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INTRODUCTION

Artificial intelligence (AI) refers to a variety of computational 
methods used to enable machines to model and mimic human 
judgment and perform tasks such as perception, reasoning, 
learning, and decision-making [1, 2]. Past AI and clinical support 
systems carried out only those tasks for which they were coded 
or trained using human knowledge that was encoded explicitly 
as rules in a knowledge base or relationships in an ontology to 
derive conclusions about input data using these rules or rela-
tionships. In contrast, modern AI and machine learning (ML) are 

not solely based on human-derived knowledge and use an algo-
rithm to identify (“learn”) repetitive data patterns present in ex-
ample cases and match new cases to the patterns identified 
with human guidance [1].

ML algorithms are classified into three types according to the 
learning strategy: (1) supervised learning, (2) unsupervised 
learning, and (3) reinforcement learning [1]. Supervised learning 
is learning by example and requires labeled data points. Exam-
ples of supervised ML algorithms likely to be encountered in pa-
thology are (a) classification, in which an algorithm predicts a la-
bel (e.g., a diagnostic category) given a set of input features 
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(e.g., an image), and (b) regression, in which an algorithm pre-
dicts a numerical value (e.g., the likelihood of tumor metasta-
ses) given input variables [3]. Unsupervised learning techniques 
do not use predefined labels or values; they attempt to identify 
patterns in unlabeled data and employ those patterns without 
labels [3]. For example, unsupervised learning in pathology can 
be applied to develop a new classification of mature B-cell neo-
plasms based on immunophenotype, gene expression profiles, 
or outcomes. Reinforcement learning awards points for progress 
toward a goal and provides tools to optimize sequences of deci-
sions for long-term outcomes [1, 4]. For example, reinforcement 
learning in the practice of medicine can be applied to find the 
optimal sequence of diagnostic tests and treatment interven-
tions for the diagnosis and management of neonatal patients 
presenting with fever of unknown origin. Reinforcement learning 
is currently rarely applied to pathology [5].

All ML techniques require large datasets. Electronic health re-
cords (EHR), electronic administrative records, and cancer regis-
try data have all been used as datasets to predict survival in 
cancer patients using ML [6, 7]. ML techniques are used to opti-
mize clinician workflow, predict outcomes, and discover insights 
from large medical datasets [2]. As the use of ML in healthcare 
increases, the sources and collection methods of the data upon 
which these algorithms are built must be carefully assessed. A 
large part of those data is likely to be laboratory data. In a study 
examining the frequency of laboratory tests ordered during pa-
tient encounters, 98%, 56%, and 29% of inpatient, emergency 
department, and outpatient populations, respectively, had one 
or more laboratory tests ordered [8]. Thus, biases in laboratory 
data can influence clinical decision-support tools based on AI 
and ML algorithms.

In this review, possible sources of bias resulting from the use 
of laboratory datasets in the training of AI/ML models are dis-
cussed. First, we explore the lack of harmonization of laboratory 
results across platforms and methods as a potential source of 
bias in AI/ML algorithms. Next, we discuss barriers at all levels 
of interoperability (e.g., technical, syntactic, semantic, and orga-
nizational aspects of interoperability) for laboratory data, along 
with potential solutions. Finally, we review population-specific is-
sues related to laboratory data and their effects on AI/ML mod-
els.

LACK OF HARMONIZATION OF LABORATORY 
TESTS AND THE EFFECT THEREOF ON AI/ML 
MODELS

Clinical decisions are increasingly based on clinical guidelines 
that use a fixed laboratory test result value for treatment deci-
sions [9, 10]. While patients, clinicians, and other healthcare 
stakeholders generally assume that results from different labo-
ratories are comparable for a given test, different analytical 
methods and instruments can produce significantly different re-
sults [11, 12]. Laboratory test harmonization is defined as the 
ability to achieve the same result (within clinically acceptable 
limits) and the same interpretation (e.g., normal vs. abnormal) 
irrespective of the method or instrument platform used to pro-
duce the result [9, 11].

