18: end while 

Predicting gene perturbation outcomes 
To evaluate the differences in gene expressions of single cells 
before and after perturbation, we calculate the MSE for each 
gene between the control and experimental groups. As the vast 
majority of genes do not show substantial variation between 
unperturbed and perturbed states, we only consider the top 20 
most DE genes. 

For each gene g, we compute its average expression levels in 
the control group and the experimental group, denoted as x̄(c) 

g and 
x̄(e) 

g , the formula is as follows: 

MSEg = 
1 
N 

N∑
i=1

(
x̄(c) 

g,i − x̄(e) 
g,i

)2 
, (11)  

where N is the number of samples, x̄(c) 
g,i and x̄(e) 

g,i are the expression 
levels of gene g in the ith sample. 

Figure 3 illustrates the MSE metric in predicted postperturba-
tion gene expressions for two-gene and single-gene perturbations, 
where the 20 most DE genes are considered. Figure 3(a) denotes
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Figure 3. MSE for gene perturbation response prediction. 

two-gene perturbation prediction, where the x-axis progressively 
denotes the number of the perturbed targets that have not been 
seen in the training set, with an increasing difficulty for predic-
tion. ’0/2 unseen’, ’1/2 unseen’, and ’2/2 unseen’ denotes two, one 
or zero perturbed targets are seen in the training set, respectively. 
(b) and (c) denote single perturbation prediction task. All the black 
markers highlight the mean and error bars corresponding to 95% 
confidence intervals. 

The results in Fig. 3 demonstrate that our BioDSNN model 
outperforms almost all baselines in the gene perturbation predic-
tion task, reflecting the model’s strong ability to capture regula-
tory relationships. Specifically, BioDSNN shows approximately a 
20% improvement over GEARS across all datasets. This improve-
ment is due to modifications to the dual-stream network, which 
were each validated for effectiveness through ablation experi-
ments, ensuring that the model learns from data while integrating 
valuable biological insights. The application of transformer-like 
encoder enables the model to focus on the most relevant features, 
dynamically adjusting the importance of different genes and 
perturbations. Meanwhile, the use of masked attention ensures 
that the model can handle complex dependencies and interac-
tions within the gene expressions data, leading to more accurate 
predictions. 

Comparing the proportion of accurately predicted 
genes 
We conduct analysis to determine the proportion of predicted 
values that fell within ±5% of the true mean expression value 
for the top 20 DE genes. As illustrated in Fig. 4, the results 
demonstrate that the BioDSNN model consistently achieves 
a higher percentage of predictions within this error range 
compared to the baseline models across three distinct datasets. 
This enhanced performance highlights our model’s accuracy in 
estimating gene expressions, and demonstrating that it provides 
a more reasonable distribution of perturbed gene expressions 
values. 

Figure 4. Proportion of genes with predicted vs. true expression values 
within ±5% error among top 20 DE genes. 

The elevated proportion of predictions within ±5% of the true 
values indicates that BioDSNN model effectively captures the 
nuances of gene expressions, providing a more precise representa-
tion of perturbed expression changes. The robustness of BioDSNN 
model across diverse datasets further reinforces its reliability and 
generalizability in gene expressions prediction tasks. 

This performance underscores the model’s capability to con-
sistently deliver accurate predictions, which is critical for appli-
cations requiring precise gene expressions data. 

Assessing the linear correlation of gene 
expressions 
In addition to the MSE, we utilize the Pearson Correlation 
Coefficient (PCC) to assess the consistency in single-cell gene 
expressions before and after perturbation, regardless of the scale 
of the expression values. This dual metric approach facilitates 
the elucidation of linear relationships and relative changes 
in gene expressions, providing a comprehensive view of how 
perturbations affect gene expressions profiles. By examining 
both MSE and Pearson correlation, we capture not only the 
magnitude of expression changes but also the consistency and 
directionality of these changes across individual cells. This 
method allows for a more nuanced understanding of the model’s 
performance, highlighting both the accuracy of predicted expres-
sion values and correlation between predicted and observed 
changes. 

As illustrated in Fig. 5, our model exhibits superior perfor-
mance in the K562 and RPE1 datasets, achieving the highest accu-
racy in predicting gene expressions changes. This performance 
surpasses that of baseline models, underscoring the model’s 
efficacy in capturing gene expressions dynamics. For Norman 
dataset, the performance of our model is comparable to the 
GEARS model, indicating competitive predictive accuracy across 
varying experimental contexts.
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Figure 5. Pearson correlation between mean perturbed differential gene 
expressions over control and true values across all genes. 

