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Abstract

Noncoding RNA refers to RNA that does not encode proteins. The lncRNA and miRNA it contains play crucial regulatory roles in
organisms, and their aberrant expression is closely related to various diseases. Traditional experimental methods for validating the
interactions of these RNAs have limitations, and existing prediction models exhibit relatively limited functionality, relying on isolated
feature extraction and performing poorly in handling various types of small sample tasks. This paper proposes an improved de Bruijn
graph that can inject RNA structural information into the graph while preserving sequence information. Furthermore, the improved
de Bruijn graph enables graph neural networks to learn broader dependencies and correlations among data by introducing richer
edge relationships. Meanwhile, the multitask learning model, DVMnet, proposed in this paper can handle multiple related tasks, and
we optimize model parameters by integrating the total loss of three tasks. This enables multitask prediction of RNA interactions,
disease associations, and subcellular localization. Compared with the best existing models in this field, DVMnet has achieved the
best performance with a 3% improvement in the area under the curve value and demonstrates robust results in predicting diseases and
subcellular localization. The improved de Bruijn graph is also applicable to various scenarios and can unify the sequence and structural
information of various nucleic acids into a single graph.
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Introduction
With the discovery of many long noncoding RNAs (lncRNAs)
and microRNAs (miRNAs) in the early part of the first decade
of the 21st century, it became widely recognized that RNA can
function as a regulatory molecule [1]. LncRNA, with a length
>200 nucleotides, has been implicated in the development and
progression of various diseases through its abnormal expression
[2]. MiRNA is a class of RNA molecules ∼18–22 nucleotides long,
widely present in eukaryotes as noncoding RNAs (ncRNAs) [3].
Their subcellular localization may determine their specific func-
tions, for instance, regulating gene transcription in the nucleus or
controlling mRNA translation in the cytoplasm [4]. Furthermore,
lncRNAs and miRNAs exhibit complex and intimate interrelation-
ships within cells [5]. For example, lncRNAs can attenuate the
direct impact of miRNAs on mRNAs, and there may exist positive
or negative feedback regulatory relationships between lncRNAs
and miRNAs [6]. In summary, both lncRNAs and miRNAs play
pivotal roles in the onset and progression of diseases [7–11].

Traditional experimental approaches to validate the inter-
actions between lncRNAs and miRNAs, as well as to identify
RNA–disease associations, are often time-consuming and labor-
intensive, limiting their application to only a few specific lncRNAs

and miRNAs [12–14]. RNA subcellular localization relies on
smFISH, making computational methods for predicting RNA
interactions, associations, and localization valuable. Proposed
methods use 1D or 2D RNA features with CNNs, DNNs, or
transformers due to limited 3D data [15–19]. Zhou et al. studied
the relationship between ncRNA and proteins based on the mul-
tihead attention mechanism, effectively utilizing the sequence
information of ncRNA and proteins, but did not incorporate other
richer feature information from additional modalities [20]. Zhang
et al. employed the fusion of multisource relationships in the
functional prediction of lncRNA and proposed strategies of path
masking and degree regression [21]. Additionally, some models
constructed heterogeneous graphs with RNAs, diseases, and other
entities and employed graph neural networks (GNNs) for node
feature representation [22–24]; Wei et al. proposed a framework
based on GNNs to predict ncRNA–protein interactions. This study
leveraged the topological information of graph data and employed
a more refined sampling strategy. However, it is highly dependent
on the specific dataset used and lacks general applicability
[25]. Graph representation of RNA captures its structure and
interactions, aiding RNA information extraction and supporting
function prediction and disease analysis [26–28].
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Currently, the most common prediction classifiers fall into two
categories. One approach integrates the features of heterogeneous
entities such as RNAs into a unified dimension and constructs an
end-to-end prediction framework using networks like multilayer
perceptrons or fully connected layers [29, 30]. This method uses
machine learning algorithms (SVMs, logistic regression, random
forests) to build classifiers for RNA feature–based prediction [31,
32]. Despite the progress made by these methods, there are still
two major challenges. The first challenge is the effective rep-
resentation of RNA features. RNA contains various stem–loop
structures, such as hairpins, bulges, and loops [33]. The de Bruijn
map has been used to construct an RNA map. However, it can’t
reflect the structural characteristics of RNA. [34, 35]. The second
challenge involves enhancing the learning efficiency for small
datasets of ncRNAs. By leveraging the potential correlations and
shared features between lncRNA–miRNA interactions and RNA
characteristics, the performance of tasks involving small sample
sizes can be significantly improved through the application of
multitask learning [36, 37].

