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INTRODUCTION

Industry 4.0 represents a convergence of physical, digital, and 
biological systems, leading to profound changes in the way we 
live and work by integrating emerging technologies, such as big 
data and analytics, robotics, and the internet of things. In the 
medical field of Industry 4.0, big data and analytics are crucial. 

Big data in healthcare are derived from various sources within 
and external to the hospital setting. These sources include hos-
pital registries and electronic health records (EHRs), as well as 
data created, reported, or gathered by patients, including from 
home devices such as wearables and mobile health apps, de-
vice-generated data, and omics data including genomics and 
proteomics. Additional sources include patient portals, social 
media, search engine data, and insurance payer records. Big 

data are utilized for various analytical purposes and include four 
core types of data analytics: descriptive, diagnostic, predictive, 
and prescriptive. Descriptive and diagnostic analytics consider 
the past to understand “what happened” and to explain “why it 
happened,” respectively, whereas predictive and prescriptive 
analytics are future-oriented, forecasting “what will happen” and 
advising on “what should be done.” Artificial intelligence (AI), re-
sembling human cognitive functions, has led to a paradigm shift 
in healthcare, driven by increased accessibility of healthcare 
data and advancements in analytical techniques [1]. The inte-
gration of big data and AI has markedly enhanced health out-
comes across several domains, including diagnostics, preventive 
medicine, precision medicine, medical research, has led to a re-
duction in adverse events, and has improved cost efficiency and 
the management of population health [1] (Fig. 1). Research re-
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lated to big data and AI in the medical field has increased explo-
sively. PubMed searches for “big data in healthcare” and “AI in 
healthcare” in 2023 retrieved 817 and 4,076 papers, respec-
tively.

EHRs are the primary source of medical big data. They typi-
cally comprise medical histories of patients, demographic de-
tails, medications, immunizations, test results, and progress 
notes. EHR data comprise seven data types: numerical, categori-
cal, text, image, video, speech, and signal data. The fields of ap-
plication vary depending on the data type, and the preprocess-
ing techniques for AI differ accordingly. Detailed information is 
summarized in Table 1. To generate qualified big data from 
EHRs, stringent quality metrics, clinical guidelines, and data ex-
traction methods are essential. Numerous documents provide 
guidance on these processes [2-7].

In laboratory medicine, clinical test results are mostly com-
posed of structured data, which can be numerical or categorical. 
Although structured data are easier to analyze and manipulate 
because of their standardized nature, real-world numerical data 
in laboratory medicine still have limitations when utilized in big 
data applications. The major challenge arises from the lack of 
standardized test methods and reporting, which complicates the 
comparison of results across healthcare institutions. Moreover, 
instances may arise where the quality of reagents used in tests 
or the quality of the testing facility falls below standard. Current 
EHR data are of insufficient quality and hardly usable for big-
data research. To accumulate clean data suitable for big data 
research, efforts must focus on constructing a “qualified data-

base” [8, 9].
In the era of Industry 3.0, doctors requested laboratory tests 

and interpreted results based on their expertise, commonly 
known as the “brain-to-brain loop.” However, in the Industry 4.0 
era, i.e., in the healthcare big data and AI era, we are confident 
that big data will replace the knowledge of doctors, establishing 
a “big data-to-big data loop” (Fig. 2). In this review, we discuss 
the essential components that real-world laboratory data, partic-
ularly quantitative results, require for integration into big data. 
These include terminology standards, data format standards, 
equation standards, standardization and harmonization of labo-
ratory results, transference of laboratory results, adjustment of 
laboratory results, and certification of laboratory outcomes (Fig