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Abstract

MicroRNAs (miRNAs) are critical regulators in various biological processes to cleave or repress translation of messenger RNAs (mRNAs).
Accurately predicting miRNA targets is essential for developing miRNA-based therapies for diseases such as cancer and cardiovascular
disease. Traditional miRNA target prediction methods often struggle due to incomplete knowledge of miRNA-target interactions and
lack interpretability. To address these limitations, we propose miCGR, an end-to-end deep learning framework for predicting functional
miRNA targets. MiCGR employs 2D convolutional neural networks alongside an enhanced Chaos Game Representation (CGR) of both
miRNA sequences and their candidate target site (CTS) on mRNA. This advanced CGR transforms genetic sequences into informative 2D
graphical representations based on sequence composition and subsequence frequencies, and explicitly incorporates important prior
knowledge of seed regions and subsequence positions. Unlike one-dimensional methods based solely on sequence characters, this
approach identifies functional motifs within sequences, even if they are distant in the original sequences. Our model outperforms
existing methods in predicting functional targets at both the site and gene levels. To enhance interpretability, we incorporate Shapley
value analysis for each subsequence within both miRNA sequences and their target sites, allowing miCGR to achieve improved
accuracy, particularly with more lenient CTS selection criteria. Finally, two case studies demonstrate the practical applicability of miCGR,
highlighting its potential to provide insights for optimizing artificial miRNA analogs that surpass endogenous counterparts.
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Introduction
MicroRNAs (miRNAs) are endogenous short (∼22 nucleotides)
non-coding RNAs that play critical regulatory roles in many bio-
logical processes by targeting messenger RNAs (mRNAs) for cleav-
age or translational repression [1]. Primarily through binding to
the 3′ untranslated regions (UTRs) of target mRNAs, miRNAs
modulate the expression levels of their targets [2]. Unlike plants,
which require near-perfect base pairing, miRNA function in ani-
mals is primarily driven by the "seed region" (nucleotides 2–8) at
the 5’ end of the miRNA [3, 4]. This enables a single miRNA to
regulate multiple genes within a signaling pathway, exerting a
broad influence on cellular processes like cell growth, differenti-
ation, proliferation, and apoptosis [5–8]. Notably, dysregulation of
miRNA levels is implicated in the development and progression
of various diseases, including cardiovascular disease and cancer.

This suggests the exploration of miRNA-based therapeutic strate-
gies, such as miRNA mimics or antagonists, to restore normal
miRNA levels and potentially treat these diseases.

Identifying miRNA targets is a critical step in developing them
as therapeutic agents. Two key questions need to be addressed:
(i) which mRNA transcripts are functionally targeted by a spe-
cific miRNA (gene-level targets), and (ii) which specific regions
(sites) on these mRNAs serve as binding sites for the miRNA
(site-level targets) [9, 10]. Computational tools typically initiate
the process by predicting candidate target sites (CTS) within the
3’ UTRs of target mRNAs based on predefined criteria encom-
passing both canonical and non-canonical functional charac-
teristics [11]. Canonical sites exhibit strong Watson-Crick (WC)
base pairing between the miRNA’s seed region and the mRNA
typically involving at least five consecutive complementary base
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pairs [11]. Conversely, non-classical sites may display interspersed
non-canonical base pairing alongside some WC complementarity.
Following CTS identification, functional validation of the miRNA-
CTS interaction is essential to differentiate true functional targets
from non-functional predictions. Generally, a miRNA-mRNA pair
is predicted to be functional if at least one miRNA-CTS pair is
predicted as functional, ultimately leading to the identification
of reliable gene-level miRNA targets.

Two main types of features are employed for prediction: man-
ually curated features and raw sequences. Manually curated fea-
tures, such as interaction patterns, thermodynamic characteris-
tics, sequence conservation, target site accessibility, and the num-
ber of binding sites, are readily interpretable but can lead to false
negatives due to the complexity of miRNA-mRNA interactions
[12]. Tools like TargetScanHuman [13] and miRDB [14] utilize these
features for prediction. Recently, deep learning (DL) methods
have emerged, directly utilizing raw base sequences as input to
bypass the need for pre-defined features. This approach offers the
potential for improved accuracy. Examples include miRAW (deep
feed-forward neural network) [9], deepTarget [10], cnnMirTarget
[15], and TargetNet (convolutional neural networks [CNNs]) [16],
and miTAR (hybrid CNN-RNN [recurrent neural networks]) [17],
TEC-miTarget (Transformer-CNN) [18]. However, these DL-based
methods often encode raw miRNA and mRNA sequences as one-
hot vectors or utilize embedding layers to generate dense vectors.
These strategies, which represent a one-dimensional characteri-
zation of the sequences, may limit the model’s ability to capture
long-range dependencies within the sequences.

Here, we introduce miCGR, an end-to-end deep learning frame-
work miCGR designed for predicting the functional targets of miR-
NAs. The proposed method leverages chaos game representation
(CGR) [19–23] to transform miRNA and mRNA CTS sequences
into 2D images. This approach captures information on simi-
lar motifs, even when they are distantly located in the original
sequences, unlike traditional one-dimensional characterization
methods. Furthermore, miCGR emphasizes the importance of
prior knowledge for accurate prediction by explicitly integrating
seed regions and subsequence positions by representing them
in additional image channels. Two separate CNNs extract latent
features from the miRNA and CTS image representations. These
features are subsequently concatenated and fed into a feed-
forward neural network to predict miRNA-CTS binding. A tran-
script is considered a target if at least one CTS site is predicted
positive. To assess miCGR’s performance, we compared it with
existing models on independent external test sets, evaluating its
accuracy in predicting both site-level and gene-level functional
targets. We further employed Shapley explanation methods [24,
25] to quantify the contribution of sub-fragments within the
miRNA and CTS sequences to the predictions. These findings not
only enhance our understanding of miRNA-mRNA interactions
but also hold promises for the development of more effective
miRNA-based therapeutics.