To address these issues, we propose DVMnet, which is tailored
for predicting the attributes and interactions associated with
lncRNAs and miRNAs. We first co-express RNA features through
an improved de Bruijn graph and sequence features and then
utilize a GNN to extract these features. This approach captures
the complex interactions between RNA molecules, thereby pro-
viding a more comprehensive understanding of RNA function
and mechanisms within cells. Subsequently, we construct corre-
sponding multilayer neural network prediction classifiers for each
task and optimize the model as well as update its parameters
by integrating the total loss across all three tasks. Finally, we
conduct various evaluation experiments on DVMnet and perform
a comprehensive performance comparison with state-of-the-art
prediction methods. The results demonstrate that our method
achieves the best overall performance compared to state-of-the-
art approaches, providing a more accurate and effective tool for
lncRNA and miRNA research.

In summary, DVMnet has accomplished the following tasks:
(i) we have proposed an improved de Bruijn graph specifically
designed for capturing RNA structural information. It is capable
of handling sequences of different lengths by introducing
structural information and constructing a large number of
edge relationships; it enables effective information propagation
between originally disconnected nodes, allowing the model to
learn broader dependencies and correlations among bases. This
enhanced learning capability helps the model perform better
on unseen data and can also appropriately mitigate overfitting.
This makes its application scenarios more extensive and better
suited for multitask scenarios. (ii) It simultaneously learns
multiple related tasks through a multitask learning approach,
enhancing overall performance and providing a platform for
handling small data tasks. (iii) We also employ GNNs for feature
extraction, enabling the model to better capture key information
and potential interaction patterns within RNA sequences. These
innovations give DVMnet significant advantages in predicting
properties and interactions related to lncRNAs and miRNAs,
offering new ideas and methods for research in related fields.

Methods
Datasets
LncACTdb [38] (http://bio-bigdata.hrbmu.edu.cn/LncACTdb/) is a
comprehensive database where all lncRNA–miRNA associations
have been experimentally validated. Initially, we obtained

1057 lncRNA–miRNA associations from LncACTdb, involving
284 lncRNAs and 520 miRNAs. Subsequently, we derived the
associations between lncRNAs and diseases. From the data on
lncRNA–disease relationships, we filtered out 187 lncRNAs that
intersected with the lncRNA–miRNA association dataset and
were related to nine types of cancer. RNAlocate [39] (http://www.
rna-society.org/rnalocate/) is a search tool for RNA subcellular
localization. We selected 454 miRNAs that intersect with the
lncRNA–miRNA association dataset and retrieved the subcellular
localization information for these 454 miRNAs from this database.
The sequence information for lncRNAs and miRNAs was sourced
from LNCipedia [40], NONCODE [41], and miRbase [42]. LNCipedia
and NONCODE are fundamental noncoding RNA database
platforms specifically designed to store lncRNA sequences and
annotation information, integrating lncRNA data from multiple
sources. On the other hand, miRBase is an online miRNA database
dedicated to collecting, storing, and managing various miRNA
sequences. For the main task, we allocated 80% and 20% of the
entire dataset as the training set and validation set, respectively.
For the two auxiliary tasks, we allocated 85% and 15% of the
entire dataset to their respective training sets and validation
sets.

DVMnet framework
Figure 1a illustrates the proposed DVMnet framework. Given an
input lncRNA–miRNA pair, firstly, the RNA sequence data undergo
preprocessing to extract key features. Then, a dual-view model
is constructed using an improved de Bruijn graph and a het-
erogeneous graph to accurately represent RNA sequence infor-
mation and potential interactions. Subsequently, an advanced
graph attention network is employed to extract and encode RNA
features. By capturing crucial information within RNA sequences
and underlying interaction patterns, it provides a powerful fea-
ture representation for subsequent prediction tasks. Next, based
on the extracted features, three interrelated multilayer neural
network prediction classifiers are constructed for predicting RNA
interactions, disease associations, and subcellular localization,
respectively. By sharing underlying feature representations and
jointly optimizing the overall loss across multiple tasks, the over-
all prediction performance is enhanced.

