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Abstract

Accumulating evidence indicates that long noncoding RNAs (lncRNAs) play important roles in molecular and cellular biology. Although
many algorithms have been developed to reveal their associations with complex diseases by using downstream targets, the upstream
(epi)genetic regulatory information has not been sufficiently leveraged to predict the function of lncRNAs in various biological
processes. Therefore, we present FunlncModel, a machine learning–based interpretable computational framework, which aims to
screen out functional lncRNAs by integrating a large number of (epi)genetic features and functional genomic features from their
upstream/downstream multi-omic regulatory networks. We adopted the random forest method to mine nearly 60 features in three
categories from >2000 datasets across 11 data types, including transcription factors (TFs), histone modifications, typical enhancers,
super-enhancers, methylation sites, and mRNAs. FunlncModel outperformed alternative methods for classification performance in
human embryonic stem cell (hESC) (0.95 Area Under Curve (AUROC) and 0.97 Area Under the Precision-Recall Curve (AUPRC)). It could not
only infer the most known lncRNAs that influence the states of stem cells, but also discover novel high-confidence functional lncRNAs.
We extensively validated FunlncModel’s efficacy by up to 27 cancer-related functional prediction tasks, which involved multiple cancer
cell growth processes and cancer hallmarks. Meanwhile, we have also found that (epi)genetic regulatory features, such as TFs and
histone modifications, serve as strong predictors for revealing the function of lncRNAs. Overall, FunlncModel is a strong and stable
prediction model for identifying functional lncRNAs in specific cellular contexts. FunlncModel is available as a web server at https://
bio.liclab.net/FunlncModel/.

Keywords: multi-omics analysis; functional lncRNA; upstream/downstream regulatory network analysis; machine learning algorithm;
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Introduction
Long noncoding RNAs (lncRNAs) are a class of non-protein-
coding RNA molecules with >200 nucleotide transcripts [1–4].
As emerging key regulators, lncRNAs have been proposed to
perform specific functions in diverse processes, including cell self-
renewal, proliferation, differentiation, and disease [5–8]. Previous
studies have generally described the regulatory functions of
lncRNAs through downstream targets, such as the ceRNA
mechanisms and interactions with proteins [9, 10]. Recently,
their specific (epi)genetic regulatory mechanisms as well as
transcriptional and post-translational regulatory patterns also

were widely emphasized and illuminated [11–15]. For instance,
the lncRNA linc-RoR, occupied by core transcription factors (TFs),
has been found to regulate the efficiency of reprogramming of
embryonic stem cell (ESC). It has been confirmed that three
human embryonic stem cell (hESC)-crucial lncRNAs (lncRNA-
ES1, lncRNA-ES2, and lncRNA-ES3) regulate the expression of
pluripotency-related genes [16]. The lncRNAs AK028326 (activated
by OCT4) and AK141205 (repressed by NANOG) have been
described as regulatory factors for controlling ESC fate, and
dysregulation in their function causes a complex interplay
between the protein and lncRNA that determines the state of
pluripotency [17]. The TF p53 specifically mediates lncPRESS1
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to regulate pluripotent gene expression, and lncPRESS1 can
indirectly safeguard the hESC state by interacting with the protein
SIRT6 [18–20]. Using knockdown, Lin et al. defined that TP63 and
SOX2 regulate the lncRNA CCAT1 by co-occupying in its distal
regulatory elements (super-enhancers, SEs), thereby promoting
squamous cancer progression [21]. Moreover, some researches
have demonstrated that the single-nucleotide polymorphisms
(SNPs) and DNA methylations occurring in the regulatory regions
of lncRNAs lead to varying degrees of influence on disease
development [22, 23]. Briefly, these intensive efforts used biology
experiments to demonstrate the indispensability of multi-
omic regulatory elements in functional studies on lncRNAs
and to exhibit the tremendous complexity of transcriptional
regulation, making it deeper to comprehend lncRNA functional
mechanism in various biological processes. Nevertheless, because
such biological experiments are extremely resource intensive,
only a small fraction of the functional and biological roles of
lncRNAs could be clearly defined. Given these observations, it has
become an urgent need to utilize the advantage of algorithms
with minimum resource consumption for functional lncRNA
identification and investigate their transcriptional regulatory
mechanism.

Many computational approaches have been developed to inves-
tigate lncRNAs, and most of them have focused on predicting
their associations with complex diseases, such as LRLSLDA [24],
SIMCLDA [25], LDAP [26], MFLDA [27], and LDAPred [28]. Although
much has been done on how lncRNAs modulate downstream
targets, very little is presented in terms of information about
upstream (epi)genetic regulations. The biological complexity and
cell specificity of lncRNA transcriptional regulation have not been
fully considered by most of the existing methods. Sun et al. first
integrated TF–lncRNA, miRNA–lncRNA, and lncRNA–PCG inter-
actions into a cell-specific biological network, and implemented
the FIS scoring system to accurately recover functional lncRNAs
of the mouse skeletal muscle cells. Their results highlighted the
necessity of these specific regulatory elements for functional
lncRNA identification and further introduced a novel idea for
the relevant algorithms [29]. Notably, lncRNAs are regulated by a
variety of regulatory elements beyond the mentioned TF–lncRNA,
miRNA–lncRNA, and lncRNA–PCG relationships. These elements,
such as histone modification, typical enhancers (TEs), SEs, and
SNPs, also play crucial roles in the transcriptional regulation of
lncRNAs, and their integration is essential for gaining compre-
hensive insights into lncRNA regulation and function [17, 19–21].
Therefore, there is an urgent need to integrate the (epi)genetic
and post-transcriptional regulatory data and construct lncRNA-
specific multi-omic biological networks for more comprehensive
identification of functional lncRNAs. Despite the diversity of cell
types and experimental conditions that make data integration
challenging, we are convinced that such arduous efforts can drive
research on the functions of lncRNAs, and provide more reliable
and comprehensive conditions for analyzing and predicting func-
tional lncRNAs.