Method
Processing microRNA target datasets
Public miRNA-mRNA interaction data repositories contain two
types of pairing data: gene-level and site-level interaction
data. Gene-level interaction datasets indicate whether miR-
NAs target specific mRNAs, while site-level datasets provide
labels for each CTS within the UTRs of mRNAs. To evaluate
the proposed approach, we collected a site-level interac-
tion dataset from miRAW [9] for model training, validation

and internal testing (miRAW-site-level dataset). Besides, we
collected two gene-level interaction datasets from miRAW
(balanced-gene-level dataset) and cnnMirTarget (imbalanced-
gene-level dataset) [15] for external test. Corresponding miRNA
sequence information was obtained from miRbase [24], and
UTR sequence for mRNAs were sourced from the UCSC Table
Browser [25], respectively, utilizing the longest UTR sequence
for each mRNA. Supplementary Table S1 available online at
http://bib.oxfordjournals.org/ provides an overview of the dataset
sources, the number of positive and negative sample pairs, and
the counts of mRNA and miRNA sequences.

MiRAW-site-level dataset: In the miRAW study, Albert Pla
et al. [9] collected a large amount of experimentally validated
miRNA-mRNA pairs from two resources: DIANA-TarBase [26] and
miRTarBase [27]. They constructed a site-level dataset by cross-
referencing the miRNA-mRNA pairs with PAR-Clip [28], CLASH
[29] and TargetScanHuman 7.2 [13]. This resulted in a total of
33,142 positive and 32,284 negative site-level pairs, encompassing
both canonical and non-canonical interactions. After filtering
the obsolete miRNAs without sequence information from current
version of miRbase [30], the final site-level dataset retained 8642
genes, with 32,466 positive and 32,105 negative pairs. For each
pair, the miRNA sequence information and the CTS sequence
(30 nucleotides) with five additional upstream and downstream
nucleotides were recorded, resulting in a final CTS size of 40
nucleotides (n = 40).

Balanced-gene-level dataset: In the miRAW study, Albert Pla
et al. [9] constructed 10 balanced gene-level datasets for model
external testing, each containing 548 positive and 548 negative
gene-level pairs, totaling 4023 genes. The intersection between
the miRAW-site-level dataset and the balanced-gene-level dataset
included 1896 genes, representing 47.1% of the latter. The miRNA
sequence information and the UTR sequence information were
recorded in each pair.

Imbalanced-gene-level dataset: In the cnnMirTarget study,
Zheng et al. generated an unbalanced gene-level dataset from
DIANA-TarBase [31] and miRTarBase [32]. This dataset initially
comprised 7815 positive and 281 negative gene-level pairs. After
excluding pairs overlapping with the miRAW site-level dataset
and obsolete miRNAs without sequence information according
to the current version of miRBase, the dataset was refined to
include 7615 positive and 274 negative gene-level interaction pairs
across 2689 genes. The intersection between the miRAW-site-level
dataset and the imbalanced-gene-level dataset consisted of 927
genes, accounting for 34.5% of the latter.

The chaos game representation algorithm
Chaos Game Representation (CGR) is a mathematical visualiza-
tion technique used to represent genetic sequences in a 2D space.
This method provides a unique way to capture the complexity and
patterns within the genetic sequence [21, 33, 34]. The principle
of the CGR algorithm involves using a loop iteration function to
determine the position of each subsequence in a square plot and
filling the regions in the plot with the frequency of occurrence of
each subsequence [22]. Figure 1 summarizes the basic concept of
the CGR algorithm when the subsequence length is 4 (k-mer = 4).
Initially, a square plot is set up, with each corner representing one
of the four nucleotides (A, U, C, G). The plot is then partitioned
into N × N regions, where N = 2k-mer, and each grid in the plot
represents the frequency of subsequences of length k within
the genetic sequence (Fig. 1A and 1B). As more subsequences are
plotted, patterns begin to emerge that reflect the underlying
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Figure 1. Chaos game representation (k-mer = 4) for genetic sequence. (A) the iterative process of plotting a subsequence "AUGC′′ using CGR algorithm.
Starting from the center of the square, follow the inverted order of the sequence (i.e., "CGUA"). The first nucleotide "C′′ positions the point halfway
between the center (0,0) and the "C" corner; for the next nucleotide "G", the point is plotted halfway between the current point and the "G" corner. This
process repeats for each nucleotide in this subsequence. (B) the mapping for subsequence "AUGC" in CGR representation space. A grid-based counting
approach is used for determining the position of the subsequence. Dividing the CGR into four quadrants, the upper left quadrant contains points
representing subsequences starting with the nucleotide "a". further subdivision of this quadrant yields subsequences starting with "AA", "AC", "AG", and
"AU". Continuing this process for 4-mers, the CGR image is partitioned into N × N regions, where N = 2k-mer, or 16, and the sequence "AUGC" is eventually
mapped. (C) the CGR visualization of a DNA sequence "AUGCAUGCG". With k-mer = 4, this sequence is divided into "AUGC", "UGCA", "GCAU", "CAUG",
"AUGC", and "UGCG". For each subsequence, its region in (B) is identified, with the color depth representing the subsequence’s frequency. Regions with
frequent subsequences will appear denser. The numbers in parentheses represent frequencies.

structure of the genetic sequences, with higher frequency num-
bers exhibited by deeper colors (Fig. 1C). The resulting plot can
be analyzed to identify motifs, repeats, and other features in the
DNA sequence. Points or regions with similar prefixes in their
sequences will cluster together (e.g., "UCGA" is close to "UGCG"
in Fig. 1C), revealing underlying biological patterns.

