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Abstract 
Motivation: Selecting representative genes or marker genes to distinguish cell types is an important task in single-cell sequencing 
analysis. Although many methods have been proposed to select marker genes, the genes selected may have redundancy and/or do not 
show cell-type-specific expression patterns to distinguish cell types. Results: Here, we present a novel model, named CosGeneGate, to 
select marker genes for more effective marker selections. CosGeneGate is inspired by combining the advantages of selecting marker 
genes based on both cell-type classification accuracy and marker gene specific expression patterns. We demonstrate the better 
performance of the marker genes selected by CosGeneGate for various downstream analyses than the existing methods with both 
public datasets and newly sequenced datasets. The non-redundant marker genes identified by CosGeneGate for major cell types and 
tissues in human can be found at the website as follows: https://github.com/VivLon/CosGeneGate/blob/main/marker gene list.xlsx. 
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Introduction 
Single-cell sequencing technologies offer high-throughput obser-
vations into complex biological systems at the cell level [1, 2], 
which help elucidate disease mechanisms and improve treat-
ments [3–5]. These technologies enable the characterization of 
various molecules, such as DNA (scDNA-seq) [6], RNA (scRNA-seq) 
[7, 8], and proteins [9]. They can also facilitate epigenetic studies 
through single-cell ATAC sequencing (scATAC-seq) [10, 11] and  
methylation [12, 13]. There have also been rapid developments of 
spatial single-cell technologies [14]. These single-cell technologies 
have been rated as among the most impactful ones in recent years 
[4, 15]. 

Since single-cell sequencing allows us to study the properties 
of different cell types, the inference of cell types has become 
important [16]. One approach for cell-type annotation is based 
on marker genes of different cell types [17, 18]. Because scRNA-
seq data are high dimensional, sparse and noisy [19], there is 
significant challenge in cell type assignment using marker genes. 
In addition, genes with similar biological functions tend to show 

similar expression patterns, further complicating marker gene 
selections. 

Currently, researchers use three sources of information to 
select marker genes for cell type annotation. The first source 
is from experts, who select marker genes based on biological 
knowledge and prior experiments. However, such selections are 
subjective and lead to different marker gene sets [20–22]. The 
second source is through the identifications of differentially 
expressed genes between groups of cells [23, 24]. By performing 
the ‘one-over-all’ statistical test for pre-clustered data (using 
either Louvain [25] or Leiden [26]), these methods select marker 
genes based on p-values or fold changes (FCs) or both. However, 
these methods test the mean difference between the two groups 
of cells and ignore the effects of gene expression proportions, 
which may limit their utilities. Moreover, selecting marker genes 
based on marginal statistics often leads to a number of discovered 
genes with a high false-positive rate, as shown in Extended Data 
Fig. 1. The third source is through machine learning models [27, 
28], where marker genes are selected based on interpretable 
machine learning models. A machine learning-based approach
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uses a dataset with annotated cell types as the training set and 
trains a classifier with feature selection functions or generates 
correlation on the training dataset to find the features most 
relevant to the prediction results of different categories [27, 
29]. Such features are then treated as marker genes. Machine 
learning-based models can select marker genes as minimal sets 
with less redundancy. However, the existing machine learning 
models either fail to capture patterns of different marker genes 
or consume much computation resource (see the Results section). 
Moreover, current methods also cannot identify cells with 
incorrect cell-type annotations, which means the correctness of 
marker genes may be confused by incorrect cell types of training 
datasets. 

To overcome the limitations of the existing approaches, we 
present a model based on interpretable neural networks with 
stochastic gate design [30] and cosine similarity regularization 
[29] for marker gene selection, and denote this methods as Cos-
GeneGate. Our model selects marker genes with cell-type-specific 
expression patterns, which are further discussed in the Results 
section, by utilizing large-scale annotated scRNA-seq data as the 
training datasets, and it is also scalable for datasets of different 
sizes with flexible GPU cores. We offer a list of marker genes with 
their credible sets for major cell types without redundancy of 
features. Moreover, we consider several downstream applications 
with the selected marker genes, e.g. improving the performance 
of bulk RNA-seq deconvolution tools, reducing the dimensions 
of single-cell data, identifying spatially-varying marker genes for 
spatial transcriptomic data, and refining incorrect cell types. We 
also illustrate how to apply CosGeneGate to uncover disease-
specific marker genes for the immune cells from Alzheimer’s 
disease (AD). 