Application of cutoff values to non-harmonized test 
methodologies
Clinical studies may involve the use of a single method in a cen-
tral laboratory; however, guidelines resulting from such studies 
cannot be effectively implemented until all other methods are 
harmonized with the central laboratory procedure [9]. Incorpo-
rating compromised clinical guidelines into AI models that apply 
to patients with noncomparable test results may lead to inap-
propriate or incorrect treatments, as demonstrated below.

Serum albumin is a widely used biomarker in clinical nephrol-
ogy guidelines, and serum albumin cutoff values are used to de-
fine disease, assess risk, and guide patient care [13]. A de-
creased albumin level is a diagnostic criterion for nephrotic syn-
drome [14] and is used to select patients who might benefit the 
most from adapted hemodialysis modalities [15]. Patients with 
nephrotic syndrome have an increased risk for venous and arte-
rial thromboembolic events when serum albumin levels de-
crease, and clinical guidelines advise the initiation of anticoagu-
lation therapy in patients with nephrotic syndrome when the se-
rum albumin level falls <25 g/L and its discontinuation when 
the serum albumin concentration recovers to >30 g/L [13].

Two types of laboratory methods are available for measuring 
albumin: colorimetric methods, in which a dye (bromocresol 
green or bromocresol purple) complexes with albumin, and im-
munological methods (turbidimetry and nephelometry), which 
are based on antibody binding to albumin [16]. van Schrojen-
stein Lantman, et al. [13] found that the between-laboratory 
variation of bromocresol green, bromocresol purple, turbidime-
try, and nephelometry assays for albumin results at ~35 g/L 
was 3.2%, 2.9%, 4.2%, and 5.7%, respectively, reflecting differ-
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ences among instruments, calibration protocols, and local per-
formance.

Comparative studies have shown that the bromocresol green 
assay overestimates albumin concentrations. The mean bias of 
the bromocresol green assay versus immunoassays ranged 
from 1.5% to 13.9%, with a larger bias in patients with low albu-
min concentrations [16]. Using immunonephelometry as a refer-
ence method and the clinical guideline of an albumin concentra-
tion of 25 g/L as a cutoff, researchers have calculated that us-
ing the bromocresol green assay could result in 21%–59% of 
patients with membranous nephropathy and nephrotic syn-
drome not receiving the appropriate anticoagulant therapy [16].

Even with knowledge of the lack of harmonization among in-
strument platforms and methods, clinicians can do little to ac-
count for these variations. The absolute amount of divergence 
of the bromocresol green assay, when compared with other 
methods, varied from 0.2 g/L to 11 g/L in individual patients, 
making correction impossible [16]. In addition, published stud-
ies seldom disclose details on the assays used for laboratory 
measurements (Table 1), rendering it difficult for providers, and 
by extension, AI models, to evaluate whether a clinical guideline 
cutoff value is applicable and appropriate for a particular patient 
test result.

A recent application of ML to laboratory medicine was the de-
velopment of an ML model to predict abnormal parathyroid hor-
mone-related peptide results using a dataset of 1,330 patients 
from a single institution [17]. The model achieved an area under 
the receiver operating characteristic curve (AUROC) of 0.936 
and a specificity of 0.842 at 0.900 sensitivity in the develop-
ment cohort. When the model was directly applied to two exter-
nal datasets, the AUROC significantly deteriorated to 0.838 and 
0.737. The maximum mean discrepancy, which was calculated 
to quantify the shift of data distributions across different datas-
ets, was larger for the second dataset, indicating a greater data 
shift compared with that in the original dataset. Retraining the 
model using the two external datasets improved the AUROC to 
0.891 and 0.837, respectively. When external data are insuffi-
cient for retraining, a fine-tuning strategy with varying amounts 
of available external data also improves model utility (Table 1) 
[17].