The neural model architecture
CNN is a deep learning method which is good at learning infor-
mation from data in grid form, such as pictures [17, 35]. Encoded
by the method mentioned above, both miRNA and CTS sequence
were transformed into 2D arrays. In our implementation, three
different sizes of convolution kernels were employed to extract
more diverse local features, which contributed to the improve-
ment of model performance [36]. Additionally, non-linearization
by rectified linear unit and BatchNorm2D operations are applied
after each convolutional layer, which preventing overfitting and
mitigating gradient vanishing. The size of images extracted using
the CGR algorithm varies with different k-mer sizes, which leads
to different specific parameters in the CNN.

The evaluation metrics
To evaluate the performance of the model, six commonly used
binary classification metrics were employed, including accuracy,
sensitivity, specificity, F1 score, positive predictive value (PPV), and
negative predictive value (NPV). The formulas for each metric are
shown in Table 1, where TP represents true positive, FP represents
false positive, TN represents true negative, and FN represents false
negative. F1 score is an indicator commonly used in statistics
to measure the accuracy of binary classification (or multi-task
binary classification) models. It is an evaluation of the harmonic
average of precision and recall of a classification model. As a
result, F1 score can better reflect the true performance of the
model.

Benchmark models comparison
For model-based methods, including miRAW, TargetNet, deepTar-
get, cnnMirTarget, TEC-miTarget, and miTAR, we implemented
benchmark models using the default hyperparameter settings
specified in their original publications. In our re-implementation,

Table 1. The evaluation metrics and their calculations.

Metric Calculation

Accuracy (TP + TN) / (TP + FP + TN + FN)
Sensitivity (recall) TP / (TP + FN)
Specificity TN / (TN + FP)
F1 score 2 ∗ (precision ∗ recall) / (precision + recall)
PPV (precision) TP / (TP + FP)
NPV TN / (TN + FN)

all methods were trained on the miRAW site-level dataset, with
the balanced gene-level dataset from miRAW serving as the
external test set. Since the original publications also trained
these models on the miRAW site-level dataset, we selected the
superior results from either the reported outcomes or our re-
implementation (except for cnnMirTarget, which used a different
training dataset), as summarized in Table 7. For web-based tools
(TargetScanHuman 7.2 and miRBD 6.0), we directly retrieved the
prediction results from their respective websites. MiCGR was
run 30 times, while the re-implementation experiments were
conducted once without repetition.

Functional enrichment analysis
The top 100 predicted target genes for hsa-miR-552-3p were sub-
mitted to the web tool Metascape [37] for functional enrichment
analysis. The enrichment results were downloaded directly from
the website.

Multiple sequence alignment
The top 10 predicted target miRNAs for PCSK9 were subjected to
multiple sequence alignment using the MUSCLE algorithm [38].

Results
The architecture of miCGR
As illustrated in Fig. 2, miCGR utilizes enhanced CGR to transform
miRNA and CTS sequences of mRNA into 2D images, specifically
CGR representations for both miRNAs and mRNAs. These
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Figure 2. Schematic illustration of the flow of miCGR.

Table 2. Pairing patterns which determine candidate target sites.

Pairing pattern Description

Stringent pairing patterns [11]
(consecutive)

8-mer WC pairings among the miRNA nucleotides 2–8 with an A on the nucleotide 1
7-mer-m8 WC pairings among the miRNA nucleotides 2–8 with a B on the nucleotide 1
7-mer-A1 WC pairings among the miRNA nucleotides 2–7 with an A on the nucleotide 1

and a Ø on nucleotide 8
6-mer WC pairings among the miRNA nucleotides 2–7 with an B on the nucleotide 1

and a Ø on nucleotide 8
6-mer-A1 WC pairings among the miRNA nucleotides 2–6 with an A on the nucleotide 1

and a Ø on nucleotide 7
offset-7-mer WC pairings among the miRNA nucleotides 3–9 and a Ø on nucleotide 2
offset-6-mer WC pairings among the miRNA nucleotides 3–8 with an A on the nucleotide 1

and Ø on nucleotide 2 and nucleotide 9
Lenient pairing patterns 10-mer-m6 At least 6 WC pairings among the miRNA nucleotides 1–10

10-mer-m7 At least 7 WC pairings among the miRNA nucleotides 1–10
offset-9-mer-m7 At least 7 WC pairings among the miRNA nucleotides 2–10

aStringent pairing patterns consist of contiguous complementary base pairing, meaning there are no gaps or mismatches, while lenient pairing patterns allow
for gaps or mismatches within the pairing. In this context, any nucleotide except adenine (A) is represented as B, and any non-Watson-Crick pairing is denoted
as ∅, following the conventions established in [11]. Here, WC is short for Watson-Crick.

images are then input into separate CNNs. These CNNs extract
latent features from the image representations, which are then
concatenated and fed into a feed-forward neural network to
predict functional/non-functional miRNA-CTS binding. MiCGR
was trained exclusively on a site-level dataset. The gene-
level miRNA-mRNA prediction builds upon this foundation,
whereby a transcript is considered a target if at least one CTS
site is predicted to be positive. A detailed description of the
datasets collected and utilized in miCGR can be found in the
Methods section and Supplementary Table S1 available online at
http://bib.oxfordjournals.org/.

