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Abstract
Background  Heart rate (HR) monitoring is a medical standard to provide information about a patient’s health 
status. In palliative care, relationship and social engagement are crucial therapeutic concepts. For fear of disrupting 
communication, social contact, and care, continuous HR monitoring is underutilised despite its potential to inform 
on symptom burden and therapeutic effects. This study investigates radar-based HR monitoring as an innovative and 
burden-free approach for palliative care patients, compares its accuracy with conventional ECG methods, and shows 
potential for therapeutic guidance.

Methods  A single-centre, comparative clinical trial was conducted with palliative care patients at the ward of the 
Department of Palliative Medicine of the University Hospital of Erlangen. The HR measurements obtained with 
radar were compared with Holter ECG (study arm I, overnight) and Task Force® Monitor (TFM)-based ECG validation 
recordings (study arm II, one hour). In addition, long-term radar measurements without validation were analysed in 
comparison with clinical health records (study arm III).

Results  Both validation methods showed correlation by scatter plot, modified Bland-Altman plot, and equivalence 
testing. N = 34 patients participated in study arm I. HR of 4,079 five-minute intervals was analysed. Radar 
measurements and ECG showed high agreement: difference of HRs was within ± 5 bpm in 3780 of 4079 (92.67%) 
and within ±13.4 bpm (± 1.96 times the SD of the mean) in 3979 (97.55%) intervals, respectively. In study arm II, n = 19 
patients participated. 57,048 heart beats were analysed. The HR difference was within ± 5 bpm for 53,583 out of 
57,048 beats (93.93%) and within ± 8.2 bpm ( ± 1.96 times the SD of the mean) in 55,439 beats (97.25%), respectively. 
Arm III showed HR changes extracted from radar data in correlation with symptoms and treatment.
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Introduction
Monitoring of heart rate (HR) from palpation to elec-
trocardiography (ECG) plays a crucial role in healthcare. 
It provides insight into the patients’ state of health. It 
reflects various aspects of health, from basic cardiovas-
cular function to cardiovascular and systemic diseases, 
and even complex reactions such as pain or anxiety are 
reflected in HR and the modulation of heartbeat [1]. 
Cardiac activity is closely linked to life and its cessation 
means death [2]. Due to this pivotal role, HR monitoring 
may impact relationship aspects of care, drawing atten-
tion to the mere biomedical perspective.

In end-of-life and palliative care (PC), relationship and 
social inclusion are key concepts in the therapeutic pro-
cess. Therefore, PC has traditionally focused more on the 
interpersonal domain and less on medical technology, 
like continuously monitoring of HR or other vital signs. 
In emergency medicine or intensive care constant obser-
vation is essential to immediately treat emergencies. 
Additionally, vital sign monitoring can deliver informa-
tion on state of health, life-time-prognosis, and symptom 
burden as well as state of well-being. In PC, this is not 
intended to initiate emergency measures, but to respond 
with symptom management, communication, and 
care. In cancer patients, cardiovascular parameters like 
ECG-derived HR and blood pressure are already used 
to monitor and detect physiological responses to pain 
[3]. Traditional methods, such as ECG, can be intrusive 
and potentially disruptive, which is contrary to the fun-
damental principles of PC that emphasize comfort, dig-
nity, and minimal disruption. Hence, monitoring in a PC 
setting would have to be carried out in a way that these 
aspects are not compromised.

In PC and medicine in general, there is currently no 
established option to record HR in an unobtrusive man-
ner. Various approaches have been made to obtain car-
diac vital signs in a contactless way, albeit not in a PC 
scenario. Good results were achieved by electro-optical 
approaches such as remote photoplethysmography [4], 
thermography, or infrared technologies [5, 6]. Neverthe-
less, there are major limitations: necessity of an unob-
structed line-of-sight onto the patients’ skin and lighting 
within a specific range. The necessity for line-of-sight 
restricts patients’ freedom or results in incomplete data 
collection. Privacy issues arise as people will be recorded 
in a video-like manner [7], which has legal implications 

and affects relationship and care, hindering implemen-
tation in PC. A promising alternative to monitor heart 
action is ballistocardiography, driven also by latest tech-
nological developments including the development of 
small and lightweight inertial measurement unit based 
sensors on the hardware side [7] and advanced machine 
learning-based data extraction algorithms on the soft-
ware side [8]. The limitations of ballistocardiography lie 
in its susceptibility to any movement in and around the 
bed that could lead to a distortion of the cardiac signal 
and the variety of movements that overlay the cardiac 
signal. Even though this monitoring technology is classi-
fied as contactless, the patient’s body must still touch the 
surface to which the ballistic sensors are attached.

