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Epigenetic alterations play a crucial role in developmental pro-
cesses, tissue regeneration, and cellular differentiation. Epige-
netic changes are dynamically reversible. Various drugs that 
target DNA methyltransferases or histone deacetylases have 
demonstrated their ability to restore normal epigenetic patterns 
in a number of diseases. While the involvement of epigenetic 
modifications has been identified in chronic inflammatory dis-
eases, their specific impact on skin inflammation in stromal 
cells remains unclear. This mini-review explores the role of 
stromal cells in chronic inflammatory skin diseases, focusing 
on epigenetic modifications of stromal cells such as fibroblasts, 
lymphatic, and blood vascular endothelial cells in both heal-
thy and diseased skin. We also provide an overview of recent 
findings that highlight the contribution of stromal cells, including 
fibroblasts, to inflammatory and remodeling processes through 
epigenetic changes in the context of chronic inflammatory con-
ditions. Investigating epigenetic reprogramming of stromal cells 
might lead to novel strategies for treating chronic inflammatory 
skin diseases. [BMB Reports 2024; 57(11): 465-471]

INTRODUCTION

Stromal cells are a heterogeneous and indispensable group of 
cells that provide structural and functional support for various 
tissues and organs throughout the body. Beyond their con-
ventional structural responsibilities, they play a pivotal role in 
maintaining the integrity and function of their resident tissues 
(1). For example, stromal cells can produce and organize ex-
tracellular matrix (ECM), a complex network of proteins and 

carbohydrates crucial for endowing tissues with mechanical 
resilience and architectural framework (2). Stromal cells can 
interact with neighboring cells, including epithelial cells and 
immune cells, thereby contributing to the maintenance of 
tissue or organ homeostasis (3). Importantly, stromal cells also 
play a role in various physiological/pathological processes, in-
cluding inflammation (4-6), wound healing (7), and cancer pro-
gression (8). Thus, a comprehensive understanding of the re-
gulation of stromal cell function in both homeostasis and dys-
function is crucial for a better understanding of skin physio-
logy and disease pathogenesis. 

Epigenetic changes refer to modifications that affect how 
genes are turned on/off without changing the genetic code 
itself. One of the significant features of epigenetic changes is 
their potential for reversibility. This has implications for thera-
peutic interventions and strategies to modify gene expression 
patterns to treat diseases. Thus, drugs targeting epigenetic mo-
difications have been developed and considered as new po-
tential therapeutic tools to ameliorate various diseases, including 
cancer (9-11) and chronic inflammatory diseases (6, 12-14). 
The field of epigenetics has grown rapidly in recent years. 
Ongoing research continues to uncover complexities of epi-
genetic regulation and mechanisms underlying various biolo-
gical processes and diseases. 

Recently, several studies have discovered the important role 
of stromal cells in pathological conditions such as cancers and 
chronic inflammatory diseases that could be regulated by epi-
genetic modifications (14-16). For example, endothelial cells 
from pulmonary arterial hypertension show extensive remodel-
ing at active enhancers, while very few transcriptomic changes 
are observed, indicating an important role of epigenetic changes 
in disease-relevant stromal cells (15). Thus, it is of great inte-
rest to investigate epigenetic changes of stromal cells and their 
impacts on pathological states that might be reversed by 
epigenetic reprogramming.

In this mini-review, we will cover the role of stromal cells 
and epigenetic changes of stromal cells in both healthy skin 
and chronic inflammatory skin diseases.

