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Figure 1. Schematic diagram of diagnosis of MDD with plasma peptide data based on DL. Firstly, (a) blood samples of MDD patients and HCs were 
collected, (b) plasma peptide data were acquired using LC–MS technology, (c) MS features were obtained by preprocessing, such as peak extraction, peak 
alignment, and normalization, and age and gender features were added. Finally, (d) CMS-Net was used for (e) classification performance evaluation and 
(f) feature weight analysis. 

normalization, MS data can be used for ML or DL algorithm 
modeling [ 16]. In general, training a DL model requires large data 
sets. However, in the field of LC–MS analysis, clinical samples 
can only be obtained with a limited number, which are prone to 
overfitting problems in the training process of the model, and lack 
of generalization to different domains or data centers [17, 18]. In 
recent years, many teams have used MS raw data combined with 
convolutional neural networks (CNN) for disease classification 
research [19]. However, due to nature of the network, they are 
prone to loss of features in the process of convolution. Indeed, 
the classification effect of DL based on original MS data is even 
not better than that of conventional ML methods [20]. This fact 
implies the values of non-CNN DL architecture in find MS features 
for MDD classification. 

In the present study, we develop a deep neuronal network 
termed as CMS-Net to process the plasma peptide data for MDD. 
We constructed the network using locally connected layers with 
a multi-head attention mechanism to find the key features from 
the limited number of datasets. After preprocessing the LC–MS 
peptide data including batch correction, we trained the CMS-Net 
for classification and compared its classification performance 
with traditional ML models [K-nearest neighbor (KNN), random 
forest (RF), support vector machine (SVM), linear discriminant 
analysis (LDA), and eXtreme Gradient Boosting (XGBoost)] as well 
as other DL (including LSTM, ResNet, and Transformer models). 
In addition, we also used different types of LC–MS data to verify 
the feasibility of the network. The results showed that CMS-Net 
performed well on MDD data sets and was suitable for data of 
other types of LC–MS, indicating that this network model was 
relatively reliable and stable. We performed a feature analy-
sis based on CMS-Net and identified some potential differential 
peptide sequences that may provide important support for the 
diagnosis of depression (Fig. 1). This research not only introduces 
a novel means for the rapid diagnosis of depression but also 
opens unprecedented avenues in the realm of data and explo-
ration. The effectiveness of the model in this study is further 
supported by leading results in related fields, such as stroke 

[21] and Parkinson’s disease [22], obtained by other research 
teams. 

Materials and methods 
Data sources 
The plasma peptide data were used from our previous study 
(Wang Y.) [12]. A physician with good clinical experience diag-
nosed 118 patients with single and recurrent MDD according to 
F32 and F33 in the ICD-10 criteria and used the ICD-10 crite-
ria to distinguish between mild, moderate, and severe MDD. A 
total of 120 non-depressed patients from Dalian Central Hos-
pital were selected as the healthy control group (HC). All MDD 
patients between the ages of 18 and 75 years and HCs were 
eligible to participate in the study if they had no other men-
tal disorders, alcohol dependence, drug dependence, serious or 
unstable physical illness, and a history of pregnancy. The study 
was approved by the Ethics Committee of Dalian Seventh People’s 
Hospital in accordance with the Declaration of Helsinki. The 
238 individuals were divided into a group A (n = 120, male/fe-
male = 60/60) and a group B (n = 118, male/female = 43/75). The 
group A included 60 patients with HC (46.6 ± 15.4 years) and 60 
patients with MDD (51.9 ± 14.2 years, mild, moderate, and severe 
=36/24, single episode/recurrence =26/34). The group B included 
60 patients with HC (45.5 ± 9.9 years) and 58 patients with MDD 
(51.9 ± 14.4 years, mild, moderate, and severe =39/19, single/recur-
rent =29/29) (Table S1). Blood collection for all volunteers began at 
7 a.m. and continued on an empty stomach until 8 a.m. To reduce 
individual variation and instrumental error, group A randomly 
mixed two MDD plasma samples into one plasma sample for 
analysis. All plasma samples in group B were analyzed using 
nanoLC–MS. The raw data were preprocessed as described in the 
previous study by Wang Y. [12]. Briefly, the data obtained were 
imported into software for peak identification, alignment, and 
extraction. Features with missing values >50% across all samples 
were disregarded. The selected features were then aligned and 
compiled into a visual table for further analysis.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae554#supplementary-data
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Batch removal and cluster analysis 
The purpose of correcting batch effects is to eliminate system-
atic differences caused by batch variation in high-throughput 
data analysis to improve the ACC, consistency, and biological 
interpretation of data analysis. This can better capture the real 
biological signals, and reduce the bias stemmed from technical 
factors. This work is based on data de-batch-effect processing 
performed using R-4.3.0 and RStudio-2023.03 software. Use the 
ComBat function of the SVA package that comes with RStudio 
software to eliminate batch effects [23, 24]. First, Hiplot software 
(https://hiplot.com.cn/) is used to perform t-SNE clustering on 
the unbatched data to check the differences of the data. Then R 
package is used for cluster dendrogram and principal component 
analysis (PCA) to further verify the batch effect of the data. Then 
SVA method is used for batch effect removal. Cluster dendrogram 
and PCA analysis were performed on the data, and the results 
were compared with those of the non-batch data. 