An innovative alternative is radar-based monitoring. 
Radar (Radio Detection and Ranging) systems emit elec-
tromagnetic waves that are reflected by objects where the 
permittivity changes. Permittivity is a measure of how 
easily a material allows electric fields to pass through. For 
example, waves move from air through clothing and bed-
ding to be reflected on the surface of the body [9]. The 
reflected wave is then detected by the radar’s antenna. 
By overlaying the emitted and reflected waves, an inter-
ference pattern is created to compute the displacement 
between the radar antenna and the surface from which 
the waves were reflected. This approach, which is called 
interferometry, allows to record displacement in the 
magnitude from metres to micrometres, depending on 
the wavelength of the radar waves [10]. As cardiac sig-
nals, such as pulse waves and heart sounds, generate 
small movements in the micrometre range on the body 
surface, these displacements between body surface and 
radar antenna can be detected by the radar system along 
with all other types of movements [11]. As both the pulse 
wave and the heart sounds exhibit specific patterns, algo-
rithms can be developed that extract these specific pat-
terns from the comprehensive movement data recorded 
by the radar [12, 13], allowing to subsequently compute 
the HR from the extracted interbeat intervals (IBIs) [14, 
15]. The radar-based approach has various advantages: 
radar waves are able to penetrate objects of lower permit-
tivity, e.g., clothes, bedding, and mattresses, with almost 
no loss of signal amplitude and without requiring line-of-
sight [16]. This allows to place radar systems underneath 
the slatted frame of a patient bed, providing complete 
freedom of movement for the patient while ensuring 

Conclusion  Radar-based HR monitoring shows a high agreement in comparison with ECG-based HR monitoring and 
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fully realize this innovative approach in enhancing palliative care practices.
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that monitoring remains unobtrusive and unnoticed by 
patient, visitors, or personnel. Additionally, the tech-
nology is scalable to higher degrees of freedom, so that 
monitoring can take place in the whole room without any 
restrictions of movement to the patient [17]. The risk of 
electromagnetic interference between the radar-based 
system and existing medical devices in the ward environ-
ment is negligible due to the low transmission power of 
100 mW at maximum and the relatively high frequency of 
24 GHz, which leads to a low range of the signal. Further-
more, medical devices must be immune to interference 
from electromagnetic waves of much higher frequencies 
and field strengths than those reached by the radar sys-
tem used in this study, according to the IEC 60601-1-2 
standard.

Building on our previous work with radar-based vital 
parameter recording in healthy test subjects [9, 18], this 
paper presents the first feasibility exploration of a radar-
based approach to monitor HR in PC patients. To ensure 
the accuracy and reliability of the radar-based measure-
ments, we validated the data with a ground truth derived 
from gold standard methods. Additionally, we present 
real-life data on how radar-based cardiac monitoring may 
guide therapeutic decisions in a PC setting.

Methods
Study design and setting
This project was designed as a single-centre, compara-
tive clinical trial to compare radar-sensed HRs with 
HRs derived from the ECG gold standard recordings. 
The study has been registered in the central study regis-
ter of the Bavarian Cancer Research Center (BZKF) and 
can be accessed there under the acronym GUARDIAN 
[19]. Study duration was 20 months. Individuals willing 
to participate were able to choose between three study 
arms: study arm I, being measured by radar and Holter 
ECG overnight (medium-term validation); study arm II, 
being measured by radar and the CNSystems Task Force® 
Monitor (TFM) for one hour (short-term validation); and 
study arm III, participating in a long-term radar mea-
surement without gold standard validation from the time 
of study enrolment until discharge from the palliative 
ward or death. Participants could decide to take part in 
one or more study arms.

The aim of the individual study arms was to investi-
gate the concordance of radar-based and gold standard 
recordings of heart rate in a clinical real-world setting 
(arm I), to assess the radar signal characteristics in terms 
of robustness and concordance (arm II), and to assess the 
feasibility of employing radar-based HR monitoring to 
support symptom detection and guide therapeutic deci-
sions (arm III).

In this paper, we focus on the presentation of results of 
study arms I and II in terms of validation of radar-based 

cardiac monitoring and give an outlook on potential to 
guide care from study arm III.

Participants
Inclusion criteria were age over 18 years, a life-threaten-
ing illness requiring hospitalization and written consent 
from the patient themselves or their legal representative. 
Patients who had to be isolated due to an infectious dis-
ease and patients who were about to die were excluded 
from the study. Cardiac diseases and conditions did not a 
priori lead to an exclusion from enrolment.

Gender, age, height, and weight were extracted from 
the clinical health record (CHR) Soarian® Clinicals 
(Cerner Health Services, Inc., Version 4.5.200) for each 
patient.

Equipment for measurement
In all three study arms, commercially available contin-
uous-wave radar units (iSYS-4001, InnoSenT GmbH, 
Donnersdorf, Germany) operating within the 24-GHz 
industrial, scientific, and medical (ISM) frequency band 
as described by Michler et al. were used for radar mea-
surements [16]. For the conducted measurements four 
of these radar units were mounted next to each other 
on a metal bracket at a distance of about 18 cm between 
each other [16]. The radar modules were positioned 
underneath the head section of the slatted frame of the 
hospital bed, approximately at the level of the patients’ 
chests, and beneath the holes in the frame to ensure min-
imal signal loss (Fig. 1). All beds (n = 12) in the PC unit 
were equipped with radar systems as described above 
to ensure that the patient did not have to be moved or 
change beds if they consented. In the event of non-par-
ticipation, the radar module was not switched on.