The enhanced chaos game representation
module
Given the established importance of the seed region for miRNA-
mRNA binding [39–42], we modified the CGR algorithm to explic-
itly leverage this prior knowledge. The seed region is a con-
served heptamer situated at positions 2–8 on the 5′ end of the
miRNA. Stringent pairing patterns follow contiguous WC base
pairing—requiring perfect complementary pairing without gaps
or mismatches—between the miRNA and CTS within the seed

region. Notably, perfect WC base pairing between the miRNA
and mRNA is not always necessary; pairing can still occur if
the seed sequence demonstrates certain complementarity with
the CTS. To robustly identify CTS sequences and encompass the
majority of known classical and non-classical functional sites,
miCGR employs lenient pairing patterns derived from miRAW [9].
These robust lenient pairing patterns, alongside stringent classi-
cal contiguous pattern for performance comparison, are detailed
in Table 2, with a diagram illustrating the lenient pairing pattern
"offset-9-mer-m7" shown in Fig. 3A.

To capture the specificity of seed region, our approach encodes
both the entire miRNA sequence (Fig. 3B, left) and a dedicated
channel representing solely the seed region sequence (Fig. 3B,
middle). Furthermore, we explicitly incorporate the relative posi-
tions of all subsequences within the miRNA into the model. This
integration is achieved by replacing the original subsequence
frequencies in the CGR representation with their respective rel-
ative positions (Fig. 3B, right). The relative position is defined as
(L − P) /L, where L is the length of the sequence and P is position of
the first nucleotide of the k-mer fragment in the original sequence
(see Code for more detail). This additional channel enables miCGR

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae616#supplementary-data
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Figure 3. (A) Schematic diagram of the lenient pairing pattern "offset-9-mer-m7" between miRNA and mRNA. "GGCCCUG" (5’ to 3’) denotes the seed
region of the miRNA, "∅|∅||||||" represents the pairing region of offset-9-mer-m7 between miRNA and mRNA, and "CAUCUCAAGAUGAGGGCCA" indicates
the CTS of size n. since the CTS sequence (30 nucleotides) includes five additional upstream and downstream nucleotides, n = 40. (B) Modified chaos
game representations (k-mer = 4) for a miRNA sequence. This includes the original CGR representation for the entire miRNA (left), the representation for
the seed region of the miRNA (middle), and the representation for the relative positions of subsequences in the whole miRNA (right). For example, with
the sequence "UGGCCCUGACUGUGACAU", the region for "UGAC" in the original CGR representation (left) records its frequency as 2. The seed region
"GGCCCUG" is represented in the middle panel. In the representation for relative positions, the value for the "GGCC" region is (18–2)/18 ≈ 0.89. For the
"UGAC" sequence, which appears twice, the region’s value is the average of the two relative positions, calculated as avg((18–7)/18, (18–13)/18) ≈ 0.44.

to discern sequential features specific to nucleotides across dis-
tinct miRNA regions.

The combined representation of these three 2D arrays yields a
three-channel image for each miRNA. For mRNA, CTS sequences
are encoded into single-channel images using the original CGR
algorithm.

Model implementation and optimization
The miCGR model was trained on the MiRAW-site-level dataset,
which was split into training, validation, and internal testing
sets in a 16:4:5 ratio. Gene-level miRNA-mRNA predictions were
inferred from site-level predictions, with a transcript classified as
a target if at least one CTS was predicted to be positive. The model
was trained to minimize cross-entropy between the true labels
and the predicted results as follows:

loss = − 1
n

∑[
y log p + (

1 − y
)

log
(
1 − p

)]

where p refers to the prediction result and y refers to the true label
that refers to whether a CTS can serve as a binding site for miRNA.

The Adam optimizer [43] was used for training, and early
stopping was employed to prevent overfitting by terminating the
process when no further improvement was seen on the validation
set. A grid search strategy was implemented to fine-tune key
hyperparameters, including k-mer size, batch size, learning rate,
and dropout rate, with their respective search ranges detailed in
Table 3. Optimal performance was achieved with a k-mer size of
6, batch size of 128, learning rate of 0.0005, and dropout rate of

Table 3. Optimal hyperparameters and performance of miCGR
on miRAW-site-level dataset for different k-mer.

Hyperparameters Searching space

k-mer 2; 3; 4; 5; 6; 7
batch size 32; 64; 128; 256
learning rate 0.01; 0.005; 0.001; 0.0005; 0.0001
Dropout 0.0; 0.2; 0.5

aResults in bold text are the best value for hyperparameters.

0.5. The loss curves for the training, validation, and test datasets
are illustrated in Supplementary Fig. S1. The impact of different
k-mer sizes on performance is presented in Table 4. Training the
model required ∼ 0.5 hours, spanning 165 epochs at 13 seconds
per epoch, using a NVIDIA TESLA V100 GPU on an Intel platform.

Model performance on miRAW-site-level dataset
Given that gene-level miRNA-mRNA prediction builds upon site-
level predictions, we first evaluated our model’s performance at
the site level using the miRAW-site-level dataset. The Enhanced
Chaos Game Representation incorporates three channels for
each miRNA, which represent the miRNA sequence, the seed
region sequence, and the relative positions of all subsequences.
To evaluate the influence of integrating prior knowledge about
the seed region and sequential features of subsequences within
the miRNA on miCGR’s predictive efficacy, we conducted ablation
experiments with three variants: miCGR NOS, which excludes
the seed region channel; miCGR NOP, which excludes the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae616#supplementary-data
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Table 4. Performance comparison of miCGR on the miRAW-site-level dataset with varying hyperparameters and different k-mers.

