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Abstract 
Sequence diversity is one of the major challenges in the design of diagnostic, prophylactic, and therapeutic interventions against viruses. 
DiMA is a novel tool that is big data-ready and designed to facilitate the dissection of sequence diversity dynamics for viruses. DiMA 
stands out from other diversity analysis tools by offering various unique features. DiMA provides a quantitative overview of sequence 
(DNA/RNA/protein) diversity by use of Shannon’s entropy corrected for size bias, applied via a user-defined k-mer sliding window to an 
input alignment file, and each k-mer position is dissected to various diversity motifs. The motifs are defined based on the probability 
of distinct sequences at a given k-mer alignment position, whereby an index is the predominant sequence, while all the others are 
(total) variants to the index. The total variants are sub-classified into the major (most common) variant, minor variants (occurring 
more than once and of incidence lower than the major), and the unique (singleton) variants. DiMA allows user-defined, sequence 
metadata enrichment for analyses of the motifs. The application of DiMA was demonstrated for the alignment data of the relatively 
conserved Spike protein (2,106,985 sequences) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the relatively 
highly diverse pol gene (2637) of the human immunodeficiency virus-1 (HIV-1). The tool is publicly available as a web server (https:// 
dima.bezmialem.edu.tr), as a Python library (via PyPi) and as a command line client (via GitHub). 
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Introduction 
Viral infectious diseases are a major public health threat. There 
are more than 200 viruses that are considered infectious to 
humans [1]. Viral infections have the potential to be of pandemic 
proportion, as demonstrated by the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), responsible for the recent 
global health crisis, COVID-19 [2]. The first infection was reported 
in Wuhan, China, which eventually spread to the world at large, 
infecting more than 776 million people, with over seven million 
deaths (as of October 2024; https://data.who.int/dashboards/ 
covid19). There is a need to better understand viruses to help 
mitigate these devastating effects, in particular for pathogens that 
are of global priority, such as Filoviruses and Flaviviruses, among 
others (https://www.niaid.nih.gov/research/emerging-infectious-
diseases-pathogen). 

The SARS-CoV-2 pandemic exemplified the value of sequence 
data [3] in developing intervention strategies against viruses 

[4, 5], such as diagnostics, therapeutics, and prophylactics. 
Sequence data are a treasure trove to better understand viral 
evolution and interaction with the host. It allows the study of viral 
diversity, which can help identify the changes and evolutionary 
pressures. Sequence change of even a single amino acid can affect 
the recognition of a virus by the host immune system [6]. Viral 
diversity is a result of sequence substitutions that are primarily an 
outcome of evolutionary forces, such as mutation, recombination, 
and/or reassortment [7]. Among these, mutations have the most 
significant effect, the rate of which can range from 10−8 to 10−6 

and 10−6 to 10−4 nucleotide sites, per cell infection for DNA and 
RNA viruses, respectively [8]. The variation within a single host 
can result in a spectrum of viral variants that are described as 
viral quasi-species [9]. 

Various studies have looked into the analyses of viral sequence 
variability and conservation. This has been facilitated primarily 
by alignment-dependent and to some extent alignment-free
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approaches. The latter is used when data is big, or the diversity 
is prohibitively large to allow for a reliable alignment [10]. 
This approach, however, is not applicable if the goal is to 
study site-dependent substitutions [11]. An alignment-dependent 
approach allows us to study conservation and variability across 
the sequences of a viral species and enables comparative 
analysis across related species. There are various alignment-
based approaches to study diversity, such as through sequence 
similarity search [12], phylogeny [13], and biological patterns [14] 
and profiles [15], among others. 

A continuing goal is a greater understanding of viral diversity 
and an effective strategy to overcome the diversity for interven-
tion applications [16]. There is a need for a more detailed and 
quantitative analysis of the extent of viral substitutions, including 
the composition and frequency (incidence) or probability of the 
different variants of the viral genome/proteome [17, 18]. Towards 
this, Hu et al. [19] presented a novel approach to dissect the 
dynamics of viral variability by use of diversity motifs for the 
human immunodeficiency virus (HIV)-1 clade B. This was subse-
quently expanded and applied by Abd Raman et al. [20] to the  
influenza A (H5N1) virus. The authors used Shannon’s entropy 
[21, 22], determined for overlapping aligned peptides of length 
k, via a sliding window, for a panoramic overview of the viral 
proteome diversity landscape, and further, as the novelty, each k-
mer position was dissected to various diversity motifs. The motifs 
quantify the diversity dynamics for each of the overlapping k-mer 
positions by evaluating the incidence of the distinct sequences 
present at the position, which are classified broadly into four 
diversity motifs: index, major variant, minor variants, and unique 
variants (Fig. 1A). The index is the predominant sequence at 
a given aligned position. It represents the prevalent wild-type 
sequence and if highly conserved and species-specific, may be 
an attractive target for a vaccine, drug, and diagnostic designs. 
The remaining ranked sequences at the position are variants to 
the index, with at least one amino acid (or nucleotide) difference. 
The major variant is the second most predominant sequence. 
The minor variants are distinct sequences that occur more than 
once and are of incidence lower than the major variant. Unique 
variants are observed only once in the alignment, and may be 
sequencing artefacts. 

Herein, we present DiMA (Diversity Motif Analyser), a tool 
designed to facilitate the quantification and dissection of 
sequence diversity dynamics for any virus. It is publicly available 
both as a web server (https://dima.bezmialem.edu.tr) and  as a  
standalone command-line interface (CLI), client tool (Python 
Package Index: https://pypi.org/project/dima-cli), useful for 
datasets of size beyond the web server limit. DiMA is big data 
ready, allows for user-defined sequence metadata enrichment, 
and enables comparative protein and DNA/RNA sequence 
diversity dynamics analyses, within and between sequences of 
viral species. While the entropy function is also offered by various 
other tools, the novel key distinguishing feature of DiMA is the use 
of diversity motifs to study sequence diversity dynamics, besides 
integrating entropy and metadata. 