ROLE OF STROMAL CELLS IN THE SKIN

Stromal cells in the skin mainly consist of fibroblasts, lympha-
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Fig. 1. Heterogeneity of stromal cells in chronic inflammatory disease. Subpopulations of stromal cells, including fibroblasts, blood vascular 
endothelial cells (BECs), and lymphatic endothelial cells (LECs), identified from single-cell transcriptomics, display specific molecular repatter-
ning, potentially leading to activated states. Activated stromal cells can trigger cytokine/chemokine responses, enhance T-cell persistence, 
and alter extracellular matrix (ECM) components relevant to the pathogenesis of chronic inflammatory skin diseases.

tic endothelial cells, and blood vascular endothelial cells. The 
term “stromal” originates from the Greek word stroma, meaning 
“bed covering” that refers to a structural or connective role of 
a tissue or organ. In the skin, stromal cells are positioned in 
the dermal layer below the epidermis release growth factors 
that can stimulate cellular division. This process ensures con-
tinuous regeneration of the epidermis from its basal layer, while 
the uppermost skin cells are consistently shedding from the 
body. The turnover time of healthy human skin is approxi-
mately 28 days (17). Furthermore, stromal cells contribute to 
inflammatory responses and regulate the quantity of cells ac-
cumulating in the inflamed region of a tissue (18). For exam-
ple, extracellular matrix components such as collagen, laminin, 
and fibronectin derived from stromal cells undergo remodeling 
in response to external stimuli or during pathological proces-
ses (19-22). These stromal cells in the dermis consist of various 
cell types, including fibroblasts and endothelial cells of lym-
phatic/blood vessels. Especially fibroblasts, which are among 
key stromal cell types in the dermis, play an essential role in 
shaping the microenvironment by synthesizing and remodel-
ing ECM proteins and by secreting cytokines, chemokines, and 
growth factors (23-26). Stromal cells can impact the home-
ostasis of adjacent cells such as immune cells through cell-cell 
communications. They can also modulate inflammatory infil-
tration (22).

CONTRIBUTION OF STROMAL CELLS TO CHRONIC 
INFLAMMATORY SKIN DISEASE

Many studies have reported that not only immune cells and 
epidermal cells, but also stromal cells in the skin, such as 
dermal fibroblasts and endothelial cells, contribute to the pa-
thogenesis of chronic inflammatory skin diseases such as 
atopic dermatitis and psoriasis (4, 5, 27, 28). Atopic dermatitis 
is a Th2 mediated chronic inflammatory disease. In atopic 
dermatitis, dermal fibroblasts interact with immune cells, trig-
gering a substantial cytokine/chemokine response to NOD2/ 
TLR2 ligands (29). Endothelial cells are highly involved in the 
pathogenesis of AD since immune cells actively communicate 
with endothelial cells by releasing and stimulating inflamma-
tory mediators. T cell-endothelial cell interactions are important 
for establishing acute AD, suggesting that they are pivotal 
targets for treating AD (30). Psoriasis is a Th17 mediated chro-
nic inflammatory skin disease. In psoriasis, activated fibroblasts 
can enhance local T-cell persistence (29, 31), alter the expres-
sion of ECM proteins (27, 32), and stimulate endothelial cells 
(33). Activated vascular endothelium then up-regulates adhe-
sion molecules and cytokines such as tumor necrosis factor- 
(TNF-), interleukin-1 (IL-1), IL-6, and IL-17 families. Adhesion 
molecules (e.g., VCAM-1) are important for coordinating the 
process of leukocyte rolling, attachment, and migration into 
the skin (34-36). Recently, single-cell analysis has been used to 
comprehensively characterize specific cell types in atopic der-
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Table 1. Key epigenetic modifications reported in chronic inflammatory skin diseases in recent years

Disease Modification Site Cell types Ref.

Psoriasis Histone methylation H3K9me3 Keratinocytes Chen C et al. (70)
H3K4me3
H3K4me1

Keratinocytes Huang S et al. (71)

H3K27me3 Keratinocytes Zhang T et al. (72)
Histone acetylation H3K27ac Skin tissue Masalha M et al. (73)

J Kim et al. (14)
H3K27ac CD4+ T cells Xia X et al. (74)
H3K9ac CD4+ T cells Xia X et al. (74)

Atopic dermatitis Histone acetylation H3K9ac Keratinocytes Traisaeng S et al. (75)
Systemic lupus erythematosus Histone methylation H3K4me1 CD4+ T cells Zhao M et al. (76)