Construction of de Bruijn graph
The secondary structure of ncRNA is crucial for its normal func-
tion. Its sequence is mainly composed of four types of bases,
following pairing rules such as A-U, C-G, or G-U. During com-
putation, examining the pairing probability of each base with
other bases can not only obtain accurate secondary structure
information but also derive biologically meaningful features by
capturing potential pairing information.

The traditional de Bruijn graph is a directed graph that repre-
sents the overlapping relationships between symbolic sequences.
The difference between the improved de Bruijn graph and the
traditional one lies in that it represents the pairing relation-
ships between symbolic sequences, rather than the overlapping
relationships. In the graph construction part, we transform the
lncRNA sequence into a graph. Specifically, the nodes in the
graph are the same as those in the traditional de Bruijn graph.
When constructing the edges, instead of connecting adjacent
base modules, we assign weight data between bases that can
match the given matching rules. The lncRNA sequence is as
follows:

LncRNA = N1, N2, N3 . . . . . . NL−1, NL.
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Figure 1. DVMnet flowchart. (a) Model framework. After the data processing stage, we obtained the sequences of lncRNA and miRNA, as well as data on
lncRNA–miRNA interactions, lncRNA–disease associations, and subcellular localization of miRNA. Firstly, we feed the RNA sequences into the DVMnet
block to update their features. Then, based on the output of DVMnet, we construct three predictors and adopt a dynamic task prioritization method to
integrate the losses of the three predictors for parameter updating and model optimization. Finally, the trained DVMnet model will accomplish the tasks
of predicting lncRNA–miRNA interactions, lncRNA–disease associations, and subcellular localization of miRNA. (b) DVMnet block. This is the module
used to update the features of each RNA. Initially, an improved de Bruijn graph is constructed, and a graph attention network is employed to extract
latent structural features within the RNA molecules. Subsequently, a heterogeneous graph with lncRNA and miRNA as nodes is built, and a graph
convolutional neural network is utilized to capture the complex relationships and interactions among RNAs. (c) Construction of improved Debruin
diagram. The RNA sequence is decomposed into subsequences of length k, where the k value of lncRNA is 3, and the k value of miRNA is 2. Taking the
segmented sequence as a node, according to the principle of base pairing, the pairing of each base and its nearby bases with other bases in the sequence
is traversed, and the corresponding weights are given to generate edges. (d) Comparing the improved Debruin diagram with the traditional Debruin
diagram, it is obvious that the improved Debruin diagram has more related relations.
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Taking base N1 as an example, we first consider its matching
relationship with base NL. In Tab. S1, we illustrate the weights of
base pairings in the improved de Bruijn graph construction, and
the pairing weight is set as follows:

S =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2,
(
if

(
Na = A and Nb = U

)
or

(
Na = U and Nb = A

))
3,

(
if

(
Na = G and Nb = C

)
or

(
Na = C and Nb = G

))
1,

(
if

(
Na = G and Nb = U

)
or

(
Na = U and Nb = G

))
0, else

.

If the pairing is successful, we continue to consider the pairing
relationship between base N2 and the next base NL−1. If it fails,
the matching stops; if it succeeds, it continues until it reaches
VMAX steps. VMAX is the maximum number of steps we define.
Each successful step forward earns a matching score. Based on
the type of matched bases and the number of steps taken, we
incorporate the idea of locally weighted linear regression and add
a Gaussian function as a weight. This way, we obtain the total sum
of matching scores:

Wscore = S· e−0.5x2
,

Wsum =
∑

Wscore,

where Wscore represents the weight score for each step, x repre-
sents the number of matching steps, and Wsum represents the
total weight score. Ultimately, Wsum is used as the edge weight and
inserted into the de Bruijn graph matrix.