Materials and methods 
Overall workflow 
DiMA workflow is illustrated in Fig. 1B. The  workflow  can  be  
divided into three parts, input, process, and output. The input 
to DiMA is simply a multiple sequence alignment (MSA) file 
of either protein or DNA/RNA sequences (in aligned FASTA 
format). The sequences can be obtained from publicly available 

primary/derived databases, such as NCBI Nucleotide/Pro-
tein/Virus databases [23] and  ViPR  [24], or specialist databases, 
such as Influenza Research Database (IRD) [25], among others. 
Both full-length and partial sequences are recommended for 
a comprehensive survey of diversity. Primary databases are 
prone to errors [26–28], and thus derived databases, which are 
integrated, value-added resources, help minimize these issues. 
NCBI Virus is recommended for its ease of use and data quality; 
nonetheless, sequence data records of interest should be reviewed 
for any irrelevant sequences and possible issues, such as errors, 
discrepancies, and anomalies [29]. Sequence duplicates (full-
length or partial match) are common in public databases, which 
may be an artefact (multiple uploads of the same isolate) or 
an actual indication of virus occurrence in nature (multiple 
uploads of different isolates with the same sequence). Thus, it 
may be desired to analyse both the redundant and non-redundant 
datasets [30]. 

There are many tools available for MSA (see the next section for 
more details). Given the less optimal, heuristic nature of MSA [31– 
33], all resulting alignments should be manually inspected and 
corrected for any misalignments; short partial sequences can be 
a common cause of spurious alignments. The tool EMBOSS Seqret 
(https://www.ebi.ac.uk/jdispatcher/sfc/emboss_seqret) may  be  
used to convert an aligned file to an aligned FASTA format for 
use in DiMA. DiMA provides a quantitative measure of sequence 
diversity by use of Shannon’s entropy, applied via a user-defined 
k-mer sliding window on the alignment. The entropy value is 
corrected for sample size bias by applying a statistical adjustment. 
DiMA interrogates the diversity dynamics by dissecting each k-
mer alignment position to various diversity motifs. Collectively, 
DiMA outputs plots of the entropy values, diversity motifs, and 
user-enriched metadata (such as year, host, and country) for each 
of the k-mer positions, providing a holistic view of the diversity 
and its dynamics. 

Input and various considerations 
Input MSA 
MSA is an important tool in bioinformatics that enables an 
evolutionary assessment of sequence changes, providing key 
insights into genetic relationships and functional conservation 
across different species [34]. A detailed, step-by-step workflow 
for generating high-quality MSA can be found in the DiMA user 
manual (https://dima.readthedocs.io/en/latest/). This workflow 
begins with sequence cleaning, a crucial step involving the 
deduplication of identical sequences, as well as the identification 
and removal of contaminant sequences and regions. 

The next critical step is selecting an appropriate MSA tool 
tailored to the specific dataset. Several MSA tools are available, 
employing different algorithms to handle the complexity of align-
ing diverse and large numbers of sequences. Prominent examples 
include MUSCLE [35], Clustal Omega [36], MAFFT [37], and MAGUS 
[38], among others. MAGUS, in particular, is designed for large-
scale alignments and can handle datasets containing up to one 
million sequences [38]. Recent benchmarks comparing the per-
formance of these tools on various datasets [39, 40] can provide 
valuable guidance in selecting the most suitable MSA tool for 
specific research needs. 

Aligning large sample sizes (e.g., over 20 000 sequences) poses 
significant computational challenges, often requiring substantial 
memory and processing power. To mitigate these demands, many 
MSA tools offer faster, though potentially less accurate, algo-
rithms. Additionally, leveraging parallelized versions of these tools 
on high-performance computing systems can significantly reduce
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Figure 1. DiMA at a glance. A. Diversity motif definition for a sample nonamer position of 20 sequences. B. DiMA workflow. C. DiMA server results page. 
Submission summary (top panel): Overview of information about the input alignment, such as the query data name, alignment length, the support 
threshold, and the support at the selected k-mer position, among others. K-mer position entropy (middle panel): Entropy value of the selected k-mer 
position indicates the level of variability among the sequences at the position, with zero representing a completely conserved position. The entropy 
plot provides a panoramic view of the diversity and is responsive and interactive. Motif distribution (bottom panel): All sequences at the selected k-mer 
alignment position are quantified for distinct sequences and are ranked classified into diversity motifs based on their incidences (probability). K-mer 
position sequences (bottom panel): Distinct sequences at the selected aligned k-mer position are listed according to their corresponding incidences. 
Metadata (bottom panel): If the header tags are provided, DiMA will show a pie chart for each type of metadata. 

computational time. For ultra-large-scale alignments involving 
over 100 000 sequences, where computational resources are a lim-
iting factor, reference-based alignments provide a more feasible 
solution. However, it is important to note that this approach may 
lead to a loss of diversity representation due to its reliance on a 
reference sequence [ 41]. 

The accuracy and reliability of an MSA are influenced by 
various factors, including the number of sequences, their sim-
ilarity levels, the frequency of insertions and deletions (indels), 
and the lengths of the sequences involved [42]. The accuracy 
tends to decrease with the inclusion of partial sequences, low 
complexity regions, and large number of sequences, highlighting
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the need for careful inspection and validation of alignment out-
puts. Notably, all MSA tools employ heuristic methods to generate 
alignments, which are not guaranteed to be optimal. As a result, 
manual inspection and correction of alignments are often neces-
sary, especially when dealing with highly diverse sequences and 
large datasets [32, 43]. Several auxiliary tools, such as GUIDANCE 
[44], SATe [45], HoT [46], Gblocks [43], and SuiteMSA [47] have been 
developed to facilitate this process. These tools assist in improving 
alignment quality by providing metrics for alignment confidence 
or by refining the alignment to reduce errors. However, they do 
not entirely eliminate the need for manual inspection. 