Methods 
Given one or more scRNA-seq dataset(s) with rows as samples 
(cells) and columns as features (genes), and known annotated 
information (including cell types or cell states), our model aims 
to learn a projection from a high-dimensional space to a lower-
dimensional space that preserves biological information. The sub-
set of genes corresponding to the highest prediction accuracy for a 
given tissue can be treated as the optimal marker-gene candidates 
for this tissue. To generate the final list of optimal marker genes, 
we ensure that these genes can not only achieve the highest cell-
type classification accuracy, but also follow the cell-type-specific 
expression patterns for different cell types supported by previous 
research [27, 29]. 

Our model has two components. The first component is a 
stochastic gate (STG) neural network, which selects marker 
genes based on prediction accuracy. The second component is 
a post-selector based on the cosine similarity of candidate genes 
generated by STG, which can focus on candidate genes with 
similar expression patterns. The final gene list is ranked by scores 
from the second component and filtered to reduce redundancy. 
When there are no cell labels, we can assign labels from 
clustering algorithms [25, 26] or knowledge transformation from 
another modality [9]. An overview of CosGeneGate is shown in 
Fig. 1 (a) and (b). 

We assess the performance of CosGeneGate based on various 
datasets and metrics in this manuscript. We also develop a new 
pipeline for deconvolution analysis to estimate cell-type propor-
tions from bulk RNA-seq datasets. Details of our algorithms are 
included in Supplementary file 1. 

Results 
Marker genes selected by CosGeneGate improved 
the performance of cell-type annotation 
demonstrated by benchmarking analysis 
We first investigated the performance of CosGeneGate with three 
large-scale scRNA-seq datasets from different tissues (PBMC [31– 
34], Pancreas [35], and Heart [18]). We illustrate the cell-type 
similarity across different batches from PBMC in Extended Data 
Fig. 2, as an example to demonstrate the diversity of our training 
dataset. We compared the prediction accuracy based on marker 
genes from different models, including genes from experts (expert 
design), COSG [29], NSForest [27], scGeneFit [28], STG [30], and Cos-
GeneGate. By using the leave-one-out strategy, we used each batch 
as the testing dataset and all other batches of the same tissue as 
the training dataset for selecting markers and training k-nearest 
neighbor (kNN) classifiers. The information of batches is provided 
by the sources of these datasets. We evaluated the performance 
of all models based on metrics including accuracy, weighted F1 
score, label Normalized Mutual Information (label NMI), and label 
Adjusted Rand Index (label ARI). Figure 2 (a) shows the average 
scores of the above four metrics for each method and each batch. 
According to Fig. 2 (a), marker genes from CosGeneGate achieved 
high annotation scores across different datasets. The rank of the 
annotation scores from CosGeneGate was in the top three for 
almost all the batches. Based on the average score of all the 
datasets, CosGeneGate ranked second among all the competitors, 
as shown in the last column of Fig. 2 (a). Moreover, the variance of 
annotation scores based on these marker genes is lower than all 
the other methods except COSG in various metrics, as shown in 
Extended Data Figs. 3-5. COSG does not have a training process, so 
it is not affected by random numbers. Using marker genes from 
CosGeneGate is also significantly better than using marker genes 
from experts for cell-type annotation. 

Validating the marker genes selected by 
CosGeneGate on the preservation of biological 
information 
Here we investigated the contribution of marker genes for pre-
serving cell-type distinction. By selecting informative marker gene 
sets (as a method of feature extraction), we can utilize gene 
expression profiles with a smaller number of features to perform 
clustering, which is a key step before cell-type annotation. A 
good marker gene set should preserve the biological distinc-
tion induced by cell-type-specific gene expression. Therefore, to 
evaluate the performance of different gene sets, we computed 
metrics including PAGA [36] similarity, scaled Average Silhouette 
Width (scaled ASW), cluster ARI, and cluster NMI based on both 
highly variable genes (HVGs) and marker genes from different 
methods and averaged them as the final score. Such scores are 
relevant for the performance of marker genes for clustering and 
biological preservation. Details of our evaluations can be found 
in the Methods section (Supplementary file 1). The average scores 
are summarized in Fig. 2 (b). Based on this figure, CosGeneGate 
outperformed other methods in seven out of the 15 batches we 
tested. By averaging all batches from all three datasets, Cos-
GeneGate ranked second among all competitors, shown in the last 
column. 