As shown in Fig. 1c, we used 3-mers to reconstruct lncRNAs and
2-mers to reconstruct miRNAs, thereby constructing an improved
de Bruijn graph. As depicted in Fig. 1d, the original de Bruijn graph
builds graph associations based on the sequence order (from left
to right), which merely describes the 1D spatial information of
RNA based on its nucleotide sequence. However, the improved de
Bruijn graph can capture the structural information of RNA and
construct more graph–space associations. In addition, we have
also presented a heatmap of the characteristics of the improved
de Bruijn graph in Supporting Fig. S1.

DVMnet encoder
In the DVMnet encoder, we first construct two types of graphs
separately. Besides the improved de Bruijn graph, we also build
a heterogeneous graph containing two types of nodes through
the lncRNA–miRNA interaction network. The nodes represent
lncRNAs and miRNAs.

Next, we will introduce the process of extracting RNA features
in each DVMnet block within the DVMnet encoder. As shown
in Fig. 1b, For the de Bruijn graph of RNA, our model employs
a graph attention network to capture the interactions of each
node within the graph. Specifically, we allow each trinucleotide
(dinucleotide) in the RNA to send attention information along the
edges of the de Bruijn graph and aggregate all information from its
neighboring nodes. Firstly, we calculate the attention coefficients
between each node and its neighboring nodes in the graph using
the following equation:

êij = â(l)T
[
W(l)

k h̄(l)
i

∥∥∥W(l)
k′ h̄(l)

j

]
,

αij = exp
(
LeakyReLU

(
êij

))
∑

s∈Ni∪{i} exp
(
LeakyReLU

(
êis

)) ,

where êij represents the attention weight between adjacent nodes,
â(l)T

, W(l)
k , and W(l)

k′ are trainable parameters, and || denotes con-
catenation operation. αij represents the attention score between

node i and node j, softmax denotes the activation function, and
Ni represents the set of neighboring nodes of node i. h̄(l)

i and h̄(l)
j

represent the feature representations of node i and node j at the
lth layer in the de Bruijn graph, respectively. When l = 0, the feature
of each node is represented by a one-hot encoding vector. After
obtaining the attention score αij, we use the following equation
to aggregate the features of neighboring nodes and complete the
node update:

h̄(l+1)
i = σ

⎛
⎝ ∑

j∈Ni∪{i}

(
1
ci

αijW
(l)
k′′ h̄

(l)
i + b̂(l)

)⎞
⎠ ,

where h̄(l+1)
i represents the updated feature representation of node

i in the de Bruijn graph. σ denotes the activation function, ci is the
normalization constant, and ci = |Ni| + 1. Both W(l)

k′′ and b̂(l) are
trainable parameters.

Unlike the node representation in the de Bruijn graph, each
node in the heterogeneous graph is represented by a complete
RNA sequence, and the adjacency matrix in the heterogeneous
graph is described as the association between two types of RNA.
For the heterogeneous graph composed of lncRNA and miRNA,
our model employs a graph convolutional neural network to cap-
ture the interactions of each node within the graph. Specifically,
the feature update process for node i in the heterogeneous graph
can be formulated as follows:

=
h
(l+1)

i = σ

⎛
⎜⎝∑

j∈∼
Ni

(
1
c̃i

W(l)
rk′′

=
h

(l)

i + b̃(l)

)⎞
⎟⎠ ,

where
=
h
(l+1)

i denotes the updated feature representation of node i

in the heterogeneous graph, c̃i = |∼
Ni|+1, and both W(l)

rk′′ and b̃(l) are

trainable parameters.
∼
Ni represents the set of neighboring nodes

for node i.
=
h

(l)

i indicates the feature representation of node i at the
l-th layer in the heterogeneous graph. When l = 0, the features of
each node are represented by the output features of the de Bruijn
graph and Doc2vec encoding.

After passing through the DVMnet Block shown in Fig. 1b, we
obtain the feature representation for each RNA:

g = BN

(
n∑

i=1

=
hi

)
,

where BN() represents the batch normalization layer.

DVMnet predictor
Through the DVMnet encoder, we have extracted the embedded
features of RNA from two perspectives. In this section, we use
these embedded features to make predictions.