Based on our experience with viral sequence data, we have 
observed that the performance of MSA tools can vary significantly 
depending on the organism and the dataset in question. A tool 
that performs well on one dataset may not necessarily be the 
best choice for another, underscoring the importance of empirical 
testing and parameter optimization. Therefore, while any of the 
commonly accepted MSA tools with default parameters can serve 
as a starting point, it is advisable to use alignment correction tools 
for refining the alignment. A final manual review is essential to 
identify and correct any obvious errors that may have been missed 
by the automated tools. 

The input MSA file (up to 100 MB; larger files are possible 
with the CLI version) is accepted only in an aligned FASTA format 
(sample input files are provided on the web server), and the 
analysis can be customized through various parameter settings 
and features: 

i) k-mer length. 
DNA/RNA or protein multiple sequence alignments are typ-

ically analysed by evaluating the sequence composition within 
individual alignment positions, known as 1-mer analysis. This 
approach provides a basic understanding of sequence diversity, 
but does not capture more intricate patterns that are crucial 
for understanding the functional and structural nuances of the 
sequences. In contrast, k-mer entropy offers a more comprehen-
sive analysis by examining overlapping subsequences of length 
k (e.g., k = 2 for dinucleotides or dipeptides). This method cap-
tures additional contextual information about sequence neigh-
borhoods that 1-mer analysis overlooks [14, 48]. In biological sys-
tems, nucleotides or amino acids do not function in isolation; 
they interact with neighboring elements, contributing collectively 
to the structural conformation and functional properties of the 
entire molecule. While 1-mer analysis can provide insights into 
individual sequence positions, analysing sequences in terms of 
k-mers reveals complex patterns such as motifs or domains that 
are integral to the biological function and are missed at the 1-mer 
level. 

DiMA enhances the ability to analyse sequence alignments by 
allowing users to choose any k-mer window length, including 1-
mer, enabling a thorough examination of the alignment across 
various k-mer window sizes. When selecting an appropriate k-mer 
window length (ranging from 1-mer up to the full length of the 
alignment), several factors should be considered, including the 
length of the alignment, the number of sequences, the type of 
sequence (DNA/RNA or protein), and the specific objectives of the 
analysis. 

The choice of k-mer length can be guided by the length of 
the shortest and longest known motifs or domains relevant 
to the sequence type being studied. For example, the shortest 
biologically relevant protein k-mer size can be as small as 
three amino acids, corresponding to β-turn motifs [49]. This 
can be further refined by incorporating knowledge about the 
expected motifs or domains in the aligned sequences. Protein 

sequences typically provide more detailed information compared 
to DNA/RNA sequences due to the diversity of 20 amino acids 
versus four nucleotides (where three nucleotides encode a 
single amino acid). Consequently, equivalent corresponding k-
mer windows for DNA/RNA sequences would need to be longer 
to capture similar levels of complexity. For alignments with a 
long length of sequences, a larger k-mer size may be preferable 
to achieve data smoothing. DiMA defaults to a window size of 
nine amino acids for protein alignments and 27 nucleotides for 
DNA/RNA alignments, but users can adjust the window size 
to fit their specific analysis requirements. The purpose of the 
diversity study should also guide the choice of k-mer length. 
Genetic diversity is defined by variations at the nucleotide level; 
however, not all genetic changes translate into protein-level 
variations, as only non-synonymous substitutions lead to amino 
acid changes. Furthermore, not every amino acid change affects 
antigenic properties or immune recognition. For example, a single 
amino acid alteration might not disrupt the recognition of an 
existing epitope or create a new one. In our study of antigenic 
diversity within the context of the cellular immune response, we 
used a k-mer length of nine (nonamer) because human leukocyte 
antigen (HLA)-I molecules typically bind peptides ranging from 
eight to 15 amino acids, with nine being the most common length 
[50]. HLA class II molecules can accommodate longer peptides, 
up to 22 amino acids, with a binding core of nine amino acids 
[30, 51, 52]. 

ii) Metadata Parsing. 
The description/definition line or headers of the input-

aligned sequences in FASTA format can be utilized to annotate 
the sequence with meaningful metadata, which can provide 
additional dimensions to viral diversity studies. Such metadata 
are often available in public databases or could be from in-house 
findings. The NCBI Virus database, e.g. provides up to as many as 
23 standard metadata annotations to each sequence record, such 
as host, biosample, geolocation, and year of isolation, among 
others. The input file can be formatted to include metadata as 
desired by the user, whether taking advantage of information 
from the public database records and/or from in-house records. 
DiMA provides a feature to parse and tag such metadata to 
the sequence headers of the input alignment file. It currently 
provides six pre-defined, commonly used header tags, such as 
‘Accession’, ‘Strain’, ‘Species’, ‘Year’, ‘Geolocation’, and ‘Host’; 
and users can also define their own custom tags. The pipe (‘|’) 
character is used as a delimiter between the tags, while the order 
of the metadata in the input file and those of the tags should 
match. As the number of available metadata can vary between 
sequences in an input file and since the order is important, empty 
pipes (‘||’) that reflect unknown/unavailable metadata, must be 
added to preserve the order of the header tags. Two examples 
of sequence headers are ‘AGN52936.1 |Homo sapiens|United Arab 
Emirates|2013’ and ‘>YP 009047204.1 |H. sapiens||2012’, which 
correspond to the header tags as follows: ‘Accession’, ‘Host’, 
‘Geolocation’, and ‘Year’, in that order. The NCBI Virus database 
allows customization of the FASTA header line, with the inclusion 
of empty pipes where applicable. The user-defined header tags in 
DiMA would be accordingly ascribed to all the k-mers generated 
from the input-aligned sequences. 