Deep learning methods 
This work was based on python 3.8, Keras 2.4.3, Scikit-learn 1.3.2, 
TensorFlow 2.4.0, and executed on GPU. CMS-Net was based on the 
SN network [21] to make it suitable for small datasets of the LC– 
MS type. The specific improvement methods and training process 
of our DL model are detailed in section 1.2 of the Supplementary 
material. 

The local feature extraction part consists of two locally con-
nected 1D layers (i.e. local feature extraction without weight 
sharing; X lc1D). 

X_I = X1 
I , X2 

I , .. . . . Xn 
I (1) 

X_lc1D = LocalConnect1D (X_I) , (2)  

XI denotes n regions extracted from layer I, where l ε {0,1}. 
The first layer local connection layer parameters are set as 
follows: filters = 16, kernel size = 32, strides = 3.The second layer 
local connection layer parameters are set as follows: filters = 32, 
kernel size = 64, strides = 5. 

The global feature extraction part consists of two-way MLP 
(X_MLP) and multi-head attention layer (X_MHAttention). The two-
way MLP layer is composed of two parallel fully connected layers 
with different activation functions and the dropout regularization 
layer, which are expressed by the mathematical formula: 

X_MLP = Dropout
(
relu (WrXl)

) + Dropout
(
tanh (WtXl)

)
, (3)  

where Xl represented the features transformed by linear and 
nonlinear features, and Wr, Wt represented the weight of relu and 
tanh, respectively. 

X_MHAttention = MultiHeadAttention (X_MLP) (4) 

Detailed multi-head attention layer processing formulas, 
including queries, linear mappings of keys and values, attention 
computation outputs, multi-head concatenation, and final linear 
transformations. 

Query = query_dense (X_MLP) (5) 

Key = key_dense (X_MLP) (6) 

Value = value_dense (X_MLP) , (7)  

where Query Key and Value are implemented by linear transforma-
tions. The formula for a linear transformation is used here: 

Linear(X) = X· W + B, (8) 

where X is the input tensor, W is the weight matrix, and B is the 
bias term. The calculation of attention yields the following output 
for each head: 

Attention (Q, K, V) = Softmax

(
QKT√

dk

)
× V, (9)  

where Q represented the query tensor, K represented the key 
tensor, V represented the value tensor, and dk is the dimension 
of the key. Then concat the results obtained from each head and 
perform a linear transformation: 

Concatenated_Output = Concatenate
(
Attention1, . . .  , Attentionm

)
(10) 

MultiHeadAttention_Output = Output_dense
(
Concatenated_Output

)
, 

(11) 

m represented the number of heads, and is set to 4, Output_dense 
is the final linear transformation. 

Machine learning methods 
All ML in this work is performed based on python 3.7. RF, LDA, 
SVM, KNN and XGBoost are implemented in python Scikit-learn 
1.0.2 [25]. The data processing method is consistent with DL 
method. GridSearchCV is used to conduct grid search parameter 
adjustment [26] for the model in the five-fold cross-validation [27] 
to find the best combination of hyperparameters, and the best 
hyperparameters are used to evaluate the model. 