Moreover, we computed the Gene Ontology enrichment results 
(details are in the Methods section (Supplementary file 1)) 
between each pair of two marker genes and divided the pairs into 
two groups as genes selected for the same cell type and different 
cell types. Then, by conducting a t-test between the scores of
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Figure 1. The landscape of CosGeneGate and downstream applications. (a) CosGeneGate utilizes large-scale scRNA-seq as training datasets. Using 
stochastic gates, we can select candidates of marker genes based on prediction metrics. After collecting all the candidates, we utilize cosine similarity as 
a method for constraining and filtering target marker genes. Here, g(1 . . . m) represents the input gene expression for m genes. Each gate z is constructed 
based on a reparameterization trick. The sampling distribution for reparameterization is Gaussian distribution, and μ represents the mean and σ 
represents the standard deviation. In the cosine-constrained step, θ represents the angle of two gene expression vectors. We run multiple experiments 
and use correlation to extract equivalent genes, and further filter redundant genes. (b) the downstream applications of marker genes include bulk-
seq/spatial transcriptomic data deconvolution, scRNA-seq data feature extraction, spatially expressed marker genes identification, and cell-type 
annotation correction. 

the two groups, the negative logarithm p-value of the t-test can 
show if there is a statistically significant difference between genes 
selected for different cell types, thus showing the abilities of 

biological information preservation. As shown in Extended Data 
Fig. 6 (a), CosGeneGate performed better than other methods in 
the PBMC dataset, while ranked second in Pancreas and Heart.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae626#supplementary-data


4 | Liu et al.

Figure 2. Experimental results for the comparison in the cell-type annotation task. We boldfaced the top 2 methods in panels (a)-(b). (a): Bubble plot for 
annotation scores (i.e. the average score of accuracy, weighted F1, label ARI, and label NMI) for 12 batches of PBMC, pancreas, and heart. The last column 
is the averaged annotation scores for each method. (b) Bubble plot for feature extraction scores (i.e. the average of PAGA similarity, scaled ASW, cluster 
ARI, and cluster NMI) for 12 batches of PBMC, pancreas, and heart. The last column is the averaged feature extraction scores for each method. (c) Line 
chart for hyperparameter tuning. (d) Boxplot and test result for redundancy removal. 

These results demonstrate the ability of CosGeneGate to select 
functional-specific markers for different cell types. CosGeneGate 
can also select marker genes with more coherent expressions 
in the corresponding cell type, and thus these genes have more 
clear cell-type-specific patterns. Based on Extended Data Figs. 6 
(b) and (c), genes selected by STG are usually expressed across 
several cell types, whereas COSG usually selects genes with ideal 
expression profiles, however at the cost of reducing prediction 
accuracy. Overall, our analysis demonstrated the superiority of 
CosGeneGate in selecting marker genes for biological information 
preservation. 

Regarding the gene number selection, we used the average 
score of all annotation and feature selection metrics to select 
the number of marker genes used in the input of CosGeneGate. 
This criterion is also a standard to select the optimal number 
of marker genes for each dataset. Figure 2 (c) shows that 50 is 
a suitable number of markers for each cell type in the PBMC 
dataset, and more than 50 selected genes will lead to performance 
drop. Meanwhile, the tuning metrics of the Pancreas dataset are 
shown in Extended Data Fig. 7. For other methods, we tuned 
their parameters to reach their best performance in each dataset 
for fair comparison. It is worth noting that, by averaging all 
evaluation metrics of cell-type annotation and feature extraction 
from all datasets, CosGeneGate ranked first among all meth-
ods, suggesting that marker genes selected by CosGeneGate can 

optimize these the cell-type annotation and feature extraction 
tasks simultaneously. 

Removing redundant genes by uncertainty and 
co-expressions 
Here we investigated the performance of CosGeneGate after 
removing gene redundancy based on changing random seeds 
and constructing co-expression networks. The workflow of 
redundancy removal is explained in the Methods section and 
visualized in Fig. 1 (a). We compared the four metrics of cell-type 
annotation between the original marker gene set and the credible 
marker gene set (i.e. the gene set after redundancy removal). For 
the PBMC dataset, the result of the paired t-test between the two 
gene sets is shown in Fig. 2 (d), and the other results are shown 
in Extended Data Fig. 8. According to the boxplot and test result, 
we improved annotation accuracy for PBMC and Pancreas by 
generating a credible set of genes, demonstrating that removing 
redundant genes can lead to more accurate cell-type annotation. 
We have provided credible sets for each major cell type of different 
tissues (PBMC, Pancreas, and Heart) in Supplementary file 2. 