Evaluating gene interaction effects 
We screen all two-gene perturbations from the test set in Nor-
man dataset, and compute the Magnitude Scores to estimate the 
genetic interaction effects between them [32]. We predict the gene 
expressions influenced by each two-gene perturbation combi-
nation and to separately predict the gene expressions resulting 
from individual perturbations within the combinations. Then we 
employ Theil–Sen Regressor to investigate whether the interac-
tion effects of individual gene perturbations affect final gene 
expressions, which is defined by 

y = Xβ + ε, (12) 

β =
[

c1 

c2

]
(13) 

Where X is the matrix of two single perturbation expressions 
with dimensions m×2, m is the number of genes, β is the vector of 
regression coefficients and ε is the error term. The coefficients c1 

and c2 are extracted from the fitted model. The magnitude score 
is the Euclidean distance between c1 and c2, calculated  as  

mag =
√

c2 
1 + c2 

2 (14) 

The magnitude scores represent the overall strength of the 
regression coefficients. As depicted in Fig. 6, each dot corresponds 
to a specific perturbation combination. The y-axis displays mag-
nitude scores derived from model’s predictions, while the x-axis 
shows the ground truth magnitude scores calculated from actual 
perturbed gene expressions data. The results indicate that BioD-
SNN model exhibits a closer alignment with the ground truth 
compared to other models. 

Additionally, we compute the PCC between the predicted and 
ground truth genetic interaction (GI) magnitude scores for all two-
gene perturbations in test set. The result reveals that BioDSNN 
achieved a significantly higher PCC than the GEARS model. This 
enhanced correlation suggests that BioDSNN provides a more 
accurate representation of genetic interactions, effectively captur-
ing the underlying patterns of data. 

We also design to classify two-gene perturbations into distinct 
GI types. To this end, we identify synergy and suppressor GI types 
using the magnitude score. We rank the two-gene perturbations 
based on the predicted magnitude scores, and classify top 20 
perturbations as potential synergy GI types and bottom 20 pertur-
bations as potential suppressor GI types. Subsequently, these clas-
sifications are compared with the perturbation combinations cor-
responding to synergy and suppressor GI types in the ground truth 
dataset. As illustrated in Fig. 7, BioDSNN outperforms GEARS by 

Figure 6. Magnitude scores computed for all test perturbing combinations 
on the Norman dataset. 

Figure 7. Top 20 perturbations with synergistic and suppressor gene 
interaction types identified using BioDSNN and baseline methods. 
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Figure 8. Change in gene expressions after perturbing two genes. 

detecting more two-gene perturbations that align with the true 
GI types. 

The results above underscore the superior performance of 
BioDSNN in predicting genetic interaction magnitudes. The 
improved correlation with the ground truth data highlights the 
model’s robustness and reliability in capturing the complexities 
of gene perturbations. 

Predicting perturbation trends and magnitudes 
In the realm of disease research, alterations in gene expres-
sions can provide valuable insights into potential biomarkers for 
diagnosis and prognosis. Genes exhibiting significant changes 
in expression levels may also emerge as promising targets for 
therapeutic interventions and drug development. 

To assess the individual gene responses to perturbations, we 
predict the outcomes of perturbing three types of gene combina-
tions, each representing different levels of training set visibility: 
two genes seen, one gene seen, and zero genes seen during train-
ing. Specifically, for the ETS2 and CEBPE combination, both genes 
are seen during training. For the FOSB and CEBPB combination, 
CEBPB is not experimentally perturbed during training. In the case 
of the FOXL2 and MEIS1 combination, neither gene is seen during 
training. 