iii) Support Threshold. 
The number of sequences in an input alignment file affects the 

reliability of insights gained from the data. Ideally, large sample 
size is preferred to mitigate the effect of any potential data 
biases. Herein, ‘support’ is defined as the number of sequences 
at a given k-mer position that do not harbor a gap and/or an
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unknown/ambiguous nucleotide base or amino acid residue. The 
k-mer positions that are below a user-defined ‘support’ threshold 
(default is 100 sequences, arbitrarily defined) are referred to as 
‘low support’ (tagged as ‘LS’). A position of ‘no support’ (tagged 
as ‘NS’) is possible when all of the aligned sequences at a given 
k-mer position have a combination of gap(s) and/or unknown/am-
biguous character(s). Support may vary between k-mer positions 
due to the inclusion of incomplete or partial sequences into the 
alignment. 

Process 
Shannon’s entropy 
Shannon’s entropy, originally introduced as a theory of communi-
cation [21, 22], is used to measure the disorder for a given variable 
and has been widely adopted in biology as a diversity index, 
including for sequences [30, 52]. DiMA calculates the entropy, 
H(x) for each overlapping, k-mer alignment position x of the input 
alignment file by applying Shannon’s formula: 

H(x) = −
∑n(x) 

i=1 
p

(
i, x

)
log2p

(
i, x

)

where p(i,x) is the relative incidence of a given k-mer sequence 
i at the alignment position x (start position of the aligned 
k-mer) and  n(x) is the number of distinct k-mer sequences at the 
position. These two factors affect the entropy value, whereby 
it is high for a position with a large number of distinct k-mer 
sequences and is low when a sequence exhibits a clear high 
probability. The minimum possible entropy value is 0, which 
means complete conservation of a given k-mer position, whereby 
only one distinct k-mer sequence is observed in all (100%) of the 
aligned sequences analysed. The maximum entropy value would 
be dependent on the k-mer size of choice and is applicable when 
all possible outcomes (permutations with repetition) are observed 
with equal probability. The maximum peptide entropy value for 
a k-mer window size of nine is ∼ 39 (i.e., log2 209). This, however, 
is theoretical for biological sequences given that conservation is 
expected among homologs, and some combination of k-mers may 
not be sterically possible. The highest nonamer entropy value 
that we have thus far reported is 9.2 for HIV-1 clade B envelope 
protein [ 19], and it may be used as a benchmark for comparative 
proteome diversity dynamics analyses. 

The entropy computation for a given k-mer position is depen-
dent on the number of sequences in the input alignment. Only k-
mer sequences that do not harbor a gap and/or unknown/ambigu-
ous nucleotide base or amino acid residue are used for the entropy 
computation. Entropy is calculated irrespective of the support tag 
(‘LS’ or ‘NS’) for a position. NS positions are maintained to keep 
the input alignment length intact, with a default assigned pseudo 
entropy value of zero, which is cautioned with the inclusion of the 
NS tag in the results page and the downloadable output files. 

Each k-mer alignment position’s raw entropy value is corrected 
for sample size bias [53] by applying a statistical adjustment to 
the input alignment, which estimates entropy values for infinitely 
sized resampled alignments with the analogous k-mer distribu-
tion [30]. As illustrated in Fig. 2, this is done by resampling the 
sequences that can be analysed (N) at a  k-mer position and cre-
ating alignments of varying sizes (number of sequences), deter-
mined through a systematic random sampling approach. The 
entropy values are measured for each sample size, plotted against 
the respective sample 1/N, and a linear regression is used to 
extrapolate the entropy estimate for the k-mer position when 

N → ∞. This algorithm was tested through resampling of an align-
ment with a wide range of sample sizes (from 100 to 100 000 num-
ber of sequences). The corrected and uncorrected entropy results 
were benchmarked against the uncorrected entropy calculation 
of 1 000 000 sample size (Supplement Fig. S1 available online 
at http://bib.oxfordjournals.org/). Resampling for an infinite-size 
set estimate is only done for positions when N is higher than 
the support threshold (T); otherwise, all of N is used for a direct 
computation of the entropy. An exceptional low support (‘ELS’) 
tag is used in the results page and downloadable output files 
when N = T, simply as a way to distinguish from when N < T. In  
the case of N only slightly higher than T and where regression 
may potentially result in a negative entropy value due to small 
number of resamples, all of N is used for a direct compute of the 
entropy. 

Motif classification 
DiMA interrogates the diversity dynamics at each k-mer align-
ment position by classifying the distinct sequences into diversity 
motifs, based on their incidence (Fig. 1A). The most frequent k-
mer sequence is termed as the ‘index’, with ‘major variant’ as 
the second most common and ‘unique variants’ as the least, 
occurring only once, while ‘minor variants’ are in between these 
two variant motifs. As per the motif definition, certain k-mer posi-
tions may not exhibit specific motifs, such as no index, major or 
minor, and only singletons are observed. Also, in some instances, a 
position may exhibit more than one index or major variant, which 
is observed when two or more distinct k-mer sequences are of 
the same incidence. The term ‘total variants’ encompasses all the 
variants that are at least one nucleotide/amino acid different from 
the index. The term ‘distinct variants’ is the count of the different 
k-mer sequences among the total variants (major, minor, and 
unique variants). The relative frequency of each motif’s distinct 
sequences, expressed in percentage (as incidence) is computed 
by DiMA for each of the k-mer positions. The denominator used 
for the incidence computes is N (for each of the motifs), except 
for the term ‘distinct variants’, where the total variants count 
is used. As such, a value of 100% for ‘distinct variants’ will 
only be attained when all the k-mers are unique variants (no 
major and/or minor variants). Additionally, DiMA identifies his-
torically conserved sequences (HCSs) across the input alignment 
length, selected based on a user-defined index incidence thresh-
old (default: 100%). Selected index sequences that overlap or are 
immediately adjacent in their k-mer positions are concatenated 
as longer sequences. An HCS of reasonable length of 80% or 
higher incidence may be attractive for further consideration as 
an intervention target. 