Evaluation metric diagnosis 
The performance of classification models constructed from DL 
and ML is measured by sensitivity, specificity, ACC and area under 
the curve (AUC). The classification probabilities for depression 
patients and HCs, as well as the true labels for each test spectrum, 
were used to generate receiver operating characteristic (ROC) 
curves. ACC measures how well the model’s predictions match 
the real label overall, but it cannot distinguish between different 
classes of errors and can give misleading results for imbalanced 
data sets. The ROC curve and AUC value (ROC-AUC) can com-
pensate for this problem. Since the ROC curve comprehensively 
considers both true positive rate (TPR) and false positive rate 
(FPR), it can more comprehensively evaluate the performance of 
the model under different classification thresholds and better 
distinguish between positive and negative samples [25, 28]. The 
final ACC and AUC values are the average of all ACCs and AUCs 
obtained from all folds of the cross-validation in 10 independent 
iterations. Sensitivity and specificity were determined by divid-
ing the number of correctly labeled patients with depression by 
the total number of samples for depression and the number of 
correctly labeled HCs by the total number of healthy samples, 
respectively, and the values of sensitivity and specificity were also 
averages obtained from the cross-validation of ten independent 
iterations. It is worth noting that the test set is independent of 
the train set throughout the process of indicator diagnosis. Finally, 
t-test [29] method was used to conduct statistical analysis of our

https://hiplot.com.cn/
https://hiplot.com.cn/
https://hiplot.com.cn/
https://hiplot.com.cn/
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CMS-Net model and other ML and DL models, and significance 
analysis was conducted with P-value ≤.05. 

Feature weight analysis 
The gradient-based feature importance method [30] is used to  
calculate the gradient of each feature on the output, that is, 
the gradient of the input layer relative to the output layer (the 
contribution of each input feature in model prediction can be 
obtained), so as to evaluate the influence of the input layer on the 
output layer. The importance of the feature is measured by taking 
the absolute value of the gradient values. The greater the absolute 
value of these gradient values, the greater the influence of the 
feature on the output. Peptide sequences were identified by PEAKS 
7.0 software (BSI, Canada) that can convert MS/MS spectrum to 
visual sequence by de novo sequencing and database search. 
The raw data was imported to Peaks Studio 7.0 (BSI, Canada) 
for peptide sequence retrieval. The Human Uniprot database 
(20 422 entries) was downloaded for database search. The mass 
tolerances of precursor ions and product ions were separately set 
at 10 ppm and 0.05 Da. No enzyme was specified for cleavage. 
Variable PTMs, including Disulfide Bond, pyro-glu from E, pyro-
glu from Q, oxidation, acetylation (N-term) were selected. The 
maximum number of PTMs per peptide chain was 5. Estimation 
of false positives was conducted by searching all spectra against 
the decoy database. The cutoff of FDR for peptide identification 
through PEAKs was <1%. Then, the first 100 important features 
are selected for qualitative analysis, and the important protein 
and peptide sequences are obtained according to the comparison 
results of the search database of PEAKS (error within 10 ppm, RT 
within 2 min). 

Compare with other DL methods 
LSTM [31, 32], ResNet model [33] and Transformer model [34] 
are used to evaluate the classification performance indicators of 
MDD dataset. The DL neural network framework adopts the con-
struction mode of CMS-Net, and only changes its model, and the 
models applied in CMS-Net are replaced with LSTM, ResNet and 
Transformer models. According to these two models, the hyperpa-
rameters are optimized respectively, and the optimal parameters 
are found to evaluate their classification performance. 

Results 
Batch removal effect 
The collected MDD and healthy plasma samples were detected 
by LC–MS to obtain raw MS data, and the MDD data were pre-
processed to obtain a csv file. It is worth noting that since the 
group A data and group B data of MDD dataset are collected in 
batches, the t-SNE cluster analysis and the feature distribution of 
the dataset are used to determine whether there is obvious batch 
effect to affect the classification performance of the model. As 
shown in the results (Fig. 2a and Fig. S1a and b), the data of the 
group A and the group B are relatively dispersed, and the data 
differences are large. To further verify the existence of batch effect 
in the data, cluster dendrogram and PCA analysis were conducted, 
and the results showed that batch effect did exist in the two 
datasets of MDD (Fig. S1c and d). Two methods were used for batch 
effect removal, namely limma method and SVA method. Limma 
method was first applied, and the results did not combine the 
data together, indicating that the batch correction effect of this 
method was not good (Fig. S1e and f). Then SVA method was used 
for batch correction. As shown in the results (Fig. 2b and c), PCA 
plots and cluster dendrograms of the datasets of the group A and 

group B after the batch effect was removed can be seen that the 
separation and clustering effects among samples were improved, 
the variability caused by the batch effect was reduced, and the 
overall consistency of the data was improved. 