Here, we develop a computational framework based on
machine learning, FunlncModel, to improve predictions of
functional lncRNAs by integrating a large number of (epi)genetic
features and functional genomic features from their upstream/
downstream multi-omic regulatory networks. Based on the multi-
omic networks, we further mined three categories of features
as input to the FunlncModel that are likely to influence the
critical regulatory roles of lncRNAs, surpassing existing methods
in terms of quantity and biological significance. Finally, the
random forest learning algorithm was utilized to implement the

classification models (the “HESC” model and “Combiner” model)
for predicting functional lncRNAs in diverse cellular contexts.
Moreover, we determine the optimal set of functional lncRNAs
based on random permutations as high-confidence functional
lncRNAs and further perform a thorough investigation of their
regulatory mechanisms.

Method
Constructing (epi)genetic regulatory network of
lncRNAs
FunlncModel predicted functional lncRNAs based on random for-
est machine learning model training on large-scale multi-omic
features generated from comprehensive lncRNA upstream/down-
stream regulatory network. To construct the FunlncModel model,
we collected multiple types of (epi)genetic information, includ-
ing TFs, histone modifications, TEs, SEs, chromatin accessibility
regions, SNPs, and methylation sites. We used this information to
construct the upstream (epi)genetic regulatory network of lncR-
NAs by integrating multiple biosamples and regulatory relation-
ships of the specific cellular contexts (Fig. S1 green boxes, Table S2,
Supplementary Note 1).

Establishing post-transcriptional regulatory
network
The lncRNA-target genes were collected from LncRNA2Target
v2.0 [30], and genes undergoing significant changes in expres-
sion after being knocked down or overexpressing a lncRNA were
considered to be the targets of the given lncRNA. The associated
miRNAs were obtained from starBase v2.0 [31] and LncACTdb 2.0
[32]. In addition, we collected the lncRNA–protein interactions
from starBase v2.0 [31] and EuRBPDB [33] (Fig. 1A middle panel,
Supplementary Note 1).

Network integration and construction of the
FunlncModel model
Network integration. To capture more comprehensive regulatory
relationships and ensure the connectivity of the network, we
collected 3D chromatin interactions (e.g. ChIA-PET 3C, 4C, 5C, and
Hi-C) from 4DGenome [34], Oncobase [35], 3D Genome Browser
[36], and NCBI [37] (Fig. 1A and Table S1). After incorporating the
relationships of 3D chromatin interactions into the (epi)genetic
regulatory network mentioned above, we further combined the
post-transcriptional regulatory networks and the (epi)genetic
regulatory network to create a comprehensive multi-omic
network of lncRNAs in specific cellular contexts. The final
extensive multi-omic regulatory networks were composed by
12 182 lncRNAs and their associated >10 types of regulatory
factors, which provided a comprehensive view for the regulatory
landscape of lncRNAs. Specifically, the hESC regulatory network
contained 17 012 441 edges; the breast cancer regulatory network
encompassed 6 795 331 edges; the colon cancer regulatory
network contained 4 693 192 edges; the lung cancer regulatory
network included 9 576 710 edges. These regulatory edges
involved chromatin interactions, distance, targeted regulation,
and expression correlation, capturing the complexity across
diverse biological contexts.

Generating multi-omic feature sets. According to the regu-
latory specificities of the lncRNAs and the topological proper-
ties of the network, we mined 57 features for unraveling the
complex mechanisms underlying lncRNA-mediated regulation,
including outdegree and indegree in the network, and the signal
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Figure 1. The overall workflow of the construction of model and the identification of functional lncRNAs. The pipeline for HCFun_lncs identification
involved four steps. (A) The multi-omic network was established by integrating (epi)genetic and post-transcriptional regulatory networks. (B) Genomic
features generated by the multi-omic network for model construction. (C) Flowchart for the HESC and combiner model construction based on different
training datasets. (D) Fun_lncs and Non_Fun_lncs were further divided by prediction labels of the abovementioned classifier, where the labels were
generated based on probabilities and a threshold (usually 0.5). Next, high-confidence functional lncRNAs (HCFun_lncs) were distinguished from typical
functional lncRNAs (Fun_lncs) using the random permutation score.
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Table 1. The feature descriptions

Feature category Subcategory Feature Number Description

Feature C1 Transcription factor f3, f4, f5 3 The amount of TFs (ChIP-seq and
motif)

Feature C1 Histone modification f8 1 The type of transcriptional
activation histone modifications

Feature C1 Methylation f6, f7 2 Methylation sit count and
normalized signal strength

Feature C1 SNP f1, f2 2 RiskSNP and commonSNP sit
Feature C2 Super-enhancer f12−15, f26, f31−33, f41, f46−48 12 SE-related features, including the

ChIP-seq signal value and
normalized rank (manner: ROSE
and chromatin interaction)

Feature C2 Enhancer f16−22, f25, f27−30, f34−36, f40, f43−45,
f49−51

23 TE-related features, including the
normalized signal value and rank
(manner: ROSE and chromatin
interaction)

Feature C2 Chromatin accessibility f9−11, f23, f37−39, f52−54 10 The quantity of chromatin
accessibility regions (manner:
ROSE and chromatin interaction)