For medium-term validation (study arm I), mobile 
3-channel Holter ECGs (TLC9803, Contec Medical 
Systems Co., Ltd were used, allowing continuous ECG 
recordings by five-minute intervals of mean HR for a 
maximum of 24 h.

For short-term validation (study arm II), the Task 
Force® Monitor (TFM) 3400i (CNSystems Medizintech-
nik AG, Graz, Austria) was used.

The TFM allows for recording ECG, impedance cardi-
ography (ICG), oscillometric, and non-invasive continu-
ous blood pressure, and features two external inputs. We 
recorded all signal types during our study, but present 
only ECG data. A three-lead ECG records electrical car-
diac activity. The TFM recorded raw ECG data for leads 
1 and 2 according to Einthoven’s triangle and computes 
lead 3 as well as augmented limb leads. ECG signal is dig-
itized at 1000 Hz with an accuracy of ± 5 µV. All data are 
sampled simultaneously and exported to Matlab propri-
etary files.
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Overnight measurement with mobile Holter ECG - study 
arm I
For ECG recording in study arm I, we used adhesive elec-
trodes for the chest wall leads V1, V3, and V5 accord-
ing to Wilson’s central terminal [20]. Additionally, we 
included a reference electrode (middle of the sternum) 
and a grounding electrode (right lower abdomen). The 
Holter ECG data provides mean HRs for time intervals of 
five minutes.

In order to ensure temporal consistency of radar and 
Holter ECG, the internal clocks of both systems were 
synchronized. Radar and Holter ECG measurements 
were started between 6 and 7 p.m. and stopped between 
7 and 10 a.m. on the next morning. During the mea-
surements, the patients were allowed to move, talk, and 
behave without constraints.

One-hour measurement with TFM – study arm II
We conducted one-hour measurements with radar and 
TFM, which are continuously synchronized by a ran-
dom synchronization sequence [11, 21]. This allowed to 
retrieve beat-wise synchronized datasets of the radar and 
TFM measurements.

For this purpose, the output channel of radar module 
D was used for the transfer of the radar microcontroller 
sequence to the TFM.

A priori sample size calculation
The a priori sample size calculation for the Bland-
Altman-Plot analysis was performed according to 
[22]. Based on a pilot study with healthy participants 
we assumed the standard deviation of the differences 
between measurements by the radar and the ECG to be 
4 bpm, while accepting a 95% confidence interval for the 

limits of agreement of 2.5 bpm. This results in a sample 
size of 30 patients.

The a priori sample size for the TOST was estimated 
using the R function sampleN.TOST of the R pack-
age PowerTOST [23]. We wanted to reach a power of 
(1-β) = 0.80, while accepting a type-I error probability of 
α = 0.05. The equivalence bounds were set to +/- 5 bpm, 
the standard deviation of the differences between the two 
measurements was again set to 4 bpm and the expected 
mean of the differences to 1  bpm as suggested by our 
pilot study. This resulted in a sample size of 28 patients.

Based on these two sample size estimations and the 
anticipation of dropouts and technical issues we aimed to 
include 35 patients in each study arms I and II.

The number of heart rate measurement pairs derived 
from radar and ECG for each study arm I and II was 
determined taking into account the constraints of ward 
routine, staff and technical resources and, most impor-
tantly, the potential burden of our study on our patients.

In study arm I, we decided to perform the measure-
ments overnight to ensure that the patients spent most 
of the time in bed with the radar mounted below the 
matrass, without restricting their daytime activities. 
In study arm II, we set the measurement time for each 
patient to one hour to save staff resources and limit 
patient burden.

Data processing
Raw data from the radar system were processed with a 
customized MATLAB script (Version R2020b, Math-
Works©, Natick, MA, USA) [11, 24, 25]. For study arms 
I and III, intervals were determined during which a per-
son was actually present. This is reflected by the presence 
value, which is calculated from the input voltage of the 

Fig. 1  (a) Radar system with four continuous-wave radar modules and ADC (Analog to Digital Converters) board. (b) Position of the radar modules un-
derneath the head section of the slatted frame (indicated in green). Source: Schellenberger et al. 2020 [11]
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reflected radio wave which assumes a value of 1 if the 
person was in bed, and 0 if the person was not [11]. For 
all study arms, we extracted the displacement data from 
the raw radar signals and applied a Butterworth filter 
filtered in a range from 16 to 80 Hz to obtain the radar 
heart sound signal. To identify the radar module with the 
best reliance, a Signal Quality Index (SQI) of the radar 
heart sound signal was calculated. The SQI contains the 
signal-to-noise-ratio (SNR) of the radar data as described 
in [24]. For each 60-second window of radar data, we 
select the radar module with the highest SQI to deter-
mine the HR of the corresponding five-minute interval 
[11, 24]. This is achieved by applying a hidden semi-Mar-
kov model (HSMM) algorithm presented in previous 
work [20] which detects the first (S1) and second (S2) 
heart sound in the displacement signal in order to iden-
tify heart beats. From the detected heart sounds, we 
computed the IBIs, defined as the time intervals between 
two consecutive S1. By averaging the IBIs over time, we 
obtained the mean HRs: for long term monitoring vali-
dation (study arm I) over five-minute intervals [25]; for 
assessment of the radar signal characteristics (robustness 
and concordance, study arm II) over ten heart beats; for 
outlook on the use of monitoring to support symptom 
detection (study arm III) over 30 heart beats.