Comparison with CMS-Net classification 
performance evaluation 
CMS-Net (Fig. 3a) was used to evaluate the classification perfor-
mance indicators of MDD dataset. In the early stages of model 
design, we conducted comparative experiments, analyzing the 
impact of different numbers of local connection layers and the 
inclusion of multi-head attention mechanisms on classification 
performance. The results indicated that the design of CMS-Net 
could effectively extract features, neither missing important ones 
due to the model being too simple nor experiencing overfitting 
associated with the model being too complex (Fig. 3b). Firstly, the 
MDD dataset was divided into training dataset and test dataset, 
among which the test dataset accounts for 30%, and the test 
dataset was independent of the training dataset. Fixed random 
seeds ensure that the results of each division of the dataset 
were consistent. Then, the network was trained using the training 
dataset with five-fold cross-validation (the training dataset was 
divided into a training dataset and a validation dataset, with a 
ratio of 4:1). Finally, categorical evaluations were made with test 
dataset (without participating in the training process; Fig. S2). To 
prevent overfitting and save training time, an early stop mech-
anism was added to CMS-Net to automatically recognize that 
training was terminated in advance when the validation dataset 
loss no longer declines, or the decline change was less than the 
threshold value. 

Using CMS-Net to assess the classification performance of 
depression data, we achieved significantly improved classification 
evaluation metrics. On the test dataset, our method achieved 
an average ACC of 0.9441 and an average AUC value of 0.9634. 
Additionally, during the training process, the loss converged very 
well (Fig. 3c), and the average sensitivity and specificity reached 
0.9352and 0.9517 respectively. The highest ACC and AUC reached 
0.9630 and 0.9931 (Fig. 4). These results demonstrate that our 
method achieves strong classification performance in the binary 
classification task of depression. 

Next, we compared the classification performance of three DL 
models, LSTM, Transformer, and ResNet, and after 10 independent 
iterations, the LSTM model had the worst classification perfor-
mance on the MDD dataset, with an ACC of only 0.6533 and an 
AUC of 0.7782. Subsequently, we compared these models with 
ML models, including RF, LDA, SVM, KNN, and XGBoost (evalu-
ated based on the average results of 10 independent iterations). 
According to the P-value results of the t-test, the classification per-
formance of CMS-Net showed statistically significant differences 
compared with other models (Table 1). In addition, the highest 
ACC and AUC values of other models are not as high as ours (Fig. 4, 
Fig. S3). 

Based on these results, it is evident that CMS-Net outper-
forms the others in terms of classification evaluation metrics, 
suggesting that our neural network model exhibits a more reliable 
performance in the task of depression classification. 

CMS-Net weight analysis screening major 
depressive disorder important features 
Given the specificity of our model, which includes local con-
nection layers and an Add layer (performs elementwise addition 
operation), and the fact that the input data dimension intro-
duced into the model is 3D, it is imperative to conduct feature

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae554#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae554#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae554#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae554#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae554#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae554#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae554#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae554#supplementary-data
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Figure 2. Batch effects of MDD datasets. (a) t-SNE cluster analysis of group A and group B of MDD datasets. Groups 0 and 1 represent the health and 
disease categories in the group A, and groups 2 and 3 represent the health and disease categories in the group B (b) PCA analysis and (c) cluster 
dendrogram were performed for batch correction of MDD datasets using SVA method. 

importance analysis to identify which features contribute more 
to classification. Conventional methods such as SHapley Additive 
exPlanations (shapley) [ 35–37], permutation importance [38, 39], 
and weight-based approaches [40, 41] are all impractical. The 
utilization of shapley and permutation importance results in 
data dimension mismatches, requiring the input data dimen-
sion to be 2D, thus rendering them inapplicable to our network. 
However, owing to the presence of local connection layers, the 
output features of weight-based methods are localized, making 
comprehensive analysis unattainable. Ultimately, the gradient-
based Feature Importance method was employed for qualitative 
analysis, resulting in the isolation of 28 differential peptides from 
14 prerequisite proteins by comparing the identification results of 
the important features obtained from the PEAKS search database 
and model-based input and output (Fig. 5). 