As illustrated in Fig. 8, our model effectively capture both the 
trend and magnitude of perturbation across all 20 DE genes. 
The blue symbols represent the mean changes in gene expres-
sions predicted by BioDSNN, while the red symbols correspond 
to predictions made by GEARS. The green dotted line indicates
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Table 2. MSE results of ablation experiments 

Models Normanseen2/2 Normanseen1/2 Normanseen0/2 K562single RPE1single 

CVAE 0.6675 0.7334 0.7377 0.5547 0.7590 
GRN 0.4790 0.5982 0.6034 0.2273 0.3096 
CPA 0.2405 0.3417 0.3561 0.1959 0.2714 
GEARS 0.1871 0.2406 0.2227 0.1435 0.1729 
OursnoVAE 0.1648 0.2030 0.1727 0.1355 0.1607 
OursnoAttention 0.1843 0.2188 0.1733 0.1349 0.1879 
OursnoMask 0.1587 0.1998 0.1682 0.1304 0.1826 
Ours 0.1491 0.1971 0.1576 0.1267 0.1764 

Table 3. Pearson correlation of ablation experiments 

Datasets CVAE GRN CPA GEARS OursnoVAE OursnoAttention OursnoMask Ours 

Norman −0.0134 0.1453 0.4622 0.5722 0.6231 0.5699 0.5471 0.5545 
K562 0.0046 0.0254 0.0659 0.3135 0.3304 0.3289 0.3311 0.3474 
RPE1 −0.0043 0.0416 0.0807 0.4769 0.4876 0.4912 0.4983 0.5054 

the mean gene expressions under unperturbed control conditions. 
The whiskers on the plot denote final data points within 1.5 times 
of the interquartile range, providing an additional measure of 
variability in gene expressions data. 

Ablation study 
To assess the effectiveness of the introduced dual-stream frame-
work, we conducted an ablation study across all datasets, system-
atically removing each module to observe its impact on perfor-
mance. By comparing these results, we isolated each module’s 
contribution to the model’s overall effectiveness. Tables 2 and 3 
detail the outcomes, presenting performance metrics for each 
dataset. The tables highlight the added VAE and masked atten-
tion modules’ effectiveness, underscoring their significance in 
enhancing the model’s predictive capabilities. 

Conclusion 
We propose a novel deep neural network-based model called 
BioDSNN, which accurately predicts single-cell transcriptional 
responses to both single and multigene perturbations. The model 
incorporates a VAE to learn latent representations, a feature 
absent in GEARS. Additionally, BioDSNN employs a masked atten-
tion encoder to capture interactions among closely linked genes, 
with the mask derived from ReactomeNet, whereas GEARS uses 
a few dense layers for information integration. BioDSNN excels 
at predicting perturbation outcomes, effectively capturing both 
trends and magnitudes. It addresses the generalization and fitting 
issues of GEARS, achieving a leading performance across multiple 
tasks, with approximately a 20% reduction in MSE, demonstrating 
the model’s effectiveness. The efficacy of BioDSNN, however, is 
highly dependent on the quality of the training data and the 
extent of prior knowledge available. It is crucial that BioDSNN is 
trained on data derived from the same cell type as those targeted 
in subsequent predictions to ensure accuracy. This specificity 
underscores the importance of precise and relevant data collec-
tion in the initial stages of model development. 

Our future work will focus on exploring additional pertur-
bation combinations to enhance the understanding of genetic 
interactions. We also anticipate broadening the applicability of 

BioDSNN to achieve a more generalizable tool that can be uti-
lized across various cell types and experimental conditions. This 
work will involve rigorous testing and validation to enhance the 
model’s versatility and predictive power, potentially accelerating 
the process of perturbational screening[33] and its applications in 
biomedical research. 

Key Points 
• Deep neural networks have been broadly applied to pre-

dict genetic perturbations based on single cell RNA-seq 
data. To enhance their generalization ability on unseen 
cell types and perturbations, biological knowledges have 
been exploited in several models. However, how to inte-
grate different kinds of prior knowledge and how to 
merge them with genetic data need further investiga-
tion. 

• We propose a dual-stream framework called BioDSNN 
to balance the learning of data distribution and prior 
knowledge, ensuring that each of them is fully exploited 
through specifically tailored architectures before inte-
gration. 

• We explore the integration of GNNs and transformers 
to incorporate gene correlations, Gene Ontology anno-
tations, and Reactome pathway information, enabling a 
deeper utilization of human biological knowledge and 
providing our model with stronger fitting capacity and 
generalizability. 

• We benchmark our model on three distinct real-world 
datasets, achieving outstanding performance compared 
to existing methods. Specifically, our model demon-
strates an approximate 20% reduction in terms of mean 
squared error (MSE). 
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Data availability 
The implementation of this work is available at https://github. 
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