The MATLAB script exports a Microsoft Excel (Micro-
soft® 365, Excel® version 2112) spreadsheet, which con-
tains the respective HR mean values.

Holter ECG - Study arm I, raw data were processed 
using the Software 3 Channels ECG Holter System_TF 
(OS) (V5.5.2.5, Contec Medical Systems Co., Ltd. 2019).

The mean IBI was calculated for each five-minute 
interval using the HRV analysis module of the software. 
Afterwards, we manually transferred the average IBI val-
ues to a Microsoft Excel spreadsheet (Microsoft® 365, 
Excel® Version 2112) with the corresponding time stamps 
and derived the mean HR.

TFM - Study arm II, synchronized radar raw data and 
TFM data were processed using a modified version of the 
customized MATLAB script described above.

First, the radar and TFM systems were synchronized 
by aligning the synchronization sequences from both 
systems. The SQIs of each radar module were calcu-
lated over a period of 3 s. The MATLAB script generated 
beat-to-beat synchronized radar and TFM data for each 
patient in an Excel file.

In sections of noisy ECG signals and sections where 
TFM R-peak detection failed, we manually annotated 
R-peaks in order to ensure sufficient data quality using 
the open source data labelling software Label Studio 
(Version 1.6.0) [26]. Since the algorithm for radar-based 
heartbeat detection is not trained for arrhythmias, we 
further annotated supraventricular (SVES) and ventricu-
lar extra systoles (VES), as well as other arrhythmias. Two 

physicians performed the annotations independently. 
Disagreements were discussed and consensus could be 
reached in all cases of disagreement. The results of the 
annotations were extracted and automatically added 
beat-wise to the Excel file of each patient with the beat-
to-beat synchronized radar and TFM data. We excluded 
the annotated data from analysis as noisy ECG signal sec-
tions led to loss of ground truth.

Additional data processing steps were performed with 
the programming language R (Version 4.3.0) [27] via the 
integrated development environment RStudio (Version 
2023.06.0 Build 421) [28]. For each beat, the radar mod-
ule with the best reliance in comparison with the ECG’s 
HR was chosen. Next, we determined the HR employing 
a rolling mean of 10 IBIs from radar and ECG separately. 
In cases of low SNR, the HSMM generated false positive 
heart sounds and/or did not detect heart sounds, thereby 
effectively doubling or halving the HR. These system-
atic errors were evaluated by calculating the difference 
between the rolling means of radar and ECG. When the 
difference was within ± 10% of the half or double of the 
mean HR of the ECG, the beat was excluded from the 
dataset of all patients.

Long-term radar measurements without gold standard – 
study arm III
In study arm III, radar data was processed analogously 
to study arm I with the difference that the radar mod-
ule with the highest SQI within a 30-second window 
was selected to determine the HR. A 30-second window 
was chosen in order to best reflect the dynamics of HR 
changes due to symptoms and/or medication on the one 
hand and the robustness of the HR analyses on the other.

In addition, a two-stage outlier detection has been 
performed aiming to eliminate genuine outliers while 
preserving valid HR data. First, global outliers were 
identified and removed based on predefined thresholds 
to remove physiologically impossible HR values. Subse-
quently, local outliers were excluded through an iterative 
process that analyses smaller segments of the HR data 
to detect inconsistencies within the context of each seg-
ment as clinically implausible data. We extracted infor-
mation on medication and patient-reported symptoms 
and symptom relief based on the CHR. This comprised 
symptoms, symptom severity, relief of symptoms based 
on MIDOS_2 assessment [29], medication, dosage, time, 
and route of administration.

Statistical analysis
For statistical analysis, we used SPSS Statistics (ver-
sion 28, IBM® 2021 and version 29, IBM® 2023) and the 
programming language R (Version 4.3.0) [27] via the 
integrated development environment RStudio (Version 
2023.06.0 Build 421) [28].
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Statistical analysis was carried out for the data from 
study arm I and II separately, but in the same manner.

As suggested by Müller and Büttner [30], we first car-
ried out a concordance analysis by performing the fol-
lowing steps: Plotting a square scatter diagram, plotting a 
modified Bland-Altman diagram, performing an equiva-
lence test.

For this, we first transferred the data of all patients 
from the Excel spreadsheet to SPSS. Afterwards, we plot-
ted the mean HRs of the radar (HRmean radar) against the 
mean HRs of the ECG (HRmean ECG), yielding a square 
scatter diagram.