These peptides include hemoglobin subunit alpha, hemoglobin 
subunit beta, hemoglobin subunit delta (Table 2), albumin, 
histone-lysine N-methyltransferase 2D, fibrinogen alpha chain, 
alpha-1-antitrypsin, alpha-2-HS-glycoprotein, immunoglobulin 
gamma-1 heavy chain, complement C3, complement C4-B, 
apolipoprotein A-I, transthyretin and phosphoglycerate kinase, 
glycosomal (Table S2). Changes in complement proteins (C3, C4-B), 
alpha-2-HS-glycoprotein, and immunoglobulin gamma-1 heavy 
chain levels may indicate alterations in the immune system and 
inflammatory processes in patients with depression. Fibrinogen 
alpha chain, apolipoprotein A-I, and albumin levels may reflect 
metabolic and cardiovascular health issues. The presence of 

transthyretin and phosphoglycerate kinase suggests potential 
involvement in thyroid function and glycolysis, respectively, 
which may also impact metabolic and cardiovascular health. 
Abnormalities in the hemoglobin subunits (α, β, δ) can lead 
to anemia, which can affect the oxygenation state of the 
brain, which can negatively affect mood and cognitive function. 
Alterations in histone-modifying enzymes, such as histone-lysine 
N-methyltransferase 2D, may indicate epigenetic modifications. 
These protein changes can reflect the pathological processes 
of depression, including the inflammation response, energy 
metabolism, immune system, and neurotransmitter system 
dysfunction. Studying these proteins can help understand the 
biological mechanisms of depression and may provide clues for 
new therapeutic strategies. 

Discussion 
We attempted to tackle the challenge of diagnosing major depres-
sion by employing the CMS-Net network model. This model is 
specifically designed to process LC–MS data, enabling successful 
diagnosis of major depression and identification of features that 
effectively differentiate patients from HCs. Compared to other 
models, ours demonstrates superior ACC and identifies several 
distinctive peptide sequences. Moreover, our model has been thor-
oughly validated using LC–MS data from various other diseases. 

Presently, research on MDD faces limitations due to small 
sample sizes and reliance on subjective symptom assessment

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae554#supplementary-data
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Figure 3. CMS-Net model architecture, training process, and comparative experimental testing. (a) The model consists of an input layer, a local feature 
extraction layer (including two 1D local connection layers), a global feature extraction layer (including two-way MLP and a multi-head attention 
mechanism), and an output layer. (b) Comparative analysis by modifying the feature extraction layer using models with different numbers of layers. 
Model1: with only one local connection layer; model2: with two local connection layers; model3: with three local connection layers. (c) Convergence 
trend of loss value during CMS-Net model training. 

Table 1. Comparison of classification performance with CMS-net model 

Dataset Classes Model ACC AUC Sensitivity Specificity P-value 

MDD 2 CMS-Net 0.9441 ± 0.02 0.9634 ± 0.01 0.9352 ± 0.03 0.9517 ± 0.05 
LSTM 0.6533 ± 0.10 0.7782 ± 0.06 0.7248 ± 0.13 0.5917 ± 0.25 7.59311E-14 
Transformer 0.8330 ± 0.09 0.8951 ± 0.08 0.8464 ± 0.07 0.8214 ± 0.14 7.97501E-11 
ResNet 0.9070 ± 0.04 0.9605 ± 0.02 0.8960 ± 0.06 0.9166 ± 0.05 6.62014E-05 
RF 0.8589 ± 0.04 0.9537 ± 0.02 0.8336 ± 0.06 0.8807 ± 0.06 4.01758E-13 
LDA 0.8296 ± 0.07 0.8855 ± 0.04 0.768 ± 0.09 0.8828 ± 0.07 5.74276E-27 
SVM 0.8519 ± 0.03 0.9004 ± 0.02 0.8000 ± 0.03 0.8966 ± 0.05 2.82166E-25 
KNN 0.8222 ± 0.03 0.9364 ± 0.02 0.9200 ± 0.03 0.73798 ± 0.06 1.86185E-27 
XGBoost 0.8889 ± 0.02 0.9623 ± 0.01 0.8720 ± 0.02 0.9034 ± 0.03 2.81307E-21 

Evaluation metrics: ACC, AUC values, sensitivity, and specificity (mean ± standard deviation of ten independent iterations). 