H3K9me3 CD4+ T cells Zhao M et al. (77)
H3K27me3 CD4+ T cells Tsou PS et al. (78)

Histone acetylation H3K27ac CD4+ T cells Zhao M et al. (76)

Recent studies have reported histone modifications at specific sites in different cell types associated with psoriasis, atopic dermatitis, and systemic 
lupus erythematosus.

matitis and psoriasis (Fig. 1). For example, He et al. have iden-
tified a COL6A5/18A1-positive fibroblast subset that can release 
cytokines such as CCL2, CCL19, and IL-32 important for AD 
pathogenesis in AD lesional skin (30). In psoriasis, recent stu-
dies have revealed the heterogeneity of fibroblast subpopula-
tion (SFRP2+), showing transition from a profibrotic state to a 
pro-inflammatory state in psoriatic skin, including producers of 
ECM components and cytokine-induced, non-matrix producing, 
pro-inflammatory compartments (38). In addition, He et al. 
(30) have discovered that each endothelial cell subtype shows 
psoriasis-specific interactions between cis-regulatory enhancers 
and promoters which reveal dysregulated gene regulatory net-
works in psoriasis. These results suggest that specific transcrip-
tional responses and epigenetic signatures of endothelial cells 
lining different vessel compartments are involved in psoriasis 
(6).

EPIGENETIC MODICIFATIONS IN THE SKIN

Epigenetics is the study of changes in gene expression or cel-
lular phenotype in the absence of changes in underlying DNA 
sequences. While DNA contains instructions for building and 
maintaining the body, epigenetic modifications influence how 
these instructions are interpreted and executed. Changes in 
DNA accessibility by epigenetic modification can be achieved 
through various mechanisms such as DNA modification, his-
tone modification, and non-coding RNA (39, 40). DNA under-
goes modifications through the addition of methyl groups and 
consequently influences gene expression (DNA modification). 
Hypermethylation results in gene silencing, whereas hypome-
thylation promotes active transcription (41). To study these 
modifications, various high-throughput techniques are common-
ly used to profile DNA methylation, including whole-genome 

bisulfite sequencing and Infinium human methylation bead- 
chip arrays (42) which also have been used to study skin 
diseases such as psoriasis (43-45). Another epigenetic process 
that governs chromatin structure and regulates gene expression 
is histone modification. Histone modifications alter chromatin 
packaging, determine its accessibility (open) or inaccessibility 
(closed), thereby influencing gene expression such as activa-
tion or repression (39, 46). To study histone modifications, 
chromatin immunoprecipitation sequencing to analyze histone- 
DNA interactions and assay for transposase-accessible chromatin 
(ATAC) sequencing to identify open areas in chromatin pack-
aging are widely performed (47). Epigenetic modifications affect 
various processes in the skin, such as epidermal homeostasis 
and differentiation, development, and responses to environ-
mental stimuli (48-52). In chronic inflammatory skin diseases, 
several histone methylation/acetylation marks have been re-
cently reported in psoriasis, atopic dermatitis, and systemic 
lupus erythematosus (Table 1). Since epigenetic modifications 
are modifiable and reversible, epigenetic modifier drugs inhi-
biting histone acetyltransferases (HATs), histone deacetylases 
(HDACs), and DNA methyltransferases (DNMTs) that can re-
verse epigenetic signatures have been drawing attention as a 
new potential strategy for treating diseases (Fig. 2) (9, 10). 
There are currently 6 FDA-approved epigenetic modifying drugs, 
and more than 50 epigenetic drug candidates are being tested 
in preclinical and clinical trials (53). For examples, trichostatin 
A, an HDAC inhibitor, ameliorates the development of atopic- 
like dermatitis by increasing T regs and reducing IL-4 produc-
tion (54). A485, a HAT inhibitor, has been reported to reduce 
psoriasis-like skin inflammation in vivo (14). Therefore, under-
standing epigenetic mechanisms in the skin might open ave-
nues for developing novel therapeutic targets and enhancing 
comprehension of skin biology.
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Fig. 2. Flexibility of epigenetic signatures by epigenetic reprogramming. DNA can undergo methylation at cytosine residues in a CpG 
context (DNA methylation). The DNA wraps around histone proteins to form structures called nucleosomes. Modifications to these histone 
proteins represent another layer of epigenetic regulations (histone acetylation/methylation). These modifications dictate whether the chromatin 
structure is open and accessible or closed and inaccessible. Acetylation of histone tails by histone acetyltransferase (HAT) activates genes, 
whereas histone deacetylation by deacetylases (HDACs) leads to gene silencing. DNA methyltransferase (DNMTs) adds methyl groups to the 
5-position of cytosine residues in DNA, crucial for the process of DNA methylation, playing a significant role in maintaining genome stability.