Removing redundant genes by uncertainty and 
co-expressions 
In this section, we investigate the preference of CosGeneGate 
for marker gene selection and present an algorithm to choose a
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suitable number of marker genes from a statistical perspective. 
We computed the Wilcoxon rank-sum test score for the marker 
genes from PBMC and Pancreas based on candidate genes selected 
by CosGeneGate, and visualized the relation between the number 
of marker genes and the score in Extended Data Fig. 9 (a). This 
figure shows that the number of marker genes with the best 
performances depends on the most difficult cells to classify in the 
tissue, i.e. the cells with the highest number of genes needed for 
the score to reach its maximum value. For example, in the PBMC 
dataset, selecting 50 genes per cell type is the optimal choice 
based on our metrics. On the other hand, in the Pancreas dataset, 
selecting 20 genes per cell type is the optimal choice based on 
our metrics. These two choices correspond to the cell types high-
lighted by the red block in Extended Data Fig. 9 (a). We also tried 
to use two different approaches to explain the preference of our 
marker genes, known as the COSG score (shown in Extended Data 
Fig. 9 (b)) and the Metamarker score [37] (shown in  Extended Data 
Fig. 9 (c)). However, in the analysis of the COSG score for the PBMC 
dataset, we did not see a positive relation between the COSG score 
and the performance of marker genes. The original manuscript for 
Metamarker score advocates to choose 50–200 genes per cell type 
for accurate cell-type annotation based on the trade-off between 
the FC score and the area-under-curve (AUC) score. However, 
based on our analysis, not all the cell types had such patterns, 
and it is difficult to balance between the FC score and the AUC 
score for all cell types in the Pancreas dataset. Therefore, previous 
methods could not be used to explain the multifunctional marker 
genes from CosGeneGate, and our analysis is more suitable for 
model explanation. Details of our algorithm are in the Methods 
section (Supplementary file 1). 

Selecting marker genes improved the 
performance of deconvolution 
We first investigated the impact of marker gene selection on 
deconvolution. For signature matrix-based deconvolution meth-
ods, we can deconvolve the bulk RNA-seq datasets by only keeping 
selected marker genes rather than using all genes. Since only 
informative genes are kept, the deconvolution performance is 
expected to be better. Then, we compared the deconvolution 
results of all genes, NSForest [27], scGeneFit [28], STG [30], and 
COSG [29] on different deconvolution models: CIBERSORTx [38], 
MuSiC [39], and NNLS [40]. To evaluate the performance, we used 
Root Mean Square Error (RMSE), Pearson Correlation Coefficient, 
and Coefficient of Variation as metrics. Details of these metrics 
are included in the Methods section (Supplementary file 1). 

Regarding the parameter selection, we used RMSE to select 
the optimal number of marker genes. For other competitors, we 
tuned the number of marker genes to reach their best perfor-
mance accordingly for a fair comparison. Empirical experiments 
show that the optimal number of marker genes differs for differ-
ent datasets and different gene selection strategies. Therefore, it 
should be tuned in practice. To tackle the problem, we designed 
a deconvolution pipeline that adjusts the number of marker 
genes to be selected by CosGeneGate. Figure 3 (a) and (b) show the 
overall workflow of the pipeline for the pseudo bulk mode and the 
real bulk mode, respectively. In the pseudo bulk mode, the scRNA-
seq dataset is split into two parts, one for pseudo bulk data [38] 
generation, and the other for hyperparameter tuning with Cos-
GeneGate marker genes on these generated pseudo bulk mixtures 
for this model. In the real bulk mode, the model is directly tuned 
on the real bulk data [41], and its ground truth cell-type proportion 
information is provided by the users. Figure 3 (c) shows how the 
deconvolution performance varies as the number of marker genes 

for each cell type changes within the pancreas dataset. There is a 
parallel pattern for RMSE between the validating dataset and the 
testing dataset, suggesting that the number of marker genes that 
achieve the best performance in the validation dataset should 
also achieve almost the best performance in the testing data, 
guiding the selection of the number of marker genes. Figure 3 (d) 
shows the performance of deconvolution on a real bulk dataset 
known as the 3celllines dataset. CosGeneGate performed well 
on average compared with other gene selection strategies, and 
outperformed the case of choosing all genes. Figure 3 (e) shows 
the performance improvement for both the pseudo bulk mode 
and the real bulk mode. We can observe that in most cases, the 
pseudo bulk mode improves the performance of deconvolution, 
which is further improved by the real bulk mode. 