Feature C2 3D chromatin interaction f24 1 The 3D chromatin interaction
frequency

Feature C3 mRNA, miRNA f55, f56 2 The associated mRNA and miRNA
amount

Feature C3 Protein f57 1 The number of associated proteins

According to the specific transcriptional regulatory mechanism of the lncRNAs, we mined 57 features from their upstream/downstream transcriptional
regulatory networks and grouped them into three major types: (i) Feature C1, those associated with the upstream proximal regulation of lncRNAs; (ii) Feature
C2, those associated with the upstream distant regulation of lncRNAs; and (iii) Feature C3, those associated with the downstream regulation of lncRNAs. For
example,f3 represents the amount of TFs, whose ChIP-seq peak overlapped with the lncRNA promoter region (TF_ChIPnum); f18 represents the normalized signal
value of enhancers associated with lncRNAs, their regulatory relationships were identified by ROSE python script (Dis_TEsignal); f7 represents the normalized
methylation signal strength of lncRNA promoter region (MS) (see Table S1; Supplementary Note 1).

strength and rank of the neighbor nodes (Fig. 1B). These fea-
tures could also be categorized into three major types based
on the lncRNA-specific transcriptional regulation mechanisms,
including the upstream proximal, the upstream distal, and the
downstream regulation (Supplementary Note 2, Table 1, Table S1;
see Results). For instance, the number of lncRNA-associated TFs
was calculated as an upstream proximal feature, as follows:

TFChIPnum,j =
N∑

n=1

TFn,j (1)

where TF_ChIPnum,j represents the number of TFs associated with
lncRNAj, and the regulatory relationship between the nth TF and
the jth lncRNA is denoted by TFn,j ∈ {1, 0}.

The HESC model establishment and application. To screen
functional lncRNAs in hESCs, we first collected multi-omic
data of hESC-associated samples to generate the lncRNA
upstream/downstream transcriptional regulatory networks.
Then, we captured three categories of features from the multi-
omic networks by their hESC-specific transcriptional regulatory
mechanisms for the HESC model construction (Table 1, Table S1,
Supplementary Note 1–2). The collection of positive and negative
training datasets was critical for the accuracy of the predictive
model. We first collected 326 iPSC-related lncRNAs with functions
that impact cell growth, as screened by Liu et al. using the genome-
scale CRISPRi technique [38]. After alignment and filtering, a total
of 238 lncRNAs were included in the positive dataset (Table S13).
Since the absence of experimental evidence for nonfunctional
lncRNAs, as well as the fact that specific expression and activities
were hallmarks of functional lncRNAs, the unexpressed lncRNAs
were presumed to be incapable of functioning in this specific

state [29, 39, 40]. Therefore, we further analyzed single-cell RNA-
Seq data from Li et al. [41], which provided valuable insights into
the expression patterns of lncRNAs in hESCs and late blastocyst
cells. A total of 152 unexpressed lncRNAs in hESCs (Fragments Per
Kilobase per Million = 0) but expressed in late blastocyst cells were
defined as the negative dataset (Table S13). This strategy to choose
the negative dataset helped avoid the scenario of non-expression
caused by errors in the sequencing technology. By default, 80% of
the input positive and negative datasets were randomly extracted
for model training, while the remaining 20% were reserved for
testing in order to assess overall performance. Given that the
overlap of lncRNAs with similarly regulated between the training
set and the test set, the proposed prediction tasks may not
adequately measure the model’s generalization power. We thus
added the experiments involving data segmentation based on
lncRNA sequence similarity. Specifically, we obtained lncRNA
sequence from LNCipedia [42] and employed MMseqs2 [43] to
cluster lncRNAs based on lncRNA sequence similarity. We then
assigned these clusters to either the training set or the test
set, thus maintaining an 80/20% split. This approach ensures
that lncRNAs within the same cluster (likely to be similarly
regulated) are not split across the training and test datasets.
We further standardized and transformed the training dataset,
screened a subset of predictors that could be used to produce an
accurate model, and finally trained the random forest model
by using the open-source R package caret (Fig. 1C left panel,
Supplementary Note 3).

Furthermore, we processed the relevant datasets of the other
three cancer types (breast, colon, and lung cancer) to generate
the lncRNA multi-omic regulatory networks and construct fea-
ture matrix in the corresponding cellular contexts as input of
HESC model, respectively. To evaluate the HESC model’s capability

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data


FunlncModel: integrating multi-omic features to identify functional lncRNAs | 5

for generalization, we further collected cancer-related lncRNAs
(Table S13), functional lncRNAs involved in the growth of cancer
cells from Lnc2Cancer v2.0 [44], LncRNADisease v2.0 [45], LncR-
NAWiki [46], CRlncRNA [47], EVLncRNAs [48], and LncRNADisease
[49], as well as functional lncRNAs involved in the seven cancer
hallmarks (apoptosis, invasion, metastasis, migration, prognosis,
epithelial mesenchymal transition, and proliferation) from CRl-
ncRNA [47]. These lncRNAs with given functional labels were
utilized to report the classification performance of the HESC
model.

Random Permutation Score for identifying high-confidence
functional lncRNAs (HCFun_lncs). We preliminarily identi-
fied candidate functional lncRNAs (Fun_lncs) by using the
probabilities predicted by the model. To further sort these
Fun_lncs according to priority, we proposed the random per-
mutation strategy (Fig. 1D). Let the feature matrix be F =⎡
⎢⎢⎢⎢⎣

f1,1 f1,2 . . . f1,m

f2,1

...

f2,2

...
. . .

f2,m

...
fn,1 fn,2 . . . fn,m

⎤
⎥⎥⎥⎥⎦

, where fi,j represents the

value of feature j of the lncRNA i, n is the number of lncRNAs, and
m is the number of features. We first obtained the probabilities
of all unknown functional lncRNAs from the optimal hESC
model and then randomly permuted the feature matrix of
these lncRNAs for 1000 times. The random matrix k could be

written as

⎡
⎢⎢⎢⎢⎣

L1

L2

...
Ln

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

f2,1 f3,2 . . . f1,m

fn,1

...

f2,2

...
. . .

f4,m

...
f1,1 f4,2 . . . fn,m

⎤
⎥⎥⎥⎥⎦

.

For lncRNA i, we obtained the vector of random probability
values ri = [ri,1, ri,2, ri,3 · · · ri,k · · · ri,1000], where ri,k represents the
probability of the lncRNA i as calculated from the random matrix
k. Using these random values, we calculated the score of each
lncRNA. Finally, lncRNAs with a score >2 were considered to be
HCFun_lncs, as follows:

Score
(
lnc i

) = −log10

∑1000
k=1 I

(
Probability valuei < ri,k

)

1000 (2)

The Random Permutation Score was designed to further cap-
ture high-confidence functional lncRNAs with high prediction
probability values, effectively capturing the most reliable candi-
dates from a broader set of predicted functional lncRNAs. Accord-
ing to the Random Permutation Score, HCFun_lncs with high
prediction probability values and confidence levels were distin-
guished from typical functional lncRNAs.

Results
Performance evaluation of the HESC model of
FunlncModel
Using these multi-omic regulatory features from the lncRNA
upstream/downstream regulatory network and the RF machine
learning algorithm, we trained and constructed the HESC model
of FunlncModel to prioritize functional lncRNAs in HESC (see
Methods, Supplementary Note 1–3). One-fifth of all positive and
negative sets were considered by default as the independent
test set for the HESC model to evaluate model performance
and 10-fold cross-validation was used on the remaining sets to
determine the optimal parameters of the model. FunlncModel
achieved AUROC of 0.95 and AUPRC of 0.97 on the independent

test sets, thus delivering excellent classification performance of
our model for uncovering known Fun_lncs (Fig. 2A–B, Table 2,
Fig. S2A, Supplementary Note 5). To further test the robustness
of FunlncModel against sequence similarity biases, we also added
data segmentation experiments based on lncRNA sequence simi-
larity (as detailed in the Methods section). As shown in Table S10
and Fig. S8A–B, FunlncModel retains strong predictive power,
demonstrating high accuracy and robustness even with reduced
sequence similarity between training and test sets. Next, we
compared FunlncModel with the existing functional lncRNA iden-
tification approaches including LncFunNet and co-expression (see
Supplementary Note 11) [29, 50]. It was apparent that Funlnc-
Model outperformed these approaches in terms of sensitivity
and specificity, achieving a 10% higher AUROC and 7% higher
AUPRC than LncFunNet, as well as a 26% higher AUROC and
20% higher AUPRC than co-expression (Fig. 2A–B). The baseline
control test (random permutation of known labels) further veri-
fied the error-free calculation of the proposed model (Fig. 2A–B).
We also developed models based on all selected features, 10
different random selections of N features (where N = 5, 10, . . . ,
max_num_features), and employing various popular supervised
learning approaches, including Generalized Linear Model (GLM),
Model Averaged Neural Network (avNNet), Multivariate Adaptive
Regression Spline [37], weighted Subspace Random Forest (wsRF),
and CART (Fig. S9B, Fig. 2C–D). As shown in Fig. 2C–D, the accuracy
of all methods improved as the number of features increased,
which provided a more comprehensive insight into the impact of
feature variability on model accuracy. Notably, the RF approach
significantly outperformed the other approaches when number of
features was >5, indicating its superior suitability for predicting
functional lncRNAs in terms of both classification accuracy and
model interpretability.

To evaluate the robustness of FunlncModel to noise, we ran-
domly added noise at rates of 5%, 10%, and 15% to the train
and test sets, and conducted 100 iterations of random noise
analysis. As shown in Fig. 2E, there was only a slight decline in
accuracy (mean AUROC/PRC of train sets: 0.92/0.95, 0.89/0.92, and
0.81/0.87; mean AUROC/PRC of test sets: 0.94/0.94, 0.89/0.89, and
0.84/0.83), thus revealing the insensitivity of our model to noise.
We also observed a drop in accuracy as the negative data were
replaced (Fig. S2B).

Among the results, some known functional lncRNAs were suc-
cessfully predicted. For instance, GAS5 (as a Fun_lnc with a prob-
ability of 0.814) has been reported to promote and control hESC
self-renewal [51]. Meanwhile, we identified a known functional
lncRNA ESRG (a known ESC-related lncRNA) as Fun_lnc [52].
Another functional lncRNA, NEAT1, was also identified as Fun_lnc
(with a probability of 0.858), which was confirmed as a protein-
binding scaffold to regulate the fates of Bone marrow mesenchy-
mal stromal cells (BMSCs) by maintaining pluripotency [53]. Addi-
tionally, we found that FunlncModel successfully identified most
of the known lncRNAs from Ref [54] (Table S15), which influ-
ence the states of stem cells. We also displayed which lncRNAs
were annotated by LNCipedia [42]. Taken together, these results
demonstrated that FunlncModel, as a reliability prediction model,
has the powerful ability to recover well-studied hESC-specific
functional lncRNAs.

To verify whether the integration of multi-omic features was
necessary, we first quantified their contributions (odds ratio and
relative risk) for FunlncModel classification outcome (Fig. S2D–E,
Table 1). The TEs, histone modifications, and TFs made more
prominent contributions to the model among these features,
which was consistent with their transcriptional activation-related
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Figure 2. Evaluation of the effectiveness of the HESC model of FunlncModel based on functional lncRNAs. (A–B) The ROC and PRC curves of FunlncModel,
the baseline control test (random permutation of known labels), and other two existing approaches to identify functional lncRNAs. (C–D) The line chart
showed AUROC and AUPRC performance indicators of multiple machine learning methods, where the models were constructed based on 10 different
random selections of N features (where N = 5, 10, . . . , max_num_features). (E) The changes in classification performance after the addition of noise. (F)
A scatter diagram representing changes in the accuracy of the model when a certain type of feature was removed. (G) The importance scores of features
generated based on MDG values of random forest.

properties. Correspondingly, the Fun_lncs did show significantly
higher than Non_Fun_lncs on most of the features, especially
those related to transcriptional activation, implying their stronger
transcriptional activities (Fig. S2F, Table 1; two-sided Wilcoxon
rank-sum test). We further collected files of the H3K4me3 and
H3K27ac signals from ENCODE [55], and utilized deepTools to
obtain a high-resolution view of their transcriptional landscape
[56] (Fig. S2G). Higher transcriptional activities were observed in
the promoter regions of the Fun_lnc group, hinting at its potential
to perform important functions. In addition, its correctness
was once again demonstrated by the significant differences
in feature values between the positive and negative groups
in the training sets (Fig. S2H; two-sided Wilcoxon rank-sum
test).

We further measured the changes in precision and recall by
removing each category of features and found that the absence
of any category resulted in a decrease in the classification accu-
racy (Fig. 2F, Table 1, Supplementary Note 2). Meanwhile, these
features with more obvious changes tended to generate higher
importance scores of the RF-based approach (Fig. 2G and Fig. S2C,

Table 1; see Supplementary Note 3). For instance, the histone
modification feature, as one of the top-ranked features in terms
of importance score, demonstrated the most significant impact
on classification accuracy. This impact may be attributed to their
irreplaceable regulatory roles in maintaining the pluripotency of
ESCs and determining cell fate [57, 58]. The TF-related features
reflected a similar trend; especially scores of TF-related features
identified by ChIP-seq data (TF_ChIPnum and Core_TF_ChIPnum)
were higher than those of the TF-related motif features, where
this was consistent with the advantage of the ChIP-seq in identi-
fying TF targets over motif-based strategy. These results suggested
that the upstream/downstream multi-omic features played indis-
pensable roles and as strong predictors for identifying functional
lncRNAs.

High-confidence functional lncRNAs performed
greater capabilities of transcriptional regulation
Machine learning–based predictions are often dense. We thus per-
formed the random permutation strategy to rank and prioritize
the Fun_lncs. The details of the permutations are described in

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
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Table 2. The performance values of HESC and combiner model in 10-fold cross-validation experiments

Performance values HESC model Combined model

Validation
set

Remaining
test set

LUAD test
set

BRCA test
set

COAD test
set

Remaining test set

AUROC Fold1 0.996 0.95 0.83 0.92 0.89 0.95
Fold2 0.87 0.93 0.80 0.90 0.85 0.97
Fold3 0.86 0.94 0.81 0.92 0.88 0.96
Fold4 0.77 0.93 0.80 0.91 0.87 0.95
Fold5 0.87 0.94 0.82 0.92 0.87 0.96
Fold6 0.79 0.93 0.81 0.91 0.87 0.96
Fold7 0.87 0.93 0.82 0.91 0.88 0.96
Fold8 0.88 0.93 0.81 0.91 0.87 0.96
Fold9 0.92 0.94 0.83 0.91 0.89 0.96
Fold10 0.93 0.93 0.73 0.85 0.77 0.96

AUPRC Fold1 0.997 0.97 0.53 0.70 0.64 0.93
Fold2 0.93 0.96 0.51 0.62 0.56 0.94
Fold3 0.92 0.96 0.47 0.69 0.61 0.93
Fold4 0.75 0.96 0.49 0.65 0.70 0.92
Fold5 0.87 0.96 0.51 0.69 0.64 0.93
Fold6 0.81 0.96 0.55 0.63 0.68 0.93
Fold7 0.93 0.96 0.49 0.68 0.60 0.93
Fold8 0.92 0.96 0.48 0.68 0.58 0.93
Fold9 0.95 0.96 0.50 0.69 0.62 0.93
Fold10 0.96 0.95 0.37 0.50 0.38 0.92

the Methods. According to the random permutation test for HESC
model, we obtained high-confidence functional lncRNAs with
high prediction probability values from the numerous functional
lncRNAs (HCFun_lncs; with score >2) (Table S14). As shown in
Fig. S9C–D, FunlncModel also exhibited outstanding classification
performance utilizing the Random Permutation Score. We
investigated whether HCFun_lncs conducted even more specific
activities and regulatory capabilities. Indeed, we observed clear
differences in the mean values of features among HCFun_lncs,
Fun_lncs, and Non_Fun_lncs groups (Fig. 3A and Fig. S3A). Most of
the HCFun_lncs were marked by more histone modifications than
the other two categories of lncRNAs (Fig. 3B). Among these tran-
scriptional activation histone modifications, H3K9ac had been
reported as a key marker for the initiation of ESC pluripotency and
associated with gene transcription activation. As shown in Fig. 3B,
HCFun_lncs did exhibit a higher H3K9ac signal in their promoter
regions, which was consistent with the activity trend of important
genes (from signaling pathways regulating pluripotency of stem
cells; hsa04550). HCFun_lncs were also regulated by more TFs
than the other two categories of lncRNAs, where this conformed
to their higher transcriptional activities (Fig. 3C). These TFs of
HCFun_lncs were usually significantly enriched in hESC-related
GO terms. For instance, TERC, a lncRNA with a high ranking in
our HESC model, was regulated by TFs related to maintaining
the population of stem cells (Fig. 3C). Upregulation of TERC
was a key feature influencing the state of pluripotency of iPS
cells, and its regulatory region was occupied by the core TFs,
including SOX2, NANOG, and OCT4 [59]. Consistently with this,
we found that most of HCFun_lncs had highly enriched core TFs
(SOX2, MYC, NANOG, and OCT4), which have been extensively
studied and demonstrated to play crucial roles in maintaining
pluripotency, regulating gene expression, and modulating sig-
naling pathways [17] (Fig. 3D). The comparison results described
that HCFun_lncs were also regulated by more DNA regulatory
elements, such as the TEs and accessible chromatin regions
(Fig. 3E–G;

two-sided Wilcoxon rank-sum test). Furthermore, there are sev-
eral common criteria for evaluating the importance of lncRNAs,
such as sequence conservation and specific expression [60,
61]. As expected, HCFun_lncs did demonstrate higher sequence
conservation during biological evolution (see Supplementary Note 8)
and higher expression levels than the other categories of
lncRNAs (Fig. 3H–I). These results indicated the HCFun_lncs were
significantly superior to other lncRNAs in terms of epigenetic
modification, sequence conservation, and specific expression, as
well as the potential capabilities of TFs, histone modifications,
and other (epi)genetic features for function explanations of
HCFun_lncs.

We performed pathway enrichment analysis by using TFs occu-
pying in lncRNA promoter region to further explore their biolog-
ical functions [62]. HCFun_lncs and Fun_lncs were significantly
enriched in several crucial pathways that were extensively stud-
ied, including the pluripotency of stem cells (hsa04550), TGF-beta
(hsa04350), Wnt (hsa04310), and the MAPK signaling pathway
(hsa04010) [63–68]. Wnt signaling pathway (hsa04310), as one
of the well-known pathways, was involved in the regulation of
stem cell self-renewal and differentiation. Activation of the Wnt
pathway promoted self-renewal, while inhibition of this path-
way induced differentiation of hESCs [68]. HCFun_lncs produced
a more comprehensive distribution of enrichment in the four
pathways than Fun_lncs and Non_Fun_lncs, with over 80% of
them significantly enriched in these crucial pathways (Fig. 4A–B).
For instance, TERC-associated TFs were significantly enriched in
the pluripotency of stem cell signaling pathway (hsa04550). We
thus drew the detailed regulatory pattern that demonstrated how
the signaling pathway directed its terminal TFs (SOX2, OCT4,
and NANOG) to regulate and control the TERC by binding to
its promoter region, thereby maintaining the pluripotency and
self-renewal of hESC (Fig. 4B). Collectively, the HCFun_lncs were
typically regulated by more specific functional elements and
involved in critical biological processes, which could provide valu-
able insights into the complex regulatory networks and specific

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
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Figure 3. Analysis of the high-confidence functional lncRNAs in HESC model. (A) The line chart exhibited the differences in the mean values of the
features of HCFun_lncs, Fun_lncs, and other lncRNAs for these features with importance scores >2, where the mean values have been standardized. (B)
The histogram of the distributions of frequencies of three categories of lncRNAs with different amounts of histone modification–based enrichment. The
right side visualized the enrichment of H3K9ac in the promoter region of the three categories of lncRNAs and the genes of the hsa04550 pathway (the
signaling pathway that regulates the pluripotency of stem cells). (C) The number of TFs occupied in promoter regions of three categories of lncRNAs,
as well as GO terms enrichment analysis result of TERC-associated TFs. (D) Histogram displays the distribution of the three categories of lncRNAs
occupied by hESC-related core TFs. (E) The normalized ChIP-seq signal values of TEs of regulating three categories of lncRNAs, where their regulatory
relationships were identified by ROSE. (F) The number of ATAC-seq regions regulating three categories of lncRNAs, where their regulatory relationships
were identified by chromatin 3D interaction strategy. (G) The conservation scores of three categories of lncRNAs. (H) The expression levels of three
categories of lncRNAs in hESC samples. ∗P < .05; ∗∗P < .001; ∗∗∗P < .0001; two-sided Wilcoxon rank-sum test.

mechanisms underlying the maintenance of the pluripotent state
of hESCs.

Investigations of high-confidence functional
lncRNAs in hESC differentiation processes
To further dissect the dynamic changes in the transcriptional
regulation of HCFun_lncs during processes of differentiation of
the hESCs, we calculated coefficients of correlation of expressions
between each evaluated lncRNA, and important genes related
to the pluripotency and self-renewal of hESCs (from signaling
pathways regulating pluripotency of stem cells; hsa04550) (see
Supplementary Note 6). The Gene Set Enrichment Analysis (GSEA)
analysis results showed that HCFun_lncs exhibited a stronger
expression correlation with the important genes than the random
control group (Fig. 4C) [69]. Moreover, HCFun_lncs were more
strongly correlated with positive lncRNAs (from the positive
training sets) (Fig. 5A and Fig. S3B). We found that HCFun_lncs
not only exhibited high H3K4me3 activities in their promoter
regions, which reflected the transcription of active genes (Fig. 5B),
but also showed significant changes in signals among hESC and
hESC-derived cardiomyocyte cellular contexts, suggesting the
strong dynamic changes in and the ESC-specificity of HCFun_lncs
(Fig. 5B). HCFun_lncs possessed much stronger expression
correlation with positive lncRNAs/genes (from hsa04550 pathway)
among all the evaluated lncRNAs, and more similar regulation
patterns and trend of variations in activity to those of important
genes during differentiation processes.

Notably, RP4-792G4.2 (FOXD3 antisense RNA 1), a known func-
tional lncRNA, was confirmed to influence iPSCs cell growth
rates [38]. The promoter region of RP4-792G4.2 was enriched with
higher active signals (H3K27ac, H3K4me3, and H3K4me1) and
lower inhibiting signals (H3K27me3) in hESCs compared with
cardiomyocyte (see Supplementary Note 10, Fig. 5C). We also
observed similar signal enrichment in TERC promoter region,
whose functions in hESCs were already described above (Fig. 5D).
Furthermore, we found potential novel functional lncRNAs in
HCFun_lncs. For example, a novel lncRNA RP11-7O11.3 [42, 70]
(approved symbol: LINC02918) was ranked high by FunlncModel.
RP11-7O11.3-associated TFs were significantly enriched in critical
hESC-associated pathways (Fig. 4B) and showed similar signal
enrichment for histone modification to that of the known func-
tional lncRNA RP4-792G4.2 (Fig. 5E, Fig. S3C–D), suggesting the
specific transcription activity and significant potential of RP11-
7O11.3 as an hESC-related functional lncRNA. Taken together,
this shows that FunlncModel not only accurately recovered most
known functional lncRNAs, but also contributed to the discovery
of potential novel functional lncRNAs in hESCs.

Evaluating the model’s generalization ability
using three cancer sets and seven cancer
hallmarks
FunlncModel exhibited excellent classification performance in
terms of predicting and classifying functional lncRNAs in hESCs.
Given that many studies have revealed the crucial roles of

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
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Figure 4. Function analysis of the high-confidence functional lncRNAs. (A) The distribution for the enrichment of important pathways. (B) Detailed
information on the enrichment of each high-confidence functional lncRNAs for the four hESC-related pathways, where the colors represent the
significance of the enrichment and the sizes represent their number of overlapping genes. (C) Flowchart of processing and the results of analysis
of HCFun_lncs based on correlations of expressions with important genes of the hsa04550 pathway (signaling pathway regulating the pluripotency of
stem cells), as well as the result of a random control group. Their enrichment scores and normalized enrichment scores have been marked. The right
side showed the results of the random control group.

(epi)genetic elements for lncRNAs in the context of cancer [21–
23] and the comprehensive evidence for the existence of cancer-
related lncRNAs, we therefore analyzed several cancer samples
with well-rounded data, including breast cancer, colon cancer, and
lung cancer (see Methods). Cancer-specific feature matrixes were
used as independent test sets to objectively evaluate whether
the HESC model could be adopted in a diversity of cellular
contexts and tasks of function prediction (see Methods). We first
calculated the AUROC and AUPRC values on the independent test
sets containing data on the three types of cancer, respectively
(Fig. 6A, Fig. S10A, Fig. S8C–D, Tables S10–11). Then, we tested
the power of FunlncModel to predict known functional lncRNAs
involved in the growth of cancer cells and seven hallmarks of
cancer (apoptosis, invasion, metastasis, migration, prognosis,
EMT, and proliferation) (Fig. 6B–I, Fig. S10B–I). We tested up
to 27 cancer-related functional prediction tasks and observed
promising predictive performance, as all AUROC values were >0.8
(mean: 0.908; SD: 0.044), which was much higher than that of the
control group (random permutation of the labels) (Fig. 6B–I; see
Methods, Supplementary Note 5). Compared to established tools
for predicting disease-related lncRNAs (CapsNet-LDA [71] and
LncDisease [72]), FunlncModel also achieved higher classification
accuracy, specifically in terms of cancer and cancer cell growth

(Table S11). Moreover, the identified HCFun_lncs exhibited more
TFs and histone modification enrichment and were regulated by
more DNA functional elements than the other two categories of
lncRNAs (Fig. S4A–H; two-sided Wilcoxon rank-sum test). These
HCFun_lncs also possessed higher expression levels, suggesting
their stronger transcription activities (Fig. S4I; two-sided Wilcoxon
rank-sum test) [73]. An analysis of the enrichment of pathways
of TFs occupying the promoter region of the lncRNAs [62] showed
that the distribution of enrichment of important pathways for a
diversity of cancers was more comprehensive in the HCFun_lncs
group (Fig. S4J). In summary, the above analyses illustrated that
our proposed model could be applied to multiple different types of
biological systems and tasks of function prediction, and reliably
identify the relevant functional lncRNAs.

The combiner model of FunlncModel can
improve accuracy of identification of functional
lncRNAs in diverse cellular contexts
As described above, the HESC model demonstrated outstanding
performance in cancer cellular contexts but did not incorporate
specific cancer-related information. Assuming that the incorpora-
tion of cancer information could more effectively capture cancer-
specific features and enhance the generalization performance,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
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Figure 5. Analysis of high-confidence functional lncRNAs in hESCs and cardiomyocytes. (A) The pie charts show the percentage distribution of lncRNAs
that were significantly correlated with at least 10 positive lncRNAs or at least one gene of the hsa04550 pathway in the three categories. The heatmap
reflects the correlation of expressions between HCFun_lncs and important genes of the hsa04550 pathway (the signaling pathway that regulates the
pluripotency of stem cells) and the top-10 positive lncRNA sets; ∗P < .05. (B) The enrichment signal of H3K4me3 histone modifications in promoter
regions of important genes, and three categories of lncRNAs in the hESC samples and cardiomyocyte samples derived from them. (C–E) Integrative
Genomics Viewer (IGV) plots of diverse histone marks in lncRNA promoter regions (RP4-792G4.2, TERC, and RP11-7O11.3) in the hESC samples and
cardiomyocyte samples derived from them.

we thus developed the Combiner model to test this assumption,
which aimed to improve the accuracy of identifying cancer-
related functional lncRNAs. More cancer-related datasets were
incorporated to construct the multi-omic networks for diverse
cellular contexts and generate more cancer-specific features.
Besides, we add more known cancer-related functional lncRNAs
to the training set (see Methods; Supplementary Note 1–4,
Table 1, Table S1, and Table S16). As expected, the Combiner
model had AUROC/AUPRC of 0.97/0.94, higher than the HESC
model in terms of predicting cancer-related functional lncR-
NAs (Fig. 7A–B, Fig. S5A–B, Table 2). Compared with the other
machine learning methods, the RF approach once achieved
>1% higher classification accuracy (Fig. 7C). Subsequently, we
quantized the importance scores of each feature (Fig. S5C).
There were prominent distinctions in the three categories of
lncRNAs among different cellular contexts for features with
high importance scores, such as TFs, histone modifications, and
miRNAs (Fig. S5D–H; two-sided Wilcoxon rank-sum test).

Following the above, we identified functional lncRNAs with
high confidences (HCFun_lncs) in breast, colon, and lung cancers.
As shown in Figs. S5I and J, HCFun_lncs were involved in more
cancer phenotype and disease processes than the other two cat-
egories of lncRNAs (see Supplementary Note 9). The HCFun_lncs
of each cancer were more significantly enriched in cancer-related
lncRNAs from EVLncRNAs2 [74], which was a manually curated
database of experimentally validated functional lncRNAs (Fig. 7D,
Fig. S6A–C, Table S12). Importantly, these HCFun_lncs were sig-
nificantly enriched with lncRNAs that influenced the prognoses
of cancer patients, implying that many lncRNAs of HCFun_lncs
related to the genesis of tumors. For instance, the overexpressions
of HCG17, OP14-AS1, and LINC00638 led to poor prognosis of
cancer patient survival outcomes, respectively (Fig. 7E–G, Fig. S6D,
Table S12; see Methods, Supplementary Note 7). The gain- and
loss-of-function assay for LINC00638 confirmed its function in
regulating the proliferation, apoptosis, and invasion of non-small
cell lung cancer cells [75]. Tang et al. demonstrated that inhibiting

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data


FunlncModel: integrating multi-omic features to identify functional lncRNAs | 11

Figure 6. Evaluating the HESC model’s predictive ability on independent cancer test sets. (A) The ROC curves of known cancer-related lncRNA sets and
the control group. (B) The ROC curves of lncRNAs related to cancer cell growth and the control group. (C–I) The ROC curves of 7 cancer hallmark lncRNA
sets, including apoptosis, invasion, metastasis, migration, prognosis, EMT, and proliferation, and their control group.

COX10-AS1 significantly increased both early and late apoptosis
rates in cancer cells using cell apoptosis detection [76]. Further-
more, WAC-AS1’s functional role in breast invasive carcinoma
was validated through multiple experiments, including qRT-PCR,
lncRNA knockdown, CCK-8 assays, and terminal deoxynucleotidyl
transferase-mediated dUTP nick-end labeling (TUNEL) staining
[77]. These results highlighted precision and reliability of Funlnc-
Model in discovering promising novel lncRNAs.

Moreover, we tested the relationships between HCFun_lncs
and cancer-related drugs (lapatinib, topotecan, and irinotecan).
The GSEA analysis showed that HCFun_lncs were significantly
enriched in drug-related lncRNAs (Fig. 7H, P-value <2.2e−16; see
Methods, Supplementary Note 7). We found that a total of 99
lncRNAs appeared in at least two cancer types, and ∼74% of
them were confirmed as known cancer-related lncRNAs, such as
MAGI1-IT1, PTOV1-AS1, and DLEU2 (Fig. S7A) [74]. For the remain-
ing 26 HCFun_lncs, survival analysis result also revealed that their
expressions were significantly associated with survival (Fig. S7B;
log-rank test P-value = .0015). Most of these lncRNAs were

significantly correlated with survival in the case of at least
one cancer type (Fig. S7C) [78]. For instance, the known cancer-
related lncRNA THAP7-AS1 [79], WAC-AS1 [80], PRKAG2-AS1
[81], and SRRM2-AS1 [82] were significantly correlated with the
patient’s survival outcomes in LIHC, PRAD, and BRCA, respectively
(Fig. S7D–G).

Discussion
LncRNAs are critical to biological processes and diseases.
Nevertheless, only a few lncRNAs have been characterized,
and the functions of the vast majority remain unknown.
Discriminating functional lncRNAs from thousands of candidates
of multiple biological processes is still urgently required. Existing
algorithms for lncRNAs tend to reveal their functions in complex
diseases, such as LRLSLDA [24], SIMCLDA [25], LDAP [26], MFLDA
[27], and LDAPred [28]. Although the relevant research has
taken advantage of the strengths of computational methods to
integrate similarities, expressions, interaction relationships, and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae623#supplementary-data
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Figure 7. Analysis of the combiner model. (A–B) The ROC and PRC curves of FunlncModel and baseline control group. (C) The values of AUROC and
AUPRC of several machine learning methods. (D) The results of hypergeometric enrichment of three-group lncRNA sets with cancer-related lncRNAs of
EVLncRNAs2. The y-axis represents the −log10 (P-values of enrichment analyses). (E–G) The survival outcomes of HCG17, NOP14-AS1, and LINC00638
in BRCA, LUAD, and COAD, respectively. (H) Processing flow chart and the analysis results of HCFun_lncs based on correlations with a treatment drug,
where their enrichment scores and normalized enrichment scores have been marked.

information on topological structures into models, the tremen-
dous biological complexity of lncRNAs, such as their distinctive
(epi)genetic mechanisms and transcriptional regulatory patterns
in specific cells, has not been considered. In light of this, we
present FunlncModel, an algorithm to single out specific and
common functional lncRNAs in diverse cellular contexts by
integrating multiple (epi)genetic features and functional genomic
features from their upstream/downstream multi-omic regulatory
networks. Although integrating comprehensive (epi)genetic and
regulatory data is a challenging task, these (epi)genetic and
regulatory features carried out an excellent performance in model
prediction, highlighting their great potential and suggesting the
challenge task deserves study in depth. In summary, we have
provided a framework with high predictive power that can be
used in a variety of cellular contexts to shed in-depth light on the
biological mechanisms for Fun_lncs, thereby guiding functional
experiments.

Key Points

• We present a computational framework based on
machine learning, FunlncModel, to improve predictions
of functional lncRNAs by integrating a large number of

(epi)genetic features and functional genomic features
from their upstream/downstream multi-omic regulatory
networks.

• We mine nearly 60 features in three categories from
>2000 datasets across 11 data types, including transcrip-
tion factors, histone modifications, typical enhancers,
super-enhancers, methylation sites, and mRNAs.

• We apply FunlncModel on the hESC dataset and up to
27 cancer-related prediction tasks, achieving excellent
classification performance.
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Supplementary data is available at Briefings in Bioinformatics
online.
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