Table 2. The hemoglobin and peptide sequences identified by MDD data weight feature analysis 

Accession Peptide −10lgP Feature total contribution degree 

P69905|HBA HUMAN VLSPADKTNVKAAWGKVGAHAGEYGAEALERMF 63.51 7.77733E-07 
P68871|HBB HUMAN VHLTPEEKSAVT(−18.01) 32.67 7.65409E-07 
P68871|HBB HUMAN VHLTPEEKSAVTAL 81.71 4.81579E-07 
P69905|HBA HUMAN VLSPADKTNVKAAWGKVGAHAGE(+37.96)Y 41.57 4.44261E-07 
P02042|HBD HUMAN LVVYPWTQRF 53.26 2.91214E-07 
P69905|HBA HUMAN VLSPADKTNVKAAWGKVGAHAGEYGAEAL 76.17 2.82464E-07 
P69905|HBA HUMAN LASVSTVLTSKYR 60.82 2.40603E-07 
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Figure 4. ROC curve of five-fold cross-validation of four models in ten independent iterations. 

and psychometric measurement for diagnosis and treatment. 
However, the inherent constraints of these methods underscore 
the urgent need for identifying reliable biomarkers to enhance the 
ACC of MDD diagnosis. For instance, Karlovic et al. demonstrated 
that serum concentration of brain-derived neurotrophic factor 
effectively distinguishes first-onset MDD patients from non-MDD 
individuals, achieving an AUC of 0.892, sensitivity of 83.9%, and 
specificity of 93% [ 42]. Other studies have shown that the levels 
of miRNA in individual serum, especially miR-542-3p, miR-181b-
3p, and miR-3690, can also be used as biomarkers to distinguish 
MDD individuals from healthy individuals, and the AUC value is 
0.67 [43]. Despite the availability of various potential biomarkers, 
their ACC in diagnosing MDD has not yet reached the desired 
level [44]. 

The black box model only allows us to observe its input 
and output, and there is no clear understanding of the specific 
processing process. The unexplainability of this model poses 
a great challenge for clinical application, as explainability is 
critical to making accurate diagnostic and treatment decisions 
in the medical field [45, 46]. Compared with our method, the 
performance of other models on the LC–MS data classification 
task of MDD is not satisfactory, and there may be some limitations. 
MDD is a complex mental illness, and the diversity of its causes 
and symptoms [47] and the relatively small size of the dataset 
[48, 49]. These limitations make it challenging to use limited 
features for accurate classification [50, 51]. Other modeling 
methods may not be able to capture subtle differences and 
complex features in depression samples, leading to limitations
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Figure 5. MDD data is used for feature weight analysis. The results of visualizing the top 100 features with large contributions during model classification 
based on gradient feature importance ranking. 

in classification performance [ 52]. However, our method first 
performs local and location-related efficient learning of spectral 
peak blocks (more precise extraction with fewer parameters), 
and then the global nonlinear relationship between spectral 
peak blocks is learned by means of two-way MLP and attention 
mechanism. Compared with general image-oriented and natural 
language processing data, our architecture performs better on 
mass spectroscopic data. 

As a limitation, it is necessary to increase the sample size 
of depression cases for further research and validation. We can 
continuously improve and refine our method to enhance the ACC 
of depression diagnosis and ensure its feasibility and adaptability 
in real clinical settings. In summary, we have constructed a binary 
classification model tailored for handling LC–MS data of plasma 
peptides in depression. Our model exhibits high ACC, excellent 
AUC values, and combines both high sensitivity and specificity. 
This provides a reliable tool and guidance for the precise diagno-
sis and differentiation of depression, bearing significant clinical 
implications for depression management. 

Furthermore, we conducted an analysis of feature contribu-
tions based on the model. Through this analysis, we identified 
28 peptides derived from the breakdown of 14 precursor proteins. 
This offers new insights into the biological mechanisms of depres-
sion and provides valuable information for further research and 
treatment of this condition. Future research can further expand 
the applicability of CMS-Net to accommodate a wider range of 
medical scenarios and extend the model’s use to other related 
fields, enhancing our understanding of mental health and the 
complexity of illnesses. 

Key Points 
• We have developed a DL model named CMS-Net for 

handling depression plasma peptides in LC–MS data. It 
achieves precise classification between depression and 
health and has been validated on other types of LC– 
MS data. 

• CMS-Net is suitable for achieving precise classification 
in small-sample data, exhibiting significant robustness 
and stability. 

• Building upon the classification by CMS-Net, inference 
of important features and identification of metabolite 
information provide new insights into the biological 
mechanisms of depression. 

Supplementary data 
Supplementary data is available at Briefings in Bioinformatics 
online. 
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