Selecting marker genes uncovered 
spatially-informed patterns in spatial 
transcriptomic data 
We next assessed the performance of CosGeneGate on selecting 
marker genes from scRNA-seq data for spatial transcriptomics 
studies. We considered two types of spatial transcriptomic data 
to investigate the general applicability of our method. In the 
dataset (visium_fluo) sequenced using 10x Visium [42], every spot 
within the spatial transcriptomic dataset encompasses a variable 
number of cells and 10x Visium is a whole-transcriptome-based 
technique. In contrast, in the dataset (human breast) obtained 
through Xenium sequencing [43], we can extract a single-cell gene 
expression profile with hundreds of genes, and each spot corre-
sponds to an individual cell. Using scRNA-seq to select marker 
genes for the spatial transcriptomic data is meaningful for spatial-
level deconvolution and cell-type annotation [44]. We compared 
the results of 2000 HVGs, COSG, NSForest, scGeneFit, scMAGS 
[44], STG, and CosGeneGate to evaluate their abilities to identify 
marker genes for spatial transcriptomic data from scRNA-seq 
data. We added scMAGS in this section because of its ability 
to analyze spatial transcriptomic data. Figure 4 (a) shows the 
evaluation of the preservation of gene–gene correlation selected 
by different methods for the 10x Visium dataset and the human 
breast dataset based on different random seeds. According to 
Fig. 4 (a), CosGeneGate has a high gene–gene correlation across 
different methods and different datasets. Using marker genes 
from CosGeneGate is also significantly better than using HVGs. 
Details of our evaluation methods are summarized in the Methods 
section (Supplementary file 1). Moreover, Extended Data Fig. 10 
and Fig. 4 (b) show the distribution of cortex of the visium_fluo 
dataset and cell types of the human breast dataset with spatial 
location respectively. The gene expression profiles of spatially-
expressed marker genes shown in Fig. 4 (c) of malignant cells 
identified by CosGeneGate can illustrate a binary expression pro-
file compared with cells from different cell types of the human 
breast dataset. These results altogether support the ability of Cos-
GeneGate to select marker genes that uncover cell-type-specific 
gene expression patterns in spatial transcriptomic data. 

Selecting marker genes from CosGeneGate 
refined uncertain cell types 
We assessed CosGeneGate’s ability to use selected marker genes 
to detect incorrect or unknown cell types. According to Fig. 5 (a), 
the 3-fold intra-dataset hierarchical classification accuracy of all 
methods is low, leading us to conjecture that there are wrongly 
labeled sub-cell types in the Zeisel dataset [45]. Figure 5 (b) shows 
the UMAP for the sub-cell type distribution of the Zeisel dataset. 
In Fig. 5 (c), we count and then display the number of times a

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae626#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae626#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae626#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae626#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae626#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae626#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae626#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae626#supplementary-data


6 | Liu et al.

Figure 3. Experimental results for the comparison in the deconvolution task. (a) the workflow for CosGeneGate marker-based deconvolution pipe-line 
(pseudo-bulk mode) (b) the workflow for CosGeneGate marker-based deconvolution pipeline (real-bulk mode) (c) relationship between the number of 
markers and deconvolution performance (d) benchmark of performance of deconvolution in the real bulk three-cell dataset (e) the performance of 
deconvolution pipeline in real bulk pancreas dataset with two different modes. 