In addition, we created a modified Bland-Altman plot 
as described in [31] with HRmean ECG on the x-axis and 
HRdiff = HRmean radar – HRmean ECG on the y-axis.

To test for the equivalence of both measurement 
methods, a two one-sided test (TOST) according to 
Schuirmann [32] was performed. Thus, HRmean radar and 
HRmean ECG values were transferred to RStudio. The upper 
and lower borders were set as + 5 beats per minute (bpm) 
and − 5  bpm, respectively. Differences that fall within 
these borders are considered as small enough to be clini-
cally irrelevant.

The hypothesis tested was
(HRmean radar – HRmean ECG) <= -5 bpm or (HRmean radar – 

HRmean ECG) > = 5 bpm.
If the hypothesis is accepted, there is no equivalence 

between the measurements. If the hypothesis is rejected, 
the alternative hypothesis

-5 bpm < (HRmean radar – HRmean ECG) < 5 bpm
is accepted and it is concluded that the measurements 

are equivalent.
For the type I error, a significance level of α = 0.05 was 

chosen.

Results
Overnight measurement with radar and Holter ECG 
validation - study arm I
Participants and data evaluation
N = 34 patients were included in study arm I. The data of 
four patients (all male) could not be evaluated due to one 
of the following reasons: failure of two out of three radar 
systems (n = 1 patient), no radar data recorded (n = 2), ter-
mination of recording after less than two hours (n = 1). 
Out of the 30 remaining patients, 21 (70%) were female. 
After exclusion of the non-evaluable cases the average 
age was 67,9 ± 13,3 years, with a minimum of 39 and a 
maximum of 95 years.

Statistical analysis
In total, 4592 five-minute intervals were generated. Of 
these, 513 intervals (12%) were excluded due to missing 
radar values, i.e. 4079 valid intervals were included in the 
analysis. Statistics of the radar and ECG average HRs are 
listed in Table 1.

Concordance analysis
Fig. 2 shows the scatter plot of all 4079 valid five-minute 
intervals. It shows that most of the data points are scat-
tered in close proximity to the angle bisector, which is 
also confirmed by the slope of the estimated regression 
line (y = 4.4 + 0.93 · x).

Similar trends can be seen in the modified Bland-Alt-
man plot, comparing the five-minutes HR intervals from 
radar and Holter ECG (Fig. 3).

The overall mean of the HR differences is -0.852 bpm. 
Furthermore, 3780 of 4079 values (92.67%) lie within ±
5  bpm for 3979 five-minutes intervals (97.55%) the HR 
difference was equal to or less than ±13.4 bpm (± 1.96 
times the SD of the mean).

Test for equivalence
The results of the test for equivalence of the data obtained 
by radar and Holter ECG measurement are summarized 
in Tables 2 and 3.

As shown in Table 3, the 90% confidence interval lies 
completely within the equivalence bounds for the raw 
data as well as for Hedges’s g(z). This means that the 
hypothesis (i.e. null equivalence) is rejected and the alter-
native hypothesis (i.e. equivalence) is accepted.

One-hour measurement with TFM-based validation – study 
arm II
Participants and data evaluation
N = 19 patients could be included in the study. The data 
of three patients could not be evaluated due to missing 
radar data. Furthermore, the TFM data of one patient 
was compromised and could not be evaluated.

After exclusion, the average age of the remaining 15 
patients was 62.9 ± 13.3 years, with a minimum of 38 and 
a maximum of 83 years, 9 were female.

After annotation of the TFM-derived ECG data we 
excluded all beats with annotated wrong beat detection, 
noisy signals, extra systoles, and other arrhythmias. The 
data of one patient showed a high number of extra systo-
les (1077 VES, six SVES and three other arrhythmias out 
of 5573 total recorded beats). Therefore, the IBIs of 2172 

Table 1  Descriptive statistics of the HR mean values of radar and ECG and the HR difference (HRmean radar – HRmean ECG) of the 4079 valid 
five-minute intervals (HR in bpm)

Minimum HR [bpm] Maximum HR [bpm] Mean HR [bpm] standard error standard deviation (σ) variance (R2)
Radar 39.5 134.5 79.5 0.251 16.1 258
ECG 47.3 157.9 80.4 0.244 15.6 244
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Fig. 3  Modified Bland-Altman plot of all 4079 valid five-minute intervals of the overnight measurements – comparison of the mean values of HRradar and 
HRECG; blue line: overall mean of the HR differences; red lines: (mean of all HR differences) ± 1.96 · σ

 

Fig. 2  Scatter plot of all 4079 valid five-minute intervals of the overnight measurements: Comparison of the mean HR values of the radar and the Holter 
ECG; dashed line: angle bisector, solid line: regression line
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beats were affected in total, which corresponds to 39.0% 
of all heart beats of this patient. In another participant, 
849 beats of 4142 beats were affected, which amounts 
to 20.5% of all heart beats. Therefore, the data of these 
patients were excluded from the dataset.

In total, our dataset of study arm II consists of 57,048 
heart beats from 13 patients which was further analysed.