EPIGENETIC CHANGES OF STROMAL CELLS IN 
CHRONIC INFLAMMATORY DISEASES

Epigenetic changes play crucial roles not only in many bio-
logical processes, but also in various diseases, including can-
cer, chronic inflammatory diseases, and certain genetic disorders 
(13, 16, 55, 56). Many studies have focused on epigenetic 
changes of immune cells, keratinocytes, and whole skin tissues 
in chronic inflammatory diseases such as atopic dermatitis and 
psoriasis (43, 44, 57-60). However, several studies have recent-
ly focused on stromal cells, including fibroblasts and endo-
thelial cells, undergoing epigenetic modifications that contri-
bute to chronic inflammatory conditions in the skin. For exam-
ple, a recent study has identified psoriatic endothelial cell 
subtype-specific cis-regulatory element connections (CREs) by 
5’ single-cell profiling, providing insights into specific tran-
scriptional responses and epigenetic signatures in psoriasis (6). 
In this study, MCAM and its binding partners specifically 
showed upregulation in blood capillaries (CD31+RGCC+ po-
pulation) in psoriasis, together with vascular remodeling. There 
was a unique pairing of CREs in psoriasis, suggesting a potent 
contribution by transcriptomic and epigenetic repatterning of 
the psoriatic vasculature. Another study has suggested that 
upregulation of histone deacetylase-1 (HDAC-1) in psoriatic 
endothelial cells might potentially contribute to overexpres-

sion of VEGF that induces proliferation of endothelial cells 
(61). In addition, Kwon et al. have recently investigated in-
teractions between mast cells, keratinocytes, and fibroblasts in 
an atopic dermatitis model, indicating a regulative role of the 
HDAC6-CXCL13 axis in the pathogenesis of atopic dermatitis 
(62). These results on transcriptional and epigenetic changes 
that underlie responses of stromal cells in chronic inflamma-
tory skin diseases can suggest new therapeutic strategies to 
overcome limitations of current treatments, including relapse 
and treatment resistance.

CONCLUSION

Here, we summarized stromal cells and their epigenetic chan-
ges known to play a significant role in both healthy skin and 
chronic inflammatory skin diseases, focusing on atopic derma-
titis and psoriasis. Interestingly, recent studies have highlighted 
disease-specific cell subtypes and their interactions across cell 
types in healthy and diseased states in the skin by single-cell 
transcriptomic profiling (6, 31, 38, 63). Single-cell analysis 
compared to conventional bulk transcriptomics provides a 
more detailed characterization of various cell types such as 
stromal and immune cells (64-66), thus uncovering the sub-
type of each cell that might contribute to transcriptional and 
epigenetic signatures underlying chronic inflammatory skin 
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diseases. For epigenetic changes, histone deacetylases (HDACs) 
can mediate the balance of acetylation/deacetylation together 
with histone acetyltransferases (HATs). Several studies have 
shown that aberrant expression of HDACs and HATs in 
chronic inflammatory skin diseases such as atopic dermatitis 
and psoriasis (59, 61, 67) might serve as a potential thera-
peutic target for treatment (68, 69). Therefore, multi-omics 
profiling, analyzing patterns of transcriptional and epigenetic 
changes, and their reprogramming via modifier drugs might 
potentially lead to clinical approaches to improve patient out-
comes.
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