Firstly, we adopt a prediction function to determine the likeli-
hood of lncRNA–miRNA interactions. The prediction function is as
follows:

P
(
glnc, gmi

) = σ
(
glnc

TWlmgmi
)

,

where σ denotes the activation function, and glnc and gmi represent
the embedded features of lncRNA and miRNA, respectively. Wlm is
the trainable weight matrix of the prediction function. P

(
glnc, gmi

)
is the predicted value for the interaction between lncRNA and
miRNA.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae627#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae627#supplementary-data
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In addition, we predict lncRNA–disease associations using a
multilayer perceptron (MLP) composed of a three-layer neural net-
work as the predictor. The prediction process can be formulated
as follows:

P
(
glnc, Dr

) = σ
(
MLP

(
glnc, Wr, br

))
,

where σ denotes the activation function, MLP represents the
predictor, and glnc indicates the embedded features of lncRNA.
Wr is the trainable weight matrix associated with disease type
r. P

(
glnc, Dr

)
is the predicted value for the association between

lncRNA and diseaseDr of type r.
Similar to the predictor for lncRNA–disease associations, we

have constructed a classifier for miRNA subcellular localization.
The prediction process can be formulated as follows:

P
(
gmi, Ce

) = σ
(
MLP

(
gmi, We, be

))
,

where σ denotes the activation function, MLP represents the
predictor, and gmi indicates the embedded features of miRNA. We

is the trainable weight matrix associated with subcellular type e.
P

(
gmi, Ce

)
is the predicted value for the localization of miRNA in

the subcellular compartment Ce of type e.
We use binary cross-entropy loss as the loss function for train-

ing the lncRNA–miRNA interaction task. For the prediction tasks
of lncRNA–disease associations and miRNA subcellular localiza-
tion, we use the cross-entropy loss function:

LossB = − 1
N

N∑
i=1

yi log
(
pi

) + (
1 − yi

)
log

(
1 − pi

)
,

LossC = − 1
N

N∑
i=1

yi log
(
pi

)
,

where yi represents the true label value of the ith sample, pi

represents the predicted value of the i-th sample, and N denotes
the batch size. After obtaining the losses for the three tasks, we
employ dynamic task prioritization to integrate them and select
the Adam optimizer based on the total loss for parameter updates
and model optimization.

γk(t) = Kexp (wk (t − 1) /T)∑
i exp (wk (t − 1) /T)

,

wk (t − 1) = Lk (t − 1)

Lk (t − 2)
,

where γk represents the weight of each task, wk is the ratio of
losses from the previous and second-to-last rounds, indicating the
learning rate for different tasks. T serves as a smoothing factor
for task weights; the larger T is, the more evenly distributed the
weights of different tasks will be. The total loss is the weighted
average of the losses from all tasks:

Loss =
∑

k

γkLk.

Experimental settings
DVMnet is trained using PyTorch1.11.0 in Python3.8 (ubuntu20.04)
on the following hardware configurations:

r CPU: 16 vCPU AMD EPYC 9654 96-Core Processor.
r GPU: RTX 4090(24GB) ∗ 1.
We use the Adam optimizer for parameter training. In addition,

we present the AUC values for each epoch and the changes in

loss values for each task in the supporting materials, specifically
in Fig. S2 and Fig. S3. Furthermore, in Tab. S2 of the supporting
materials, we provide a comparison of memory usage and time
for the improved de Bruijn graph.

Results
Evaluation strategies and metrics
To comprehensively assess the model’s performance, we selected
the F1 score, area under the curve (AUC) value, average precision
(AP), and normalized discounted cumulative gain (NDCG) as eval-
uation metrics. In terms of evaluation metrics, the F1 score repre-
sents the harmonic mean of precision and recall, which allows for
a comprehensive assessment of both the classification accuracy
and completeness of the model. The AUC value is commonly used
to evaluate the performance of binary classification models. AP
calculates the area under the precision–recall curve, which better
reflects the model’s performance at high recall and high precision
rates, and NDCG is frequently utilized to assess the performance
of ranking tasks.