K-mer Batch Size Learning rate Dropout F1 score Accuracy Sensitivity Specificity PPV NPV

2 256 0.001 0.5 0.9415 0.9406 0.9433 0.9379 0.9397 0.9415
3 32 0.0001 0.5 0.9476 0.9467 0.9502 0.9432 0.9449 0.9486
4 64 0.0001 0.5 0.9600 0.9595 0.9597 0.9593 0.9603 0.9587
5 128 0.0001 0.5 0.9623 0.9618 0.9627 0.9608 0.9619 0.9617
6 128 0.0005 0.5 0.9661 0.9658 0.9623 0.9712 0.9710 0.9616
7 32 0.0001 0.5 0.9604 0.9600 0.9588 0.9611 0.962 0.9579

aResults presented in bold text indicate the best performance.

Table 5. Performance comparison of methods on the miRAW-site-level dataset.

Methods F1 score Accuracy Sensitivity Specificity PPV NPV

miCGR 0.9661 0.9658 0.9623 0.9712 0.9710 0.9616
miCGR NOS 0.9545 0.9549 0.9542 0.9550 0.9551 0.9539
miCGR NOP 0.9535 0.9517 0.9553 0.9539 0.9561 0.9508
miCGR NOSP 0.9412 0.9430 0.9444 0.9487 0.9483 0.9401
miCGR NOCGR 0.9480 0.9477 0.9493 0.9460 0.9469 0.9487
TEC-miTarget 0.9645 0.9647 0.9585 0.9710 0.9706 0.9590
miTAR 0.9652 0.9654 0.9609 0.9697 0.9695 0.9613
miRAW 0.935 0.935 0.935 0.938 0.935 0.9320
deepTarget - 0.922 - - - -

amiCGR NOS: Excludes the seed region sequences while retaining the relative positional information of miRNA subsequences. miCGR NOP: Excludes the
relative positional information while retaining the seed region sequences. miCGR NOSP: Excludes both the seed region and relative positional information.
miCGR NOCGR: Excludes CGR modules while retaining both the seed region sequences and relative positional information, processed with one-dimensional
CNNs. The models TEC-miTarget, miTAR, miRAW, and deepTarget were re-implemented using the default hyperparameter settings specified in their original
publications. We report the highest performance results in this table from either our re-implementation or the outcomes published by Yang et al. [18] and Gu
et al. [44], as miCGR utilizes the same test set as these studies. Results presented in bold text indicate the best performance.

relative positional information channel; and miCGR NOSP, which
excludes both. As expected, models lacking prior knowledge
exhibited decreased performance, with both seed region and
relative positional information contributing equally to miCGR’s
effectiveness (Table 5).

To further assess the significance of the CGR modules,
we conducted an additional ablation study with a variant,
miCGR NOCGR, where CGR modules were removed while
retaining the original input information. In this variant, the
input sequences (the entire sequence and seed region sequence
for miRNA, and the entire CTS sequence for mRNA) were
each encoded as one-hot vectors. Additionally, the relative
positions of all miRNA subsequences were represented as a one-
dimensional vector. These vectors were processed independently
using standard one-dimensional CNNs and subsequently stacked,
following the method applied in deepTarget [10]. The performance
of miCGR NOCGR surpassed that of deepTarget, which employs
a similar one-dimensional CNN approach but lacks seed
region sequences and relative positional information, thereby
highlighting the importance of this prior knowledge. Furthermore,
performance comparisons between miCGR and miCGR NOCGR
indicate that the CGR modules significantly enhance miCGR’s
predictive accuracy compared to the one-dimensional CNN
models (Table 5).

Furthermore, we compared miCGR with recent models
including miTAR, miRAW, and deepTarget on the miRAW-site-
level dataset. The results indicate that the miCGR model shows
improvements over these models across all six evaluation metrics
(Table 5). Notably, while miTAR performs slightly worse than
miCGR, it outperforms miCGR NOSP. MiTAR incorporates an RNN
module to capture continuous positional information of miRNA
nucleotides. These results underscore the importance of such
knowledge for site-level miRNA-mRNA prediction.

Model performance on gene-level dataset
Since the miCGR model was able to achieve acceptable prediction
results on site-level dataset, we were eager to know if it would
perform well in the gene-level prediction problem. The algorithm
is supposed to predict the binding status between miRNA and all
CTS sequences across the 3’UTR of the target gene. If at least one
CTS site is predicted as positive, the gene is considered a positive
prediction, while the gene is considered a negative prediction if
all CTS sites are predicted as negative. For each gene, the longest
mRNA sequence was used.

Initially, we evaluated the effect of various pairing pattern con-
ditions on the miCGR model. The performance on the balanced-
gene-level dataset is depicted in Table 6. Under the stringent pair-
ing pattern condition, miCGR exhibited high specificity but low
sensitivity, indicating that the model trained under this condition
struggled to detect functional CTSs. Conversely, under the lenient
pairing pattern condition, while the accuracy and F1 score of
miCGR under the 10-mer-m7 and 10-mer-m6 pairing patterns
were slightly superior to those under the most relaxed offset-9-
mer-m7 pairing pattern, the specificity was notably diminished
as the CTS count significantly increased. These results indicate
that there is a trade-off between sensitivity and specificity. While
a stricter pairing pattern reduces miCGR’s sensitivity, a looser
one compromises its specificity, potentially averting a high false
positive rate in practical applications.

Therefore, the subsequent assessment of candidate models’
predictive capabilities at the gene level will be based on the
offset-9-mer-m7 pairing pattern, as miCGR demonstrates a more
balanced performance across all six evaluation metrics, indicat-
ing more robust prediction results with a relatively smaller CTS
count.