Stratification by metadata 
At each k-mer alignment position, an individual distinct sequence 
is populated with the corresponding metadata header tags from 
all the input alignment sequences that share the same distinct 
sequence. Accordingly, the relative incidence for each of the differ-
ent constituent items of each header tag is calculated and plotted. 

Output 
Interactive interface 
DiMA outputs a result page with 12 different panels, organized 
into three parts (top, middle and bottom) that offer multiple facets 
of sequence diversity (Fig. 1C). The multiple panels at the top are 
akin to a dashboard that provides the user with a quick summary 
of information general to the input alignment and specific to a 
given k-mer position: i) query name, ii) sequence type, iii) k-mer

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae607#supplementary-data
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Figure 2. Workflow of entropy correction algorithm to address sample size bias. 

length, iv) support threshold, v) alignment length, vi) sequence 
metadata, vii) position, viii) position’s entropy, support and dis-
tinct variant count and ix) download results. The single middle 
panel (x) showcases the entropy plot for all the k-mer positions 
of the input alignment, providing an overview of the sequence 

diversity, with low entropy values representing conservation and 
high indicating variability; hovering the cursor over a specific 
position on the plot will reveal the applicable entropy value, and 
clicking a position will switch to that position. Positions with ‘NS’ 
and ‘LS’ support tags have been highlighted with different colors 
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on the plot. The three panels at the bottom provide information 
for the selected position, namely xi) motif distribution and xii) 
k-mer position distinct sequences, whereby the selection of a 
specific distinct k-mer sequence would illustrate all the relevant 
xiii) sequence metadata, with a drop-down menu option for the 
different header tags defined by the user. Changing the selected 
k-mer position (in panel vii) would dynamically update the infor-
mation in panels (xi to xiii). 

Download 
The top panel (ix) of the DiMA output allows for downloading 
of the analyses results in JSON and XLSX formats. The JSON file 
provides the complete analyses results as key-value pairs, which 
can be viewed using a public JSON viewer tool (such as https:// 
jsonformatter.org/json-viewer). Separately, the XLSX file provides 
for easier viewing through the MS Office Excel application or an 
equivalent that supports the format. A concatenated list of HCS 
based on a user-defined index incidence threshold can also be 
downloaded (in JSON format) and viewed in a text editor or JSON 
viewer. 

DiMA implementation 
DiMA is designed using the Python language, with bindings writ-
ten in Rust. This allows DiMA to remain highly performant while 
being accessible to the larger Python user base. Designed with 
big data in mind, DiMA can handle large datasets while still 
maintaining a relatively small memory footprint. Furthermore, 
DiMA implements data parallelism where each k-mer position is 
handled in parallel, making it efficient and scalable. In addition, 
the dataset uploaded by the user on the web service is validated 
for MSA and header consistency using functions written in Rust, 
compiled down to WebAssembly. This allows for efficient valida-
tion of large datasets and mitigates user’s submission from failing 
once sent to our server for processing. DiMA is compatible with 
common web browsers, including Chrome 98.0, Firefox 56.0, Edge 
94.0, and Safari 15.0. 

Results 
Application 
We demonstrate two applications on the use of the DiMA web 
server for viral sequence diversity dynamics studies. One is using 
the Spike protein of severe acute respiratory syndrome coronavirus-2 
(SARS-CoV-2), with raw sequence data and metadata downloaded 
from the GISAID [54] database. The second is the DNA poly-
merase (pol) gene of human immunodeficiency virus type 1 (HIV-1) 
group M, with curated alignment sourced from the HIV Sequence 
Compendium 2021 [55], made available on the Los Alamos HIV 
sequence database [56]. SARS-CoV-2 Spike protein plays a piv-
otal role in host cell entry by binding to angiotensin-converting 
enzyme 2 (ACE2) receptors, and thus is a key target for developing 
therapeutics to block viral entry [57]. Spike protein is composed 
of two subunits (S1 and S2), with multiple protein domains within 
each. HIV-1 pol gene is translated into a protein that provides 
essential enzymatic functions critical for viral replication and has 
been a major target for drug design [58, 59]. 

Spike protein of SARS-CoV-2 
All 11,808,363 available Spike protein sequence records were 
downloaded (as of July 2022) and deduplicated by use of CD-
HIT v4.8.1 [60]. The resulting 2,106,985 non-redundant sequences 
were multiple sequence aligned by use of an in-house reference 
guided MSA tool, RefAligner (using the GISAID accession ID 

‘EPI ISL 402124’ sequence as a reference). The aligned dataset 
was analysed using the command-line version of DiMA (DiMA-
CLI), which enables big data analysis, with metadata parsing 
enabled and minimum incidence for HCS concatenation set 
to 99.95% (to retain a reasonable number of HCS), while other 
parameters were set to the default. The analysis results are made 
available on the DiMA web server (https://dima.bezmialem.edu. 
tr/results/6cfb645e-eefa-40db-ac4c-43a6712b2760). 

A total of 1265 aligned overlapping nonamer (9-mer) positions, 
covering the full-length of the alignment, were analysed for anti-
genic diversity. The protein was generally conserved (Fig. 3A) with  
a nonamer entropy range of < 0.01 to ∼1.9 bits (compared to 
a theoretical maximum of 38.8 bits) for the full-length protein, 
and ∼ 0.01-1.91 and < 0.01-1.59 bits for the subunits S1 and S2, 
respectively. The average entropy for the full-length protein was 
∼0.28 bits, while the average for subunits S1 and S2, were ∼ 0.40 
and ∼ 0.18 bits, respectively. The high conversation is consistent 
with the relatively recent evolutionary emergence and, thus, the 
short history of the virus. However, S2 showed even higher con-
servation given the need for functional preservation [61]. 