Aggregation of non-harmonized test methodologies
Clinical studies involving multiple laboratories using different 
methods produce data that cannot be aggregated to develop 
guidelines until the results from the different instruments and 
methods are harmonized [9]. Jacobsen, et al. compared the ac-

curacy of three commercial home-use capillary hemoglobin A1c 
(HbA1c) tests based on measurements of paired HbA1c venous 
samples in central reference laboratories and reported that 
none of these tests achieved the National Glycohemoglobin 
Standardization Program goal of ≥90% measurements within 
5% of a Diabetes Control and Complications Trial venous refer-
ence [18]. While the difference in accuracy may be attributed to 
differences in the sample type (e.g., venous vs. capillary blood) 
and train models against venous blood versus capillary samples, 
another study demonstrated that capillary blood collection kits 
suitable for home use produced results that were comparable 
with those obtained from venous specimens when tested at 
central reference laboratories [19]. The difference in accuracy 
was, therefore, entirely attributable to the instrumentation and 
method, not the sample type.

In a study simulating the aggregation of blood glucose mea-
surements from diverse sources, the ability to classify a pa-
tient’s current status decreased as the reliability of measure-
ments decreased; however, the ability to classify a change be-
tween two values as significant or irrelevant decreased the most 
[20]. Attempts to train ML models using clinical data with labo-
ratory results derived from different methods and instruments 
are expected to face the same obstacles, which is further com-
pounded by the fact that instrumentation and method data are 
not required and rarely included in EHRs and reported with test 
results [21, 22]. The International Consortium for Harmonization 
of Clinical Laboratory Results (ICHCLR) is an international orga-
nization that serves to prioritize measurands by medical impor-
tance and to coordinate the work of different organizations to 
avoid duplication [9]. According to the website maintained by 
the ICHCLR, 70 of the 143 analytes listed have achieved a har-
monization status of adequate/maintain [23]. Harmonizing a 
greater number of clinical laboratory tests will contribute to im-
proved healthcare and ensure that AI and ML models that call 
for the use of laboratory tests can be appropriately developed 
and implemented (Table 1).

LACK OF INTEROPERABILITY OF LABORATORY 
DATA AND THE EFFECT THEREOF ON AI/ML 
MODELS

Laboratory data provide an ideal dataset for AI and ML models 
in healthcare because they are generally electronically available, 
highly structured, quality-controlled, and indicative of many dis-
eases [22]. However, the standardization of the data produced 
by laboratories is lacking, resulting in variations in local test 
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codes, test names, reference ranges for normal and abnormal 
values, and formats of test results and associated units [24-26]. 
Interoperability is broadly defined as the ability of two or more 
systems or components to exchange information and to use the 
information that has been exchanged. It is further defined by dif-
ferent components or levels of interoperability that distinguish 
between lower-level technical components and higher-level orga-
nizational components (e.g., technical, syntactic, semantic, and 
organizational aspects of interoperability.) [27]. In practice, in-
teroperability is determined by a combination of health informa-
tion technology product features chosen by the vendor (e.g., de-
fault settings) and implementation choices made by the institu-
tion (e.g., how to represent a particular data element or legacy 
data) [28]. The interoperability of laboratory data has implica-
tions for the accuracy and applicability of AI and ML models de-
rived from the data.

Technical interoperability
Technical interoperability can be defined as the ability to ensure 
basic data exchange among systems [27]. A national survey of 
independent and hospital laboratories conducted in the United 
States in 2013 showed that 71% of hospital-based clinical labo-
ratories and 80% of larger clinical laboratories were capable of 
sending test results electronically, compared with 58% of inde-
pendent and 48% of smaller clinical laboratories, respectively. 
While 62% of clinical laboratories were capable of sending test 
results electronically, only 30% were doing so for  ≥75% of their 
test results [29]. Improved exchange of patient information un-
derpins many efforts to improve quality, safety, and efficiency in 
the US healthcare system. Strategies such as the Hospital Read-
missions Reduction Program, Accountable Care Organizations, 
bundled payments, and Medicaid Redesign depend on access 
to comprehensive and timely patient information [30].

While health information exchange (HIE) connectivity among 
organizations has greatly improved since 2011 [31], the 2019 
American Hospital Association Information Technology Supple-
ment Survey revealed a gap between the adoption and actual 
use of different HIE models; the availability of different HIE 
methods (i.e., one-to-one and many-to-many exchanges) did not 
necessarily guarantee optimal interoperability among affiliated 
and unaffiliated hospitals. Hospitals reported a lack of technical 
capabilities to electronically send patient information (9%), cum-
bersome workflow (23%), and lack of provider technical capabil-
ity to receive the information despite the adoption of EHRs (59%) 
as barriers to electronically sending patient health information 
[32].