Performance comparison on benchmark datasets
Here, we compare DVMnet with two state-of-the-art baselines:
preMLI [43] and SPGNN [44]. The focus of the comparison lies
in the lncRNA–miRNA interaction prediction task. We compared
DVMnet with the following two models for lncRNA–miRNA inter-
action prediction: (i) preMLI, which combines rna2vec pretraining
technology with a deep feature mining mechanism for training.
On benchmark datasets, it has demonstrated performance supe-
rior to previous methods. Although it employs word embedding
models at different positions similar to DVMnet, it lacks the
structural representation of DVMnet. Therefore, we compare it
with DVMnet. (ii) SPGNN, a GNN based on sequence pretrain-
ing that generates high-quality pretrained embeddings from the
entire RNA sequence corpus during the pretraining phase using
sequence-to-vector conversion techniques. This model is the lat-
est model at present and uses different GNNs from DVMnet in
different positions, so it is selected as the baseline model.

As shown in the confusion matrix in Fig. 2a, DVMnet achieves
more accurate predictions of lncRNA and miRNA interactions
compared to preMLI and SPGNN. Figure 2b displays the F1 score,
AUC value, AP value, and NDCG value of the three models.
Among them, the area under the receiver operating characteristic
(ROC) curve for each model is shown in Fig. 2c. Experimental
results demonstrate that the DVMnet model exhibits significant
advantages across all four evaluation metrics. This indicates
that the DVMnet model can more effectively reduce false
positives and false negatives compared to the preMLI and SPGNN
models, exhibiting higher classification accuracy and stability.
This is primarily attributed to the dual-view multitask learning
framework adopted by the DVMnet model, along with advanced
feature extraction and encoding methods.

Ablation study
Here, we conducted a series of ablation studies to investigate the
impact of each feature representation and extraction method
within DVMnet on the model’s final prediction performance.
The left side of Fig. 3a represents the length of the decomposed
subsequences in the lncRNA de Bruijn graph, while the right
side shows the length of the decomposed subsequences in the
miRNA de Bruijn graph. DVMnet performs best in all three tasks
using 3-mer for lncRNA and 2-mer for miRNA, possibly due to
longer lncRNA sequences expressing more dependencies. The

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae627#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae627#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae627#supplementary-data
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Figure 2. Comparative evaluation of DVMnet with other advanced baseline models. (a) Confusion matrix for predicting lncRNA–miRNA interactions
using benchmark datasets. (b) Evaluation metrics including F1, AUC, AP, and NDCG and (c) AUROC curves. (c) To assess the statistical significance of
the performance differences between DVMnet and other baseline methods, we adopted the Wilcoxon test. The figure presents the results for the task
of predicting lncRNA–miRNA interactions on the benchmark dataset.

improved de Bruijn graph represents a significant innovation
in this study. To explore its advantages, we compared it with
various encoding methods, including Text2vec, RNABERT, and
Doc2vec, as shown in Fig. 3b. Initially, when we used each of these
three feature encoding methods separately, the performance of
Text2vec and RNABERT was significantly inferior to that of the
improved de Bruijn graph. Doc2vec’s performance was slightly
lower than improved de Bruijn graph (IDG)’s. Combining them
improved results, with IDG + Doc2vec performing best. Two GNNs
were used for feature extraction from improved graphs, a key

step in DVMnet’s RNA feature extraction. To explore the impact of
various GNNs on the model’s performance, we selected four GNNs
specifically for the de Bruijn graph and six for the heterogeneous
graph, integrating them into the DVMnet model under the same
experimental conditions. By comparing the performance of
different models in predicting lncRNA–miRNA interactions (Task
1), we found that, as shown in Fig. 3c, graph attention network
(GAT) excelled on the improved de Bruijn graph, while graph
convolution network (GCN) performed best on the heterogeneous
graph, possibly due to their respective strengths matching the
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Figure 3. Partial ablation experimental results of DVMnet. (a) The influence of k-mer values in the de Bruijn graph on three tasks. (b) The impact of
different feature encoding methods and combinations on Task 1. (c) The effect of various GNN approaches on Task 1 for both the de Bruijn graph and
the heterogeneous graph.

graph characteristics. The de Bruijn graph suits GAT’s attention
mechanism, while the complex heterogeneous graph favors GCN.