The nonamer position 675 (the number refers to the starting 
alignment position of the k-mer; i.e., 675-683) peaked as the most 
diverse, with the highest observed entropy value of ∼1.97 bits. This 
position had a total support of 2 208 211 sequences, with 343 dis-
tinct nonamers. This nonamer region (675-683) overlaps the furin 
cleavage site (681-684), a site known to facilitate the virus-cell 
membrane fusion. Variations in this region affect viral infectiv-
ity and transmissibility [62]. The predominant distinct nonamer 
(QTQTNSRRR) or the index at this position occurred in 876 048 of the 
sequences analysed, and thus, exhibited an incidence of ∼39.67%. 
The remaining 342 nonamers at this position were variants to the 
index and occurred across the 1 332 163 remaining sequences 
analysed. The total variants (∼60.33%) of the position comprised 
of a major variant (QTQTKSHRR; 833,415; ∼37.74%), which corre-
sponded to the Wuhan reference (Genbank ID: YP 009724390.1); 
234 distinct minor variants (∼22.58%); and 108 unique variants 
(∼0.005%). Among the total variants, the total number of ‘dis-
tinct variants’ was 343 (∼0.03%). The index sequence has been 
reported to be a putative T-epitope [63] and exhibited reduced 
binding affinity to MHC-I, relative to the wildtype Wuhan refer-
ence, which had diminished in incidence and became the major 
variant. This reflects an evolutionary pressure at the position 
facilitating immune escape. Sequence metadata visualization for 
the nonamer position 675 showed that the index was observed 
primarily in H. sapiens (∼99.84%), with the remaining (∼0.16%) 
in other host species such as Canis lupus familiaris, Panthare leo, 
Neovison vison, Fells catus, Odocoileus virginianus, Mustela lutreola, 
and environmental sources. While the index was widespread in 
29 countries, it was most commonly detected in two geographical 
locations, predominantly the United States (∼35.33%), followed by 
the United Kingdom (∼13.73%). Such a distribution may suggest 
regional adaptation and selective pressures favoring the specific 
9-mer. The index nonamer was most common among sequences 
collected in September 2021 (∼14.07%), and with a decreasing 
frequency trend over the following three months (∼12.5, ∼11.4, 
∼7.8). During the same period, the major variant exhibited an 
increasing frequency trend, suggesting a temporal shift in fitness. 

DiMA identified five HCSs of lengths ranging from nine to 
23 amino acids which merit further investigation as potential 
targets for vaccine design, inhibitory drug analysis, and diagnostic 
studies. All the five HCSs were observed to match reported SARS-
CoV-2 T and B-cell epitopes in the human host. Separately, 
Fuente et al. [64] described four of the HCSs and assessed

https://jsonformatter.org/json-viewer
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Figure 3. Applications of DiMA for the diversity dynamics studies of SARS-CoV-2 spike protein and HIV-1 pol gene. A. The highest entropy observed 
was ∼1.97 for SARS-CoV-2 spike protein at position 675 (the number refers to the starting alignment position of the k-mer), which was selected for motif 
distribution and metadata view of each distinct k-mer at the position. B. HIV-1  pol gene exhibited various conserved and highly diverse positions. C-D. 
Motif distributions of the highly diverse position (2177, highest entropy) and the highly conserved position (3046, lowest total variants), respectively, in 
HIV-1 pol. 

their immunogenicity to design epitopes stable against future 
mutations. Similarly, two of the HCSs matched known drug targets 
reported in public repositories, indicating their potential for drug 
design [ 65, 66]. Diagnostically, all the five HCSs were broadly 
conserved (revealed by BLAST searches) and can be used to detect 
other species members of the Coronaviridae family. A lower HCS 
threshold may be used to identify those that are SARS-CoV-2 
species-specific for diagnostic purposes. 

Pol gene of HIV-1 group M 
The pol gene data was downloaded (as of July 2024) as a pre-
curated alignment of 2637 sequences, without any metadata, 
from the HIV Sequence Compendium 2021, and thus, did not 
require any data processing. DiMA analysis of the gene was 
performed with the following parameters: overlapping k-mers 
of 27 nucleotides each (corresponding to nine amino acids) 

for antigenic diversity, default support threshold (100), HCS 
threshold arbitrarily set to 70% (one HCS was observed at ∼88%), 
and metadata parsing disabled. The analysis results are made 
available on the DiMA web server (https://dima.bezmialem.edu. 
tr/results/89163c56-70a3-456e-8c71-5f3276804311). 

A total of 3364 aligned 27-mer positions were analysed to 
assess genetic diversity corresponding to antigenic diversity 
across the pol gene. Of these positions, 564 (∼16.76%) were 
classified as low support (LS), and 680 (∼20.21%) as no support 
(NS). Excluding LS and NS positions, the gene exhibited entropy 
values ranging from ∼0.86 to ∼9.57 bits, with an average entropy 
of ∼5.35 bits (Fig. 3B), compared to a theoretical maximum of 
54 bits. This range of entropy values reflects the spectrum of 
genetic diversity present within the gene, indicating that some 
regions are highly variable while others are more conserved. The 
relatively high average entropy suggests that the gene maintains