Descriptive statistics
The descriptive statistics values of the heart beats deter-
mined by the TFM and the radar (in bpm) can be found 
in Table 4.

Concordance analysis
Fig. 4 shows the scatter plot of the rolling mean values 
of all 57,048 heart beats determined by the TFM and the 
radar during the one-hour measurements.

As shown in Fig. 4, most of the data points are scat-
tered in close proximity to the angle bisector. The regres-
sion line (y = 4.58 + 0.93 · x) is almost identical with the 
angle bisector.

The modified Bland-Altman plot of all 57,048 heart 
beats for the comparison between radar- and TFM-
derived HR data reveals a mean difference of -0.678 bpm 
(Fig. 5).

Table 2  Results of the TOST for overnight measurements
t df p

Raw t-test 7.98 4078 < 0.001
TOST lower 54.81 4078 < 0.001
TOST upper -38.86 4078 < 0.001

Table 3  Results of the TOST for overnight measurements: raw 
effect size

90% Confi-
dence Interval

Estimate Lower 
bound

Upper 
bound

Raw Equivalence bounds 
[bpm]

-5 5

90% confidence interval 0.852 0.676 1.027
Hedges’s 
g(z)

Equivalence bounds -0.733 0.733

90% confidence interval 0.125 0.099 0.151

Table 4  Descriptive statistics of the 57,048 h values (rolling 
mean) determined by the TFM and the radar (HR in bpm)

Minimum HR 
[bpm]

Maximum 
HR [bpm]

Mean HR 
[bpm]

stan-
dard 
devia-
tion (σ)

ECG (TFM) 53.4 129.2 79.0 15.8
Radar 47.6 140.7 78.3 15.3

Fig. 4  Scatter plot of the rolling mean values of all 57,048 heart beats of the one-hour measurements: Comparison of the HR values (rolling mean over 10 
beats) derived from the radar data (HR radar) and from the ECG data of the TFM (HR ECG); dashed line: angle bisector, solid line: regression line
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Furthermore, 53,583 out of 57,048 heart beats (93.93%) 
lie within ± 5 bpm and 55,439 values (97.18%) within ±
8.2 bpm (± 1.96 times the SD of the mean), respectively.

Besides, we identified four clusters of outliers that 
could be related to the data of four specific patients 
from our dataset of 13 patients (Fig. 5, red dashed boxes 
labelled with the patients’ artificial identifiers). These 
clusters of outliers occur at certain HRs between 55 and 
65  bpm, 80 to 90  bpm and 110 to 120  bpm. Although 

prominent in Fig. 5, these outliers represent less than 3% 
of the total of 57,048 values. However, since only four of 
13 patients account for the majority of these outliers, this 
finding indicates that the outliers are not evenly distrib-
uted across the data of all patients.

Test for equivalence
The results of the test for equivalence of the data obtained 
by radar and Holter ECG measurement are summarized 
in Tables 5 and 6.

As shown in Table 6, the 90% confidence interval lies 
completely within the equivalence bounds. This means 
that the hypothesis (i.e. null equivalence) is rejected and 
the alternative hypothesis (i.e. equivalence) is accepted.

Long-term radar measurements without validation - study 
arm III
The CHR-correlated HRs repeatedly revealed the poten-
tial of radar-based monitoring as shown by the follow-
ing examples. The following graphs exemplarily show 
the effect of drug administration on the HR for selected 
patients (Figs. 6, 7 and 8).

Fig. 6 displays the course of HR over time of a patient 
who reported pain and nausea as documented in the 
CHR. At 06:40  h the average HR of the patient starts 
to rise from 75  bpm by approximately 10  bpm, reach-
ing a peak well above 85  bpm. After administration of 

Table 5  Results of the TOST for one-hour measurements
t df p

raw t-test 38.91 57,047 < 0.001
TOST lower 325.74 57,047 < 0.001
TOST upper -247.93 57,047 < 0.001

Table 6  Results of the TOST for one-hour measurements: raw 
effect size and Hedges’s g(z)

Estimate 90% Confidence 
interval
Lower 
bound

Upper 
bound

Raw Equivalence bounds 
[bpm]

-5 5

90% confidence interval 0.678 0.650 0.707
Hedges’s 
g(z)

Equivalence bounds -1.2 1.2

90% confidence interval 0.163 0.156 0.170

Fig. 5  Modified Bland-Altman plot of all 57,048 heart beats of the one-hour measurements – comparison of the rolling mean values of HRradar and HRECG; 
blue line: overall mean of the HR differences; red lines: (mean of all HR differences) ± 1.96 · σ; red dashed box: outliers related to specific patients (VALp002, 
VALp004, VALp014 and VALp015), comprising less than 3% of all data points
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hydromorphone 1 mg, s.c. and Dimenhydrinat 62 mg, i.v. 
at 07:10 h the HR started to decrease reaching a plateau 
of approximately 75 bpm, which is in line with the onset 
and maximum of the expected drug effect. CHR reflected 
a relief of pain and nausea by a reduction of self-reported 
symptom severity on the MIDOS_2 scale by two points.