Multitask effect
The prediction of lncRNA–disease interactions and the subcellular
localization of miRNAs are secondary tasks within a multitask
system. We connect these topics into a multitask system through
the interactions between lncRNAs and miRNAs (as shown in
Fig. 4a), and the impact of different predictors on the perfor-
mance of these two secondary tasks is illustrated in Fig. 4b. When
comparing the performance of various predictors, we found that
the MLP demonstrated superior performance across all evalu-
ation metrics. Compared to the five other methods, including
bidirectional gated recurrent unit (BiGRU), recurrent neural net-
work (RNN), the combination of BIGRU and MLP, the combination
of RNN and MLP, and random forest, MLP exhibited the best
predictive results. In contrast, BiGRU and RNN, while capable of
processing sequential data and capturing temporal dependencies,
may be affected by gradient vanishing or exploding issues in cer-
tain cases, limiting their performance. The combined approaches
of BiGRU + MLP and RNN + MLP, while incorporating the strengths
of both recurrent neural networks and MLPs to some extent, may
suffer from overfitting or reduced computational efficiency due to
an excess of parameters or high model complexity. As shown in
Fig. 4c, we utilized the t-SNE algorithm to reduce the dimensional-
ity of the model’s predicted outputs for the two secondary tasks.
The resulting data points were then plotted in a 3D coordinate
system. Negative samples are represented in green, while posi-
tive samples are indicated in purple. This visualization approach

allows us to intuitively observe the spatial distribution of data
points belonging to different categories. Meanwhile, to mitigate
gradient conflicts and poor model performance arising from low
correlation among multiple tasks, we experimented with sev-
eral methods for loss weight allocation (as illustrated in Fig. 4d).
Among them, dynamic weight average [45] demonstrated the best
performance, significantly surpassing gradient normalization and
using uncertainty to weigh losses. Furthermore, for the task of
miRNA subcellular localization, we compared the performance of
our model with other models on smaller datasets and included
these comparisons in Fig. S4 in the supporting materials.

Application of the improved de Bruijn graph in
predicting tasks for more types of RNA
The improved de Bruijn graph proposed in this paper incorporates
RNA structural information and biological significance based on
RNA sequence information. This approach obtains more edge
information and is able to learn more comprehensive correlations
between bases, making it universally applicable to various types
of RNA and DNA sequences.

To test the performance of the improved de Bruijn graph
in other nucleic acids, we selected 15 well-known circRNA-
RBP datasets [46] (https://circinteractome.nia.nih.gov/). In this
dataset, we obtained circRNA fragments with a 1:1 ratio of
positive and negative samples, along with labels indicating
whether they are binding sites for target proteins. We applied the
improved de Bruijn graph to this prediction task and evaluated
the improvements it brought when added to a regular model
that uses Doc2vec for feature extraction. On the other hand, we

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae627#supplementary-data
https://circinteractome.nia.nih.gov/
https://circinteractome.nia.nih.gov/
https://circinteractome.nia.nih.gov/
https://circinteractome.nia.nih.gov/
https://circinteractome.nia.nih.gov/
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Figure 4. (a) Visualize the interrelationships between lncRNA, miRNA, diseases, and subcellular localization in the dataset using a Sankey diagram.
(b) Performance comparison of different predictors in the tasks of lncRNA–disease association (Task 2) and miRNA subcellular localization (Task 3).
(c) Classification visualization for the tasks of lncRNA–disease association and miRNA subcellular localization. (d) Ridge plot displaying the optimization
strategy for multitask loss.

verified the DNA sequence. We used the dataset from Liu et al. [47]
and got the same number of enhancer and nonenhancer samples.
We applied the improved de Bruijn graph to this prediction task.
Similarly, we compared the effect of using Doc2vec alone with that
of adding the improved de Bruijn graph. Figure 5a and b shows
that the improved de Bruijn graph has contributed to these two
tasks. In the task of identifying the binding site of circRNA-RBP,
after adding the improved de Bruijn graph as feature extraction,
the AUC has increased by 18% on average. In the judgment task
of enhancer, the AUC value increased by 7%.