The COVID-19 pandemic challenged the US public health in-
formation infrastructure and contributed to COVID-19 data inac-
curacies and reporting delays because many public health de-
partments still relied on faxes and e-mails to receive reportable 
disease information [33]. The sheer volume of reporting data 
during the pandemic exceeded the capacity to manually curate 
the data [33]. Many reference laboratories still rely on faxes and 
PDF reports to communicate results to client laboratories. These 
reports are not easily converted to discrete data and cannot be 
easily used by AI and ML algorithms. Electronic laboratory data, 
which can be used by AI and ML, represent only a fraction of the 
total volume of laboratory results produced and are skewed to-
ward the proportion of the population that has access to hospi-
tal-based and larger clinical laboratories.

Syntactic interoperability
Syntactic interoperability refers to the format, structure, and 
structured exchange of health data, such as laboratory data, 
and is supported by international standards development orga-
nizations, such as Health Level Seven International (HL7) or In-
tegrating the Healthcare Enterprise (IHE), which specify health 
information technology (IT) standards and their use across sys-
tems [27]. While laboratory medicine databases can be a rich 
source of data, they are often not suitable for the application of 
data science techniques because of the facts that they are cre-
ated for regulatory requirements rather than research purposes 
and store data inefficiently and only for the required retention 
period [29]. In addition, current health IT systems often operate 
with a wide variety of data formats and custom specifications 
[27].

Attribute data must be optimally suited for research as sum-
marized in the Findability, Accessibility, Interoperability, and Re-
usability (FAIR) Guiding Principles, which provide guidelines to 
make data findable (F), accessible (A), interoperable (I), and re-
usable (R) to the research community and emphasize enhanc-
ing the ability of machines to automatically find and use the 
data [34]. However, laboratory data are associated with specific 
risks and attributes that distinguish them from other data 
sources. As healthcare data, laboratory data must be subject to 
special protection. Regulatory requirements preclude freely ac-
cessible query functionalities. Structured laboratory data are as-
sociated with a risk of unauthorized data duplication because of 
the relatively small file size. In addition, post-analytics on labora-
tory data can be difficult as the IT systems of receivers (clini-
cians or researchers) must be able to handle the data formats 
supplied and must not alter or falsify their presentation [35].
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While laboratory medicine is claimed to be the largest pro-
ducer of structured data among medical specialties [34], micro-
biology culture reports form a notable exception [36]. Although 
microbiology reports are semi-structured and often electronically 
transmitted, their free-text nature may challenge their incorpora-
tion into AI and ML models [36]. Using algorithms on unstruc-
tured, non-standardized data can introduce errors that distort 
test results. These errors are difficult to detect in large datasets 
owing to the immense volume of data, which complicates the 
process of anticipating, detecting, and correcting all possible er-
rors [24]. Systematic approaches have been developed for mi-
crobiology laboratory result identification and extraction to pro-
duce structured data for secondary use [36].

Semantic interoperability
Semantic interoperability is the use of medical terminologies, 
nomenclatures, and ontologies to ensure that the meaning of 
medical concepts, such as laboratory data, can be shared 
across systems [27]. While the lack of standardization in the 
digital representation of laboratory data does not impact the 
daily operations of individual laboratories, this inconsistency 
poses a significant barrier when comparing or aggregating data 
across institutions. Moreover, this issue creates inefficiencies 
and ambiguity for secondary uses, such as in AI and ML applica-
tions [24]. Two international standard terminologies used for 
laboratory data are the Logical Observation Identifiers Names 
and Codes (LOINC) and Systematized Nomenclature of Medicine 
– Clinical Terms (SNOMED CT) [10].