cell’s classification result did not match the label divided by 
the total number of trials as the uncertainty score. As can be 
seen in the two UMAPs, tightly clustered cells of the same cell 
type tend to have uncertainty scores closer to zero and cells 
between cell-type clusters have higher uncertainty scores, which 
accords with intuition. We defined unknown or known sub-cell 
types as wrongly or correctly labeled sub-cell types by markers 
from CosGeneGate using all ten seeds and all ten n_neighbors 
parameters of kNN classifiers, i.e. cells’ uncertainty scores equal 
zero for cells which are classified as their annotated types under 
all the experiments. Then, using the expert markers from Zeisel 
[ 45], we generated the dotplots of unknown and known sub-cell 
types in oligodendrocytes, as shown in Fig. 5 (d). Comparing the 

upper panel with the bottom panel, we observe that the expert 
marker genes from unknown cell types such as Oligo 5 and Oligo 
6 have unclear patterns. The cells with unknown labels are indeed 
wrongly labeled based on their expression of the expert markers. 
We offer the full marker gene list in Extended Data Fig. 11. Finally, 
we collected the experiment results from the kNN classifier and 
re-annotated cell types with the maximal cell-type proportion of 
prediction. These results are summarized in Fig. 5 (e). 

Discovery of disease-specific marker genes for 
AD 
CosGeneGate can also discover disease-specific marker genes 
based on the analysis of sub-cell types across samples with
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Figure 4. Experimental results for the application of marker genes. (a) the evaluation for the preservation of gene–gene correlation of the genes selected 
by different methods for the 10x Visium dataset and the human breast dataset. We did not report the results of NS-Forest for the human breast dataset 
be-cause its running time exceeded our limit. (b) Visualization of the cell-type distribution of the human breast dataset. (c) Spatially-expressed marker 
genes identified by CosGeneGate in the human breast dataset. 

different conditions. Here we focus on AD, the most common 
age-related neurodegenerative disease. Clinical symptoms of AD 
are characterized by progressive cognitive decline and dementia. 
Therefore, the analysis of possible genetic risk factors for AD is 
important for clinical practice today. Microglia cells are important 
immune cells in the brain, which are highly correlated with AD 
[ 46–49]. To identify disease-specific marker genes, we sequenced 
a new dataset containing 126,687 cells from seven samples using 
10x Multiome sequencing. We show the distribution of diseased 
conditions in Fig. 6 (a) and the distribution of cell types in Fig. 6 (b). 
Here we tried three different approaches and used the over-
lap score (known as precision) between selected disease-specific 
marker genes and known disease-associated genes as the crite-
rion. Details are included in Extended Data Fig. 12. Finally, we iden-
tified the sub-clusters/sub-cell types of microglia cells from our 
AD-Health Control (HC) datasets and then utilized CosGeneGate 
to select possible genetic risk factors. Such genes were identified 
in the AD samples as marker genes of certain sub-cell types rather 

than in HC samples. Figure 6 (c) shows the expression patterns of 
selected disease-specific marker genes. The selected AD-specific 
marker genes showed higher expression levels in AD-associated 
sub-cell types. The overlapping information between selected 
marker genes and known AD-associated genes can be found in 
Supplementary file 3. Those genes which are not previously iden-
tified as AD-associated can be treated as novel AD-specific marker 
genes. Therefore, we can also use CosGeneGate to identify the 
risk genes for diseases supported by disease-specific expression 
patterns and the results for mining AD-associated genes from 
known databases. 

Discussion 
Marker genes not only work as the safeguards for the cell-type 
annotation prior to downstream analysis of single-cell data, 
but can also facilitate downstream applications including bulk 
RNA-seq data deconvolution, feature extraction, spatial gene

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae626#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae626#supplementary-data
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Figure 5. Utilizing marker genes to detect unknown cell types. (a) the accuracy of cell-type annotation based on different methods for the Zeisel dataset. 
(b) UMAPs for the sub-cell type distribution of the Zeisel dataset. (c) Sub-cell type-specific gene expression plots for cells with incorrect labels (top) and 
cells with correct labels (bottom). (d) UMAPs for the cells with uncertainty. (e) UMAPs for the re-annotated cells. 

expression pattern identification, sub-cell type correction, the 
discovery of disease-specific genes, and others. Therefore, the 
multifunctional marker genes selected by CosGeneGate are 
important for single-cell data pre-processing and downstream 
applications. CosGeneGate selects marker genes by considering 
both the contribution of target genes to cell-type annotation, and 
the cell-type-specific expression patterns of marker genes. By 
combining these two ideas together, we showed the superiority of 
marker genes identified by CosGeneGate in the Results section. 
Furthermore, we designed a framework to reduce the redundancy 
of our marker gene list and demonstrated its usefulness in the 
Results section. 