Secondly, we compared functional miRNA target classification
performance of seven different prediction algorithms: miRAW [9],
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Table 6. Performance comparison of miCGR on the balanced gene-level dataset with different pairing patterns.

Methods F1 score Accuracy Sensitivity Specificity PPV NPV Average
CTS count

miCGR under stringent pairing patterns 0.6854 0.7216 0.6103 0.8318 0.7822 0.6833 ∼2
miCGR under
lenient pairing
patterns

offset-9-mer-m7 0.8009 0.7902 0.8479 0.7331 0.7590 0.8296 ∼8
10-mer-m7 0.8197 0.7986 0.9200 0.6782 0.7392 0.8954 ∼24
10-mer-m6 0.8223 0.7927 0.9635 0.6234 0.7172 0.9452 ∼81

aThe definitions for "stringent pairing pattern" and "lenient pairing patterns" can be found in Table 2. The term "Average CTS count" denotes the average
count of candidate sites per gene within the 3’UTR for the corresponding pairing pattern. Results presented in bold text indicate the best performance.

Table 7. Performance comparison of methods on the gene-level datasets.

dataset Methods F1 score Accuracy Sensitivity Specificity PPV NPV

balanced-gene-levela miCGR 0.8009 0.7902 0.8479 0.7331 0.7590 0.8296
miRAW-7-2:10-NF 0.7440 0.6880 0.9053 0.4710 0.6311 0.8327
TargetNet-allb 0.7739 0.7251 0.9411 0.5091 0.6572 0.8966
deepTarget2020 0.7683 0.7673 0.7689 0.7628 0.7649 0.7700
TEC-miTarget 0.7817 0.7796 0.7892 0.7701 0.7744 0.7852
miTAR 0.7995 0.7684 0.9624 0.5675 0.6925 0.9428
miRBD6.0 0.2866 0.5511 0.1807 0.9215 0.6958 0.5294
TargetScanHuman7.2 0.2050 0.5191 0.1241 0.9142 0.5906 0.5107

imbalanced-gene-level miCGR 0.9269 0.8661 0.8748 0.5776 0.9856 0.1222
cnnMirTarget 0.7899 0.6597 0.6627 0.5765 - -
deepTarget2020 0.8755 0.7822 0.7890 0.560 0.9833 0.0735
miTAR 0.8997 0.8212 0.8262 0.6552 0.9876 0.1018
TEC-miTarget 0.8115 0.6893 0.6886 0.7111 0.9876 0.0638
miRBD6.0 0.6106 0.4571 0.4409 0.9075 0.9925 0.0551
TargetScanHuman7.2 0.4733 0.3314 0.3112 0.8932 0.9878 0.0446

amiCGR is under the pairing pattern of offset-9-mer-m7. The results tested on balanced-gene-level dataset were averaged across the ten datasets. bThe results
for TargetNet reflect the best performance reported by Min et al. [16]. Target utilizes the exact same gene-level test set as the others. cResults presented in bold
text indicate the best performance.

miTAR [44], TargetNet [16], deepTarget [10], TEC-miTarget [18],
cnnMirTarget [15], miRBD [14], and TargetScanHuman [13].

The results presented in Table 7 highlight that the advantage
of miCGR primarily manifests in more challenging imbalanced
datasets. Specifically, on balanced test datasets, miCGR, under
the offset-9-mer-m7 pairing pattern criteria, outperformed other
state-of-the-art algorithms in terms of general classification per-
formance measures, namely, F1 score and accuracy, although it
has moderate levels of sensitivity and specificity. However, on
imbalanced test datasets, miCGR not only maintained the highest
F1 score and accuracy but also achieved significantly better sen-
sitivity compared to the originally top-performing model miTAR,
which exhibited a substantial decline.

On the one hand, the advantage of miCGR can be attributed
to its lenient pairing pattern. Algorithms like TargetNet-all and
miTAR simply utilize sliding windows when addressing gene-
level prediction problems, potentially leading to excessive false
positives. In contrast, methods that impose restrictive matching
rules, such as miRBD6.0 and TargetScanHuman7.2, exhibited high
specificity on both datasets but displayed low sensitivity, as they
filtered out most non-canonical sites.

On the other hand, miCGR facilitates the identification of
functional motifs within sequences, even when they are distant in
the original sequence. This is evident when compared to miTAR.
Although miTAR performs comparably with miCGR in the site-
level (Table 5) and the balanced gene-level dataset, it experi-
ences a significant decline in the imbalanced gene-level dataset.
This could be attributed to the fact that although miTAR can
capture continuous positional information of input sequences,
this strategy fails when key nucleotides are far apart. More-
over, other deep learning methods such as cnnMirTarget and

deepTarget2020, which lack positional information, are unable to
discern nucleotides across different regions and consequently fail
in this scenario.

Additionally, miCGR aligns more closely with biological prin-
ciples, particularly the importance of pairings dominated by the
seed region. This is evident when compared to TEC-miTarget.
Although TEC-miTarget performed well on the miRAW-site-level
dataset, it performed poorly on both the balanced and imbalanced
gene-level datasets. This might be because TEC-miTarget adopted
a CTS selection rule of ’at least nine WC pairings among the
miRNA nucleotides 1–13′, which diminishes the significance of
pairings within the seed region of the miRNA.

To evaluate the predictive performance of miCGR on entirely
novel miRNA-mRNA pairs—where neither the miRNAs nor
the mRNAs were present in the training set—we excluded
all mRNAs and miRNAs used in the training data when
constructing both the balanced and imbalanced gene-level
datasets. As shown in Supplementary Table S2 available online
at http://bib.oxfordjournals.org/, miCGR maintained comparable
performance on samples with unseen miRNAs and mRNAs,
achieving accuracies of 0.7608 and 0.8839 for the balanced
and imbalanced gene-level datasets, respectively. These results
highlight miCGR’s capability to accurately predict novel miRNA-
mRNA interactions.