https://dima.bezmialem.edu.tr/results/89163c56-70a3-456e-8c71-5f3276804311
https://dima.bezmialem.edu.tr/results/89163c56-70a3-456e-8c71-5f3276804311
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considerable sequence diversity throughout its length, which is 
consistent with the high mutation rate and genetic variability 
characteristic of HIV-1. Such diversity is often a hallmark of 
viruses that must rapidly adapt to host immune responses [67]. 
However, despite this overall high genetic diversity, the protein 
nonamer entropy (data not shown) is notably lower, with an 
average of ∼1.91 bits (out of ∼ 39). This lower entropy at the 
protein level suggests strong purifying selection on the protein’s 
sequence, likely due to its essential role in the virus’s replication 
cycle. The disparity between gene and protein entropy indicates 
that a significant proportion of the nucleotide variations are 
synonymous substitutions. These substitutions do not alter 
the amino acid sequence of the encoded protein, which could 
provide a survival advantage by allowing the virus to evade 
immune detection without compromising the functional integrity 
of its essential proteins, such as transcriptional and translation 
efficiency [68], regulation of gene expression [69], immune system 
evasion through RNA structure [70], and maintenance of essential 
functions while allowing diversity [7]. This observation aligns with 
the understanding that HIV-1 utilizes both high genetic variability 
and selective pressures to balance adaptation and maintain vital 
functions. 

The k-mer position 2177 of the gene exhibited the highest 
entropy of ∼9.57 bits (Fig. 3C), illustrating the complex composi-
tion of the viral variant population (conversely, Fig. 3D illustrates 
for the highly conserved position). These 27-mer region overlap 
with the RNase H domain (aa positions 681-684 of the HXB2 refer-
ence sequence), a critical site for viral replication. Variation in this 
region can enhance viral replication and/or enhance resistance 
to antiretroviral therapies [71]. The index 27-mer at position 2177 
was only observed at an incidence of ∼4.44%. The minor variants 
were instead the principal variant with a collective incidence of 
∼54.06% at the position. This suggests that this position of the 
pol gene from the reported viral population is under selective 
pressure, potentially driven by the enhancement of replication 
efficiency and/or the ability to evade drug pressure. 

Two HCSs were identified of lengths 36 and 34 nucleotides, both 
of which corresponded to the integrase protein domains, essential 
for the insertion of viral DNA into the chromosome of the host cell 
[72]. The amino acid translation of one of the HCS was observed 
to match reported HIV-1 T-cell epitope in the human host. The 
epitope (KRKGGIGGY) is presented by the HLA-B∗27:05 allele, which 
is associated with a more effective host response to HIV-1 and 
slower disease progression [73]. 

The above two applications are cursory analyses of a protein 
and a gene alignment by DiMA. Output data from DiMA can be 
analysed further in various ways, such as i) scatter plot of the 
relationship between entropy and incidence of total variants; ii) 
scatter plot of motif incidence (for each diversity motif) against 
total variants; iii) incidence distribution violin plots of the diver-
sity motifs; and iv) distribution of conservation level of index 
incidence for k-mer positions. This can be done for individual 
proteins/genes of a virus and further pooling of the results can 
allow for a genome/proteome-wide analyses. Examples of such 
analyses are demonstrated in Hu et al. (2013) and Abd Raman 
et al. (2020). Further, a notable finding from these studies was 
motif switching, a phenomenon where the fitness change of one 
or more nucleic or amino acids, changed the incidence, and thus 
the motif of a given k-mer distinct sequence across its k-mer 
positions. Motif switching has been observed to involve all the 
diversity motifs studied herein. Hence, DiMA results also serve as 
a starting point to unravel and understand the complexity of motif 
switching. 

Advancing viral sequence diversity and evolution studies 
with DiMA 
DiMA is an enabler of research questions that could not be 
answered easily in the past due to the lack of a robust tool that 
could handle the large number of viral species and their large 
number of sequences for comparative analyses. DiMA addresses 
these challenges through its novel features (Table 1), which can 
be summarized as follows: i) ability to analyse diverse data types 
and integration with big data; ii) corrected entropy calculations 
and capturing local (neighboring) effects through k-mer sliding 
window; ii) comprehensive analysis of viral diversity; iii) facilitate 
interpretation of sequence variability and evolutionary dynamics; 
and iv) cataloguing of HCSs. These features open the door for 
the study of any viral species with sufficient data, allowing viral 
sequence diversity analysis within a species (intra- and inter-
genes/proteins) and between species (inter-genomes/proteomes). 
The insights gained from the analysis of a species, as illustrated 
in the application section above, can serve as a catalogue for 
the species, allowing for comparative analyses to others. Such a 
comparison, as demonstrated in our earlier work [19, 20, 30, 74, 
75] provided a holistic view and deeper understanding of the viral 
diversity landscape, providing insights in terms of viral evolution, 
with implications for the design of diagnostic, therapeutic, and 
prophylactic interventions. Compared to existing studies, a key 
novel feature of DiMA is its ability to provide granular insights 
into, underlying distinct k-mer sequences, represented as diversity 
motifs. These motifs reflect the overall diversity, measured as 
entropy, and are enriched with metadata that capture spatial and 
temporal dimensions. The effects of these diversity motifs were 
correlated to the biology of the virus, highlighting the dynamic 
roles of the index and variants in influencing the evolutionary 
fitness. This approach also has the potential to identify candidate 
targets (HCS) for developing intervention strategies. DiMA paves 
the way for application to all viruses, both well-known and under-
studied, offering opportunities to corroborate existing findings 
and/or uncover new insights. 