Fig. 7 shows the HR of a patient who reported dys-
pnoea. Hydromorphone 0.5  mg, s.c. was administered 
at 23:40 h. At that time, the patient’s radar-estimated HR 
was between 100 and 105 bpm. After drug administration 
the patient reported a positive effect on symptom burden 
as reflected in the CHR. The patient’s HR decreased by 5 
to 10 bpm to approx. 95 bpm.

Fig. 8 shows the HR of a patient who reported pain. 
Hydromorphone 0.5  mg, s.c. was administered at 
17:15  h. At that time, the patient’s radar-recorded HR 
was approximately 80  bpm. According to the CHR, the 
patient reported no relief of pain after administration. No 
decrease in HR after administration of the on-demand 
medication was observed. Instead, the HR increased.

Discussion
In our study, we present the first approach of a burden-
free radar-based approach to cardiac monitoring in PC 
patients and in a clinical PC environment. Our results 
show that radar-based HR monitoring is a feasible and 
useful approach in this setting. The radar-based system 

Fig. 7  The pink line indicates the time of administration of 0.5 mg hydromorphone (s.c.) for dyspnoea. Clinical health records (CHR) document relief of 
dyspnoea approx. 30 min after application of medication

 

Fig. 6  Course of radar-estimated HR over time for one patient; each data point represents the mean HR of a 30-seconds time interval; the pink line indi-
cates the time of administration of 1 mg hydromorphone (s.c.) and 62 mg of dimenhydrinate (i.v.). Clinical health records (CHR) document relief of pain 
and nausea 20 min after application of medication
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showed high accuracy compared to ECG, reflecting the 
possibilities and effectiveness of modern continuous car-
diac monitoring. The results show minimal average dif-
ferences and high agreement between the two methods.

For both overnight (study arm I) and one-hour (study 
arm II) measurements, we demonstrated a strong corre-
lation between the HR determined by the radar system 
and the gold standard, i.e. ECG. Through statistical anal-
ysis, we established the equivalence of both methods. The 
modified Bland-Altman analysis and the equivalence test 
(TOST) further confirmed that the radar-based system’s 
measurements are within acceptable limits compared to 
ECG.

This underscores that non-invasive radar-based moni-
toring can reliably track HR in PC patients without bur-
dening patients and providing physicians with important 
physiological data.

Limitations and challenges
HR can be assessed by radar-based recording of micro-
scopic movements caused by heart sounds in the 
micrometre range. Movement is a hallmark of life, and 
various movements such as breathing, turning or speak-
ing overlay the vibrations caused by the heart sounds 
with much greater amplitudes. Furthermore, the location 
of radar measurement on the body can influence the HR 
estimation [33]. This can lead to wrong HR estimation by 
radar systems in a real-life PC setting. In our study, the 
validation recording was compromised by the same phe-
nomena as both the Holter ECG and TFM signals were 
also distorted by movement. In study arm II, we excluded 
sections of poor ECG signal as we were lacking ground 
truth for validation. As a result, we may have overesti-
mated the performance of radar-based HR recording in 

contrast to unlimited continuous measurement. In study 
arm I, no such sections were excluded to depict a real-life 
scenario. Nevertheless, the results obtained in study arm 
I and II are comparable.

Furthermore, various pathophysiological changes may 
occur in PC patients reducing the reliability of radar-
based HR recording by our solution proposed in this 
work. For once, arrhythmia poses a challenge as the 
algorithms have not been trained on arrhythmia data. 
During the analysis of the radar data, we observed that 
estimating the HR from radar data during extra systoles 
and other arrhythmias is challenging for the HSMM. One 
reason may be that the HSMM initially estimates an aver-
age HR as a basis for subsequent segmentation. However, 
during arrhythmias, the HR may change abruptly and 
greatly from this segment’s average HR, which might not 
be adequately captured with the HSMM.

In addition, the HSMM depends on the correct seg-
mentation of the first and second heart sound for HR 
estimation,  as discussed above. However, during extra 
systoles and other types of arrhythmias the heart sounds 
are likely to be altered, which might compromise the 
heartbeat detection by the HSMM. Therefore, we decided 
to also label and exclude patient data with arrhythmic 
heart beats. To mitigate this issue, we are currently devel-
oping and evaluating an improved machine learning 
pipeline which might be able to solve these issues in the 
near future.

Another limitation may be pathophysiological changes 
of the heart’s muscular function towards the end of life: 
As our HR recording relies solely on the heart sounds, 
changes in inotropy and dromotropy may affect the heart 
sounds regarding frequencies and amplitudes. Whereas 
this poses a challenge in assessing the HR in PC patients, 

Fig. 8  The pink line indicates the time of administration of 0.5 mg hydromorphone (s.c.) for pain. According to the CHR the patient reported to have no 
effect on symptom burden
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it may also hold a chance for radar monitoring to inves-
tigate the heart function beyond just chronotropy com-
pared to ECG-based HR estimation. Further research is 
needed to determine possible effects of the heart muscle’s 
strength and dysfunction on radar-based heart sound 
recording.