We note that in the cell-type annotation task, CosGeneGate 
had similar performance compared to STG and COSG. However, 
by taking a deeper look at the gene expression patterns of STG, the 
marker genes selected by STG tended to express across different 
cell types, which were false-positive signals discovered by STG 
shown in Extended Data Figs. 6 (b) and (c). Moreover, the genes 
selected by COSG are not ideal choices for other downstream 
applications, including representative feature extraction and bulk 
RNA-seq deconvolution. It also consumed more memory usage 
compared to CosGeneGate. Our method integrated the advan-
tages of COSG and STG while avoiding their shortcomings. Cos-
GeneGate also outperformed NSForest and scGeneFit for multi-
ple tasks. The running time of NSForest was too long to select 
marker genes effectively. Genes selected by scGeneFit are not cell-
type-specific and do not have rank information to quantitatively 
describe their quality, which limits their functionality. 

For the deconvolution task, we developed a pipeline for bulk 
RNA-seq data deconvolution, which allowed users to choose dif-
ferent modes, and it could select the number of marker genes 
with the best performance automatically, which is also a user-
friendly design. For the feature extraction task, we demonstrated 
that marker genes selected by CosGeneGate could not only pre-
serve the distinction of cell types, but also retain the structure 

similarity of different cell types before running the selection step. 
Reducing the dimensionality we need for single-cell analysis is 
important for efficiency. For the analysis related to spatial tran-
scriptomic data, we demonstrated that marker genes selected by 
CosGeneGate from scRNA-seq datasets could be used to identify 
genes with spatial expression patterns based on the spatial tran-
scriptomic data from the same tissue, which builds a bridge for 
multi-omics data analysis. We also used CosGeneGate to refine 
the sub-cell types from scRNA-seq datasets thus increasing the 
data quality. Therefore, the marker genes from CosGeneGate are 
high-quality across different scenarios. 

We also used CosGeneGate for biological discoveries, e.g. iden-
tifying new disease-specific marker genes based on sequenced 
datasets. We identified a number of disease-specific marker genes 
for the sub-cell types of Microglia cells by analyzing samples 
with/without AD. In the final marker gene set, some genes are ver-
ified as disease-associated markers by analyzing GWAS statistics 
and/or related biological experiment results. The rest of genes can 
be treated as newly discovered marker genes. 

To determine the number of marker genes identified by Cos-
GeneGate, we ran experiments by adjusting the number of marker 
genes as a hyper-parameter and selecting the number corre-
sponding to the cell-type annotation and feature extraction task. 
We also considered the explainability of our methods and dis-
covered the relation between the number of marker genes per 
cell type and the related score from statistical tests. After redun-
dancy removal and co-expression patterns, we summarized these 
genes into a table for major tissues, which could be used by 
users. Moreover, the number of marker genes is also an editable 
hyper-parameter. Users can also adjust its value if they prefer 
more/fewer markers. 

In summary, CosGeneGate can select high-quality marker 
genes for multiple downstream applications and has acceptable 
running time and memory usage. It has its unique feature 
selection design by combining ideas from the machine learning

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae626#supplementary-data
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Figure 6. Utilizing marker genes for sub-cell types to explore the biological system. (a) UMAPs of the AD-HC dataset colored by disease condition. (b) 
UMAPs of the AD-HC dataset colored by cell type. Microglia cells are highlighted by a red circle, located in the right most part of this figure. (c) UMAPs 
for the AD-specific marker genes of microglia cells. 

area and the biology area. The next step of CosGeneGate 
will shift to multi-omic data analysis and multi-species data 
analysis. 

Key Points 
• Selecting representative genes or marker genes to dis-

tinguish cell types is an important task in single-cell 
sequencing analysis and is helpful for downstream anal-
yses. 

• we present a novel model to select marker genes for 
more effective marker selections. Our method inspired 
by combining the advantages of selecting marker genes 
based on both cell-type classification accuracy using 
stochastic gating and marker gene specific expression 
patterns. 

• We demonstrate the outstanding performances of our 
method in selecting marker genes and generate a statis-
tical framework to explain our results. We also analyze 
a new ADHC dataset to discover new disease-related 
marker genes. 

Supplementary data 
Supplementary data are available at Briefings in Bioinformatics 
online. 
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