Learn from Interpretability on Site-level to
Improve the Predictive Power on Gene-level
While traditional deep learning models often lack transparency
in explaining how different CTS selection strategies impact pre-
dictive power [24, 25], understanding how miCGR distinguishes
positive and negative binding pairs is crucial since miRNA-mRNA

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae616#supplementary-data
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Figure 4. The SHAP analysis results for (A) two true miRNA-mRNA interaction pairs (positive samples) and (B) two false miRNA-mRNA interaction
pairs (negative samples). Fragments colored pink indicate a positive contribution (Shapley value), while fragments colored blue indicate a negative
contribution. The black boxes highlight the seed regions within the miRNA sequences.

interactions can extend beyond WC base pairing. To address this,
we employed the SHAP method [45], a game-theoretic approach
for interpreting machine learning predictions, to analyze fea-
ture contributions (Shapley values) to the final outcome. We
applied this method to a well-performing 4-mer miCGR model for
illustration, but it is applicable to models using different k-mer
lengths.

To understand the model’s classification of miRNA sequences
as positive (binding) or negative (non-binding), we calculated
Shapley values for the chaos game representations of two pos-
itive and two negative samples. Figure 4A displays two positive
samples (true miRNA-mRNA interactions). The SHAP analysis
reveals that continuous matching segments within the miRNA
seed region significantly contribute to positive predictions. This

finding aligns with previous reports indicating that animal miRNA
and CTS recognition primarily occurs through complementary
pairing in the seed region.

For the negative samples (false miRNA-mRNA interactions) in
Fig. 4B, the SHAP analysis shows that discontinuous matching
segments within the seed region have a lower positive prediction
contribution (upper panel). Additionally, the presence of multiple
possible matches with the miRNA’s 3′ end sequence emerges as a
negative indicator (lower panels).

The SHAP analysis suggests that CTS sequences containing
multiple matching sites (m.s.) for the miRNA seed region might
act as negative regulators due to competition between binding
sites. To investigate this hypothesis, we filtered out CTSs with
more than one matching site during evaluation on a balanced
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Figure 5. Comparison of miCGR performance between CTS (original)
and CTS (m.s. = 1) on the balanced gene-level dataset. m.s. stands for
matching sites.

gene-level dataset. As shown in Fig. 5, miCGR exhibited a slight
improvement in accuracy, particularly under less stringent CTS
selection criteria, such as 10-mer-m6. This improvement can
be attributed to the reduced average CTS count of 10-mer-m6
from ∼ 81 to 15 (Table 6), which might help reduce the false
positive rate. Consequently, the decrease in false positives indi-
cates enhanced specificity for miCGR while causing relatively
minor damage to sensitivity. Results for all CTS selection crite-
ria are provided in Supplementary Table S3 available online at
http://bib.oxfordjournals.org/.

Case studies in practical application
To evaluate the practical application of our model, we conducted
two case studies: (i) predicting target genes for hsa-miR-552-3p,
and (ii) predicting miRNAs that target PCSK9. The experimentally
supported functional interactions between miRNAs and genes
were retrieved from the latest version of miRTarBase [46] and
TarBase [47] database.

Hsa-miR-552-3p is a small non-coding RNA located on chromo-
some 1p34.3, and its expression level is significantly dysregulated
in tissues or cells of various tumors [48, 49]. For hsa-miR-552-3p,
functionally targeted genes were predicted across 18,716 human

genes, and all the prediction results can be found in our GitHub
repository. As exhibited in Table 8, five experimentally functional
target genes were ranked among the top 1% prediction results
for hsa-miR-552-3p: GPR137C (rank 52nd), AR (rank 70th), DDX47
(rank 127th), MTDH (rank 129th), C12orf49 (rank 131st). For com-
parative analysis, we selected two well-established methods: Tar-
getScanHuman7.2 [13] and miRDB 6.0 [50]. The top five true pos-
itive mRNA predictions for hsa-miR-552-3p from each model are
presented in Table 8. MiCGR shows a higher enrichment of posi-
tive predictions, demonstrating that miCGR outperformed these
commonly used methods. Notably, targets identified by these
methods are also recognized by miCGR, but with better rankings;
for instance, DDX47 is ranked in the top 0.68% by miCGR, com-
pared to the top 15.09% by TargetScanHuman7.2. Additionally, the
functional enrichment analysis depicted in Fig. 6A indicates that
the target genes predicted by miCGR are predominantly involved
in cancer-related pathways, corroborating findings from previous
studies [49].

PCSK9, mainly produced by the liver, has a crucial role in the
lifecycle of the LDL receptor [51]. The expression level of PCSK9
was associated with multiple cardiovascular diseases [52–54]. For
PCSK9, functional miRNAs were predicted across 2656 human
miRNAs, and all the prediction results can be found in our GitHub
repository. As shown in Table 8, miCGR successfully predicted
hsa-miR-877-5p among the top 10 prediction results. Additionally,
hsa-miR-25-3p, which has been reported to have no interaction
with PCSK9 [55], was ranked at the bottom (2043rd) in the predic-
tion results. These findings demonstrate the strong practicality
of our miCGR model. Similar to the prediction for hsa-miR-552-
3p, miCGR demonstrates a greater enrichment of positive predic-
tions for PCSK9 compared to TargetScanHuman7.2 and miRDB 6.0
(Table 8). Additionally, the multiple sequence alignment analysis
presented in Fig. 6B indicates that the top 10 predicted miRNAs
for PCSK9 share sequence similarities; however, these similarities
extend beyond the seed region, as we employed lenient pairing
pattern rules to select CTS.