Selecting the best-performing radar module out of 4 
(study arm I and III) and out of 3 (study arm II), respec-
tively was a challenge. The radar module with the highest 
SNR ratio, as reflected in the SQI, was chosen in study 
arms I and III. However, during the analysis of the one-
hour measurements, we frequently observed that the 
radar system with the highest SQI does not necessar-
ily deliver a HR that is closest to the ECG-derived HR. 
Therefore, the SQI as a singular measure for signal qual-
ity is insufficient. In study arm II, choosing the radar 
module with a HR that is closest to the ECG’s based on 
the beat-to-beat synchronization outperformed the mod-
ule with the highest SQI. Therefore, further research is 
needed to determine features which can help identifying 
the most reliable radar-based HR signal solely from the 
radar-data.

Summary and Outlook
Continuous HR monitoring in PC can provide invaluable 
information about a patient’s condition, particularly with 
regard to symptom management. Radar-based detection 
of HR and its changes can serve as an early and objective 
indicator of discomfort, pain or other distressing symp-
toms and allow timely and appropriate action to be taken. 
The documented effects of medication on HR, as shown 
in Figs. 6, 7 and 8, illustrate how physiological data can 
inform and optimize symptom control strategies.

The results of this study demonstrate significant 
potential for future applications in a clinical setting. The 
system is highly scalable in terms of its potential appli-
cations. From the perspective of patient care, continuous 
HR recording can facilitate the interpretation of clini-
cal observations in patients who are unresponsive. As 
illustrated in the HR trajectories of patients with and 
without symptom improvement, there is a correlation 
between HR and symptom severity. Further research into 
radar systems may enable more precise and robust mea-
surement, allowing the recording of heart rate variabil-
ity (HRV) as a reliable indicator of well-being or stress. 
Changes in HR and associated features, such as HRV, 
as well as patterns of the radar-detected heart sounds, 
may be correlated with the deterioration of heart func-
tion towards the end of life. Such findings may therefore 
be used as prognostic biomarkers. There are numerous 
potential applications beyond PC. One potential applica-
tion is a radar-based alarm system for cardiac complica-
tions and indications for cardio-pulmonary resuscitation 
in normal hospital wards or nursing homes. This could 

be a valuable addition to current care practices, as the 
radar systems require no additional personnel to start 
and carry out their measurement, and do not disturb or 
disrupt the patients’ lives on the ward. Further research 
must address the refinement of the technology and its 
feasibility, as well as the legal aspects of radar-based vital 
parameter monitoring.

Although radar technology can penetrate bedding and 
clothing, patient movement, pathophysiological changes, 
and external disturbances can introduce artefacts. Future 
developments in radar technology and signal processing 
algorithms are needed to enhance the system’s ability to 
differentiate between true cardiac signals and noise.

The study’s sample size, while adequate for initial vali-
dation, is small and the a priori calculated sample size 
for study arm II could not be reached due to recruitment 
limitations. Future studies should expand the sample 
size and diversity to validate the findings across various 
PC settings and patient demographics. This also enables 
the causes of outliers to be investigated further, e.g. an 
unfavourable position of the radar modules in relation to 
the patient’s position in bed or significant random body 
movements.

Additionally, advancing the technology to overcome 
limitations, to minimize artefacts and enhance signal 
accuracy will further solidify its utility in clinical practice. 
Investigating the integration of radar-based monitor-
ing with other physiological parameters could provide a 
more comprehensive assessment of patient well-being.

Traditional monitoring methods run contrary to the 
fundamental principles of PC that emphasize comfort, 
care, and dignity. The radar-based approach offers a non-
intrusive alternative, allowing for the unobstructed mon-
itoring of HR without compromising patient comfort or 
privacy. Its non-intrusive nature is particularly beneficial 
in PC settings where the maintenance of a serene and 
non-clinical environment is paramount. Nevertheless, 
privacy concerns and data security related to radar-based 
continuous monitoring will have to be addressed. There-
fore, further research into the social and ethical implica-
tions is necessary.

Conclusions
Radar-based HR monitoring presents a promising, non-
intrusive method for continuous physiological assess-
ment in PC. Its implementation can enhance symptom 
management and improve patient care by provid-
ing accurate and reliable data without disrupting the 
patient’s environment. Continued research and techno-
logical advancements will be essential to fully realize the 
potential of this innovative approach in enhancing PC 
practices.
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bpm	� Beats per minute
CHR	� Clinical Health Record
ECG	� Electrocardiography
HR	� Heart Rate
HSMM	� Hidden Semi-Markov Model
IBI	� Inter-Beat Interval (Temporal distance between two R-peaks in the 

electrocardiogram)
ICG	� Impedance Cardiography
i.v.	� intravenous
s.c.	� subcutaneous
SNR	� Signal-to-Noise Ratio
SQI	� Signal Quality Index
SVES	� Supraventricular Extra Systole(s)
TFM	� Task Force® Monitor
TOST	� Two One-Sided Test
VES	� Ventricular Extra Systole(s)
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