Before the development of the LOINC by the Regenstrief Insti-
tute—a non-profit medical research organization—in 1994, most 
laboratories used locally defined codes for each laboratory test 
[10, 24]. When exchanging laboratory test results electronically 
using HL7 standards, these local test identifiers were transmit-
ted in the HL7 observation identifier (OBX-3) field to identify the 
test. Without specific knowledge of the laboratory-generated 
code by the receiver, the result was often subject to misinterpre-
tation. The LOINC terminology was initially developed to provide 
universal identifiers for the OBX-3 field of the HL7 observation-
reporting message and eliminate ambiguity regarding test or-
ders and results [24].

While mapping local laboratory codes to a standardized termi-
nology such as LOINC aimed to enable semantic interoperability 
and facilitate data sharing and aggregation across systems, two 
issues limit the effective use of LOINC to promote laboratory 
data interoperability. These issues include the limited accuracy 
of coding and lack of sufficient granularity in codes to impart ad-

equate meaning to results for aggregation and interpretation.
To achieve data aggregation, LOINC must be mapped with ab-

solute precision and accuracy. However, this is complicated by 
duplicate and overlapping codes, missing codes for some tests, 
and continuous updates that make accurate coding and code 
maintenance challenging for laboratories [37]. Lin et al. exam-
ined the accuracy of LOINC mapping at three large institutions 
and revealed that choosing different “method,” “scale,” and 
“property” attributes were the most common reasons for incon-
gruent code choices [38]. A survey of 90 laboratory participants 
of the College of American Pathologists coagulation and cardiac 
markers proficiency testing program showed inaccurate code 
assignment for nearly 20% of tests [24]. Findings from a study 
of five medical centers and three test manufacturers revealed a 
mismatch between how medical centers use LOINC to encode 
laboratory tests and manufacturer-recommended LOINC coding 
for the same laboratory tests in 136 (41%) of 331 tests available 
[25].

An analysis of the accuracy of LOINC coding for 179,537,986 
mapped results for 3,029 quantitative tests derived from data 
extracted from the Patient-Centered Outcome Research Network 
(PCORnet) revealed a coding accuracy rate of 95.4%, which was 
higher than the rates in previous studies [39]. The discrepancy 
could be partly explained by the fact that the study only included 
quantitative test results, and data were only available from two 
participants in PCORnet, a research consortium composed of 
more than 60 organizations known as “DataMarts.”

Even when tests are correctly mapped to LOINC codes, the in-
formation conveyed by the codes may lack sufficient meaning to 
allow for accurate test result interpretation because multiple 
tests can be appropriately assigned to the same LOINC code de-
spite producing very different quantitative result values because 
of differences in the instruments and methods used to produce 
the results [40]. The LOINC terminology uses a construct of six 
independent parts/axes that define the laboratory test per-
formed and reported: analyte, kind of property, time aspect, 
sample type, precision, and method [41].

The ability to use LOINC as a method to standardize the repre-
sentation of laboratory results from different institutions de-
pends not only on the ability of participating institutions to cor-
rectly encode their local tests into LOINC identifiers but also on 
the specificity and completeness of the LOINC vocabulary [41]. 
Despite the importance of the instrumental platform in labora-
tory result comparability and interpretation, this information is 
not part of the LOINC vocabulary construct and is seldom re-
ported with laboratory results (Table 1) [40]. Therefore, LOINC is 
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insufficiently precise to adequately represent tests that are not 
analytically standardized or harmonized [42].

Information on the instrumental platform used to produce re-
sults is potentially invisible to AI and ML models, as current pro-
tocols do not routinely code for or disclose this data with test re-
sults. Analytical techniques, reagents, and equipment calibra-
tion vary among in-vitro diagnostic platforms and test kits, lead-
ing to significantly variable results even when using the same 
methodology. Researchers increasingly recognize that data on 
instrumental platforms and test kits should accompany results 
to ensure not only interoperability in patient care but also to sup-
port secondary uses in research, public health reporting, and AI 
and ML applications [22, 40].