Conclusion
Dysregulation of genes controlled by miRNAs and changes in
miRNA expression are associated with various diseases, includ-
ing cancer, cardiovascular, metabolic, and neurodegenerative

Table 8. Performance comparison of methods for case studies.

Methods Top 5 true positive mRNA predictions for
hsa-miR-552-3p (rank/total, %)

Top 5 true positive miRNA predictions for
PCSK9 (rank/total, %)

miCGR GPR137C (52/18716, 0.28%)
AR (70/18716, 0.37%)
DDX47 (127/18716, 0.68%)
MTDH (129/18716, 0.69%)
C12orf49 (131/18716, 0.70%)

hsa-miR-877-5p (8/2656, 0.30%)
hsa-miR-320a-3p (11/2656, 0.41%)
hsa-miR-7845-5p (18/2656, 0.68%)
hsa-let-7e-5p (31/2656, 1.17%)
hsa-miR-26b-5p (46/2656, 1.73%)

TargetScanHuman7.2 BTF3L4 (164/4791, 3.42%)
YBX1 (236/4791, 4.93%)
RBN27 (398/4791, 8.31%)
DDX47 (723/4791, 15.09%)
CBFA2T2 (764/4791, 15.95%)

hsa-miR-7845-5p (21/1892, 1.11%)
hsa-miR-128-3p (137/1892, 7.24%)
hsa-miR-30c-1-3p (161/1892, 8.51%)
hsa-miR-335-5p (182/1892, 9.62%)
hsa-miR-148b-3p (331/1892, 17.49%)

miRDB6.0a BTF3L4 (94/513, 18.32%)
RBM27 (102/513, 19.88%)
MIER3 (184/513, 35.87%)

hsa-miR-191-5p (10/49, 20.41%)
hsa-miR-7845-5p (25/49,51.02%)

aFewer than five true positives were identified for miRDB6.0 [50], as it filtered the results to retain only positive predictions. bResults presented in bold text
indicate the overlapping genes predicted by miCGR and the other methods.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae616#supplementary-data
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Figure 6. Prediction results for hsa-miR-552-3p and PCSK9. (A) Bar graph illustrating enriched terms from both gene ontology (GO) and the Kyoto
Encyclopedia of genes and genomes (KEGG) for the top 100 predicted genes associated with hsa-miR-552-3p, color-coded by p-values. (B) Multiple
sequence alignments of the top 10 predicted miRNAs for PCSK9, generated using the MUSCLE algorithm.

diseases. Therefore, reliably predicting potential miRNA targets
related to these diseases is of particular importance. However,
the interaction between miRNA and its targets is complex,
often involving many putative miRNA recognition sites in
mRNA.

In this study, we propose a deep learning model called miCGR,
which is based on the enhanced Chaos Game Representation
(CGR) algorithm. Unlike one-dimensional-based sequence char-
acterization methods, the enhanced CGR helps to reveal some
functional motifs of the sequences even when they are far away by
converting genetic sequences into 2D graphical representations.
By incorporating prior biological knowledge and position infor-
mation through the enhanced CGR, miCGR can differently treat
nucleotide fragments within and outside the seed region. Through
training and hyperparameter tuning, our miCGR outperforms cur-
rently reported state-of-art algorithms in terms of accuracy and
F1 scores on multiple validation datasets, including the site-level
validation dataset, the balanced gene-level validation dataset,
and the imbalanced gene-level validation dataset. Additionally,
leveraging the SHAP interpretability analysis tool, we discover that

the model can capture certain binding patterns between miRNA
and CTS. Finally, two case studies demonstrate the practical appli-
cability of miCGR, highlighting its potential to provide insights
for optimizing artificial miRNA analogs that surpass endogenous
counterparts.

Nevertheless, predicting gene-level targets for miRNA still faces
many challenges. On one hand, the biological principles control-
ling the binding between miRNAs and target sites remain unclear,
and the regulatory mechanisms involved are not well understood.
On the other hand, mRNA transcripts, which serve as targets for
miRNA, are often very long, with many genes that have numer-
ous transcripts due to alternative splicing. Consequently, there
are numerous potential binding sites, making accurate filtering
difficult due to the lack of clear binding patterns. Additionally, the
current lack of negative data restricts the model’s ability to deeply
learn the composition and binding patterns of CTS. With further
research on miRNA and the accumulation of additional biological
experimental data, it is anticipated that our miCGR model will
show improved predictive and practical application capabilities
in the future.
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Key Points

• MiCGR uses an enhanced Chaos Game Representation
(CGR) to convert genetic sequences into 2D graphi-
cal representations to predict functional miRNA tar-
gets. Unlike one-dimensional sequence characterization
methods, miCGR’s enhanced CGR retrieves informa-
tion on similar motifs even when they are far apart
in the original sequences, extracting information from
nucleotide sequences more effectively.

• MiCGR further enhances the CGR algorithm by integrat-
ing seed region and subsequence position information
into an additional image channel, emphasizing the seed
region’s importance for accurate prediction. This allows
miCGR to treat nucleotide fragments within and out-
side the seed region differently, leading to better perfor-
mance.

• Leveraging the SHAP interpretability analysis tool,
miCGR can capture certain binding pattern rules
between miRNA and CTS, improving its predictive power.
The model outperforms existing methods in predict-
ing functional targets at both site and gene levels and
demonstrates practical applicability through case stud-
ies, offering insights for optimizing artificial miRNA
analogs.
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