Furthermore, as shown in Fig. 5c, to further understand the
contribution of the improved de Bruijn graph to the prediction
results and observe the contribution of each base pair recognition
under this method, we conducted an interpretability analysis of
the circRNA-RBP binding site recognition task using the integrated
gradients attribution algorithm. In the AUF1 dataset, among all
the samples, we selected 128 for statistical analysis and found
that bases located in the stem regions of RNA contributed 21%

more on average to the discrimination compared to those in the
loop regions. This fully demonstrates the constructive role of the
improved de Bruijn graph in structural information extraction.

Discussion
An increasing number of lncRNAs have their specific research
foci, and the literature is replete with related content. However,
some common themes are emerging: the complex regulatory
networks formed among ncRNAs jointly regulate cellular gene
expression and function. There is a current need for more precise
information extraction methods and more versatile predictive
frameworks. A major challenge lies in the fact that high-precision
RNA 3D structures account for only a small fraction of known
RNA sequences. Due to the vast differences in sequence length,
it is quite challenging to obtain RNA structural features using
these high-precision 3D structural RNAs or existing RNA structure
prediction models. Therefore, we propose an improved de Bruijn
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Figure 5. (a) Using violin plots to represent the comparison of predicting target protein binding sites in 15 circRNA datasets with and without using the
improved de Bruijn graph. (b) Comparison of using the improved de Bruijn graph in enhancer identification tasks. (c) Visual display of the contribution
of each base pair to the recognition task (taking hsa circ 0028545 and hsa circ 0001575 as examples) and the interpretability heatmap for partial data
in the AUF1 dataset.

graph that can represent RNA sequence information, including
base types and positions, and can also encompass potential struc-
tural information such as hairpins, bulges, or loop structures. This
method is applicable to all nucleotide chains and can be extended
to other interaction prediction problems, including enhancer pre-
diction, transcription factor binding site prediction, and RNA-
RBP binding site prediction. Secondly, the key to the model’s
success lies in its network design. At the micro level, it delves
into the local patterns and structures of RNA sequences, while, at
the macro level, it captures the global relationships among RNA
features. On the other hand, when dealing with personalized
small datasets, directly fine-tuning pretrained large models often
fails to achieve the desired results. Researchers opt for experi-
mental exploration of learning patterns on small datasets, which
not only consumes significant time and effort but also has a low
success rate. We adopt a multitask training approach to further
optimize the model, treating multiple real-world attributes of
ncRNAs as different learning tasks and designing a unified model
to handle these tasks simultaneously. Furthermore, the multitask
model reduces the number of parameters required for training
each task separately by sharing underlying parameters. This not
only helps to decrease the complexity of the model and effec-
tively avoid overfitting but also allows the model to learn more
general feature representations that can be generalized across

different tasks, thereby facilitating the model’s adaptation to new
data and prediction and enhancing the model’s learning ability
and generalization performance on small datasets. Compared to
other models, DVMnet consistently demonstrates better predic-
tive performance across multiple tasks. The potential application
prospects of DVMnet are extensive. The versatility of the improved
de Bruijn graph suggests its wide applicability in other nucleic
acid–related tasks, where it can serve as a foundational feature
extraction algorithm for a multitude of applications. Furthermore,
the model’s multitask training strategy allows for the integration
of various task types, such as transcription-factor binding site
prediction and RNA-RBP binding site prediction. This not only
facilitates knowledge sharing across different tasks but also sig-
nificantly boosts the model’s learning capability and generaliza-
tion performance, especially when dealing with small datasets.

Key Points

• This paper proposes an improved de Bruijn graph algo-
rithm, which is particularly suitable for nucleic acid
sequences based on base pairing principles and can
better express the structural characteristics of nucleic
acids that implicate biological information.
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• Multitask learning is employed, training by coordinating
the losses of multiple tasks and providing insights for
enhancing the learning ability of small datasets.

• For RNA sequences, learning is approached from two
aspects: sequence information and structural informa-
tion, with learning conducted from different viewpoints
or perspectives.

Supplementary data
Supplementary data are available at Briefings in Bioinformatics
online.
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