The Systemic Harmonization and Interoperability Enhance-
ment for Laboratory Data (SHIELD), a public–private partnership 
in the US, has suggested that test results can be accurately rep-
resented using standard medical terminologies (Table 2), with 
LOINC representing the test and SNOMED CT codes represent-
ing specimen information and qualitative results. Quantitative 
values would ideally be characterized by their units of measure 
using Unified Codes for Units of Measure (UCUM). The specific 
device can be described using the Device Identifier component 
of the Unique Device Identification (UDI) system. When com-
bined with LOINC, the Device Identifier could provide the addi-
tional specificity needed to prevent the aggregation of non-har-
monized laboratory result data in AI and ML algorithms [40, 43].

Organizational interoperability
Organizational interoperability is the highest level of interopera-
bility and represents the ability to successfully apply AI and ML 
algorithms developed using data from other institutions and or-

ganizations to a particular organization or site. An AI or ML 
model that behaves differently depending on its deployment site 
raises concerns about patient safety and effectiveness. Barriers 
to the transportability and interoperability of AI and ML models 
include programming complexities that limit the integration of 
different systems and databases and the diversity of clinical 
data sources in terms of how laboratory and clinical data are 
captured and stored [44]. Culture, workflow, and local technol-
ogy are variables that must be managed to achieve organiza-
tional interoperability.

A study involving 68 oncology sites revealed a representation 
agreement rate of 22%–68% for six medications and six labora-
tory tests for which well-accepted standards exist. The agree-
ment was the highest (68%) among sites that used the same 
EHR vendor system and the lowest (20%) among sites with dif-
ferent EHR systems. In the best-case scenario, in which stan-
dardized representations exist, and the institutions utilize EHR 
systems from the same vendor, approximately two-thirds of data 
types will be “understood” by the other site [28].

Even within a single hospital, ML models trained on data from 
one EHR system deteriorated significantly when tested on data 
from a new EHR system after the hospital changed vendors [45]. 
This illustrates how prediction systems are vulnerable to abrupt 
changes in the EHR system when little overlap exists between 
representations. Changes in laboratory instrumentation produc-
ing different baseline values are expected to have the same ef-
fect [40].

It has been argued that all prediction models are subject to 
an expiration date. The field of medicine is fast-changing and dy-
namic. Patient populations, standards of care, available treat-
ment options, measurements, and data representation evolve 

Table 2. Data model for digital representation of laboratory test results as proposed by SHIELD

Test data element Standardized ontology

Test information Test ordered LOINC to identify the test ordered

Test performed LOINC to identify the test performed

Specimen information Specimen type SNOMED CT at minimum

Specimen source SNOMED CT

Specimen collection method SNOMED CT

Results Quantitative Needs to include units of measure with UCUM preferred

Qualitative SNOMED CT

Methodology Test kit identification Device identifier

Instrument identification Device identifier

Abbreviations: SHIELD, Systemic Harmonization and Interoperability Enhancement for Laboratory Data; LOINC, Logical Observation Identifiers Names and 
Codes; SOMED CT, Systematized Nomenclature of Medicine – Clinical Terms; UCUM, Unified Codes for Units of Measure.
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over time, and these changes can influence AI and ML models 
[46]. The Coalition for Health AI (CHAI) is a community of health 
systems, public and private organizations, academia, patient ad-
vocacy groups, and expert practitioners of AI and data science 
engaged in harmonizing standards and reporting for health AI 
and educating end users on evaluating efficacy and safe inte-
gration into healthcare settings before adoption [47]. CHAI pro-
motes local evaluations to determine whether AI and ML models 
perform as expected with local data and conditions and con-
ducts long-term monitoring to ensure that models remain effec-
tive and are adaptable to any changes (Table 1).

POPULATION-SPECIFIC ISSUES RELATED TO 
LABORATORY DATA AND THEIR EFFECTS ON AI/
ML MODELS

The use of clinical guidelines and human knowledge in AI mod-
els has raised the concern of perpetuating or even worsening 
existing health disparities. Algorithms learn from decisions or 
classifications that may contain potential biases against specific 
populations [48]. For example, studies have suggested that the 
use of the Black race modifier with estimated glomerular filtra-
tion rate equations can lead to physicians failing to diagnose 
early stages of chronic kidney disease in the Black population, 
which leads to a delay in secondary prevention [49]. In addition, 
despite best efforts to reduce the underrepresentation of minor-
ities in randomized control trials in the US, non-Hispanic Whites 
of European ancestry still comprise >90% of the patient popula-
tion in clinical trials [50].