Discussion 
DiMA stands out from other diversity analysis tools, such as 
Protein Variability Server (PVS) [76] and Los Alamos (LANL) (http:// 
www.hiv.lanl.gov/) virus databases Entropy tool, by offering 
various unique features. A comparison table between these 
tools and DiMA can be found in our help page (https://dima. 
readthedocs.io/en/latest/#novel-features) and also provided 
herein (Table 1). Notably, DiMA is capable of handling both nucleic 
acid and amino acid sequences. Shannon’s entropy is calculated 
for a user-defined k-mer size of a sliding window, which is better 
suited to capture the local (neighboring) effect of sequence 
substitutions, in particular when dealing with longer sequences. A 
statistical adjustment is applied to the computed entropy values 
for sample size bias correction. Distinctively, the key feature of 
DiMA is that it interrogates the diversity dynamics by dissecting 
each k-mer alignment position to various diversity motifs, based 
on the incidence of distinct sequences. Moreover, it allows for 
metadata enrichment of the motifs. Additionally, DiMA identifies 
HCSs across the input alignment length, selected based on a 
user-defined index incidence threshold, which are concatenated 
when overlapping or adjacent. DiMA outputs a result page with 
12 different panels, organized into three parts (top, middle and 
bottom) that offer multiple facets of sequence diversity and 
are largely interactive. The input to DiMA is simply a multiple
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Table 1. Novel features of DiMA in comparison with other web servers for viral sequence variation analysis. 

Features DiMAa PVSb LANLc BV-BRCd 

Analysis of nucleic acid - amino acid sequences � - � × - � � - � � - � 
Shannon Entropy on user-defined sliding window � × � × 
Entropy correction for size bias � × × × 
k-mer/variant frequency calculation � × × � 
k-mer diversity motifs classification � × × × 
Metadata inclusion � × × × 
Identification of historically conserved sequences � � × × 
Multiple interactive visualizations � × × × 
Web service input size limit 100 MBe ∼0.2 MB Not defined Not defined 

a https://dima.bezmialem.edu.tr b http://imed.med.ucm.es/PVS/ c https://www.hiv.lanl.gov/content/sequence/ENTROPY/entropy.html d https://www.bv-brc. 
org/app/MSA eAnalysis of larger files possible with CLI version (https://github.com/BVU-BILSAB/DiMA) which there is no limit. 

sequence alignment file of size up to 100 MB, while larger files 
can be accommodated by use of the command line (CLI) version. 

DiMA is a tool that enables sequence diversity dynamics anal-
ysis for any virus of interest. It is big data ready and applicable to 
DNA/RNA/protein sequence data, with a user-friendly interface 
and a detailed user manual provided for a broader appeal. DiMA 
enables comparative sequence diversity dynamics analyses for 
a better understanding and insight within and between DNA/R-
NA/protein sequences of a virus species or genomes/proteomes 
of different viral species, whether at the genus, family, or higher 
lineage taxonomy rank (limited by the feasibility of a reliable 
alignment). The diversity motifs represent inherent patterns in 
the organization of the large number of sequences that facilitate 
cooperative virus fitness selection, whereby the spectrum of vari-
ants allow the virus population to explore changes in selection 
pressure for maximum reproductive fitness [77] and support long-
term evolvability [77, 78]. In some cases, there may be functional 
constraints [79], such as multiple host dependency limiting the 
virus population from a fitness peak [20, 30] or in contrast, the 
presence of extremely variable hotspots contributing to the gen-
eral collapse of the early immunity or facilitating immune escape 
[19]. Examining viral variants, leveraging on various metadata 
dimensions of interest, such as spatio-temporal, host, and clinical 
phenotypes, among others, may provide important key insights 
into the evolution of the virus. 

Sequence diversity at highly variable positions appears to 
be embodied in minor and unique variants, which can exist as 
many different (distinct) sequences. DiMA can help elucidate 
variant sequence structure and incidence with increased total 
variants. Thus, provides a compendium of the possible spectrum 
of sequence variants for a virus of interest. The viruses can range 
from being highly conserved, such as West Nile virus [80] to  
extremely variable and highly plastic, such as HIV-1 [19]. DiMA 
analyses of different viral species can provide a catalogue of HCS 
targets for a comparative and rational design of new intervention 
strategies. DiMA can potentially be used for non-viral pathogens, 
such as bacteria and fungi, among others. 

Limitations 
DiMA’s effectiveness is dependent on the quality of the alignment, 
which is constrained by the heuristic nature of MSA. This process 
relies on the subjective manual inspection and correction of 
misalignments by the user. Additionally, DiMA currently focuses 
only on sequence diversity in the context of substitutions and 
does not consider other structural sequence variations, such as 
copy number changes. Shannon’s entropy is just one of the many 
diversity metrics available; other metrics may be explored in 

future iterations of DiMA. The input file size (up to 100 MB) 
limitation of the web server is overcome through the offering 
of the GUI limited, CLI version. Despite these limitations, DiMA 
is a significant step forward toward the study of viral sequence 
diversity dynamics. 

Key Points 
• DiMA is a novel, big data-ready tool designed to facili-

tate the dissection of sequence diversity dynamics for 
viruses. 

• DiMA provides a quantitative overview of sequence 
(DNA/RNA/protein) diversity using Shannon’s entropy, 
corrected for size bias, with a user-defined k-mer sliding 
window and options for metadata enrichment, dissect-
ing each k-mer position into various diversity motifs for 
dynamics analyses. 

• DiMA enables robust comparative analyses across viral 
species, supporting the design of more effective diagnos-
tic, prophylactic, and therapeutic interventions. 

• DiMA can potentially be used for non-viral pathogens, 
such as bacteria and fungi, among others. 
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Data and materials availability 
DiMA web server is implemented in Rust and Python version 3.10. 
and is accessible through https://dima.bezmialem.edu.tr. It is also 
freely available as a standalone command-line interface (CLI) 
client tool at https://pypi.org/project/dima-cli and the source 
code is accessible on the GitHub repository at https://github. 
com/PU-SDS/DiMA. DiMA documentation is available at: https:// 
dima.readthedocs.io/en/latest/. The findings of this study are 
based on data associated with 2,583,449 sequences available 
on GISAID (as of March 18th, 2022), and accessible at http:// 
doi.org/10.55876/gis8.230207sb, and 24,985 sequences available 
on HIV LANL, accessible at https://www.hiv.lanl.gov/content/ 
sequence/NEWALIGN/align.html. 
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