Genetic studies have been criticized for not fully accounting 
for non-European populations. Patients of African or unspecified 
ancestry have been diagnosed as having pathogenic genetic 
variants that were actually benign but were misclassified be-
cause of a lack of understanding of variant diversity in these 
populations at the time of testing [51]. Simulations indicated 
that the inclusion of African Americans in control groups could 
have prevented misclassification.

Biases in EHR data, including laboratory data, used to train 
ML models may arise because of differences in patient popula-
tions, access to care, or the availability of EHR systems. One ex-
ample is the widely used Medical Information Mart for Intensive 
Care III EHR dataset derived from patients receiving care at the 
intensive care units in Beth Israel Deaconess Medical Center, 
which has a largely White patient population [52]. In a US study, 
uninsured Black and Hispanic or Latino patients, as well as His-
panic or Latino Medicaid patients, were less likely to have pri-

mary care physicians with EHRs than White patients with private 
insurance [53]. Race and ethnicity undeniably have long been 
part of medical decision-making. Most physicians would be ex-
pected to know that sickle cell disease is substantially more 
common in the African and Mediterranean populations than in 
northern European populations and vice versa for cystic fibrosis 
and hemochromatosis [54]. This clustering of certain diseases 
in certain populations can have implications for laboratory tests 
as well as for AI and ML algorithms and models.

Sickle cell trait (SCT) is associated with elevated levels of 
thrombin-antithrombin complexes (TAT) and d-dimer [55], and 
African-American patients with SCT had lower levels of HbA1c at 
any level of fasting or 2-hr glucose than those without SCT [56]. 
The use of Hb A1c is not recommended at all for patients with 
sickle cell disease; however, Hb A1c is still misused in 11% of 
patients with sickle cell disease [57]. This quality gap may bene-
fit from AI and ML algorithms, but only in cases where the clini-
cal data are accurate and complete.

One of the issues confounding the use of race and ethnicity in 
medicine is the question of whether the data are captured accu-
rately. Subjectively assigned race recorded by hospital adminis-
trators or providers is often incomplete and therefore inaccurate 
[58]; 59% of patients were misclassified by healthcare adminis-
trators and physicians as single race when they self-identified as 
multiracial. Predictive models that use race to assess popula-
tion health risks and disease conditions are effective only when 
developers consider the potential errors in race data previously 
collected and the conclusions drawn in healthcare literature 
[58].

The underrepresentation of women and minority groups and 
inaccurate collection of race in datasets can contribute to inac-
curate and unfounded conclusions that can unfairly disadvan-
tage certain patient populations. The application of AI and ML 
should be fair and benefit all patients. A framework for modeling 
fairness using tools for causal inference in ML algorithms has 
been developed [59]. “Counterfactual fairness” is the concept 
that an algorithmic decision demonstrates fairness to an individ-
ual when the outcome remains constant in both the actual 
world and a counterfactual world where the individual belongs 
to a different demographic group [59]. This concept should help 
guide the development of AI and ML algorithms.

CONCLUSIONS

As AI and ML in healthcare mature, efforts to derive actionable 
insights from large datasets, such as laboratory data, will push 
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the traditional boundaries for the use of this information. This 
article discussed the current limitations of laboratory data in 
terms of standardization and interoperability that limit the po-
tential of AI/ML and big data. Issues such as the lack of harmo-
nization of test methodologies and variations in the digital repre-
sentation of laboratory data must be addressed before AI/ML 
models can provide meaningful and valuable benefits to pa-
tients and providers. Data collection for race and ethnicity and 
the adequate representation of minority groups in clinical guide-
line data must be framed as important front-of-mind concerns 
for AI and ML algorithm developers to avoid perpetuating health 
disparities and inaccurate conclusions in the healthcare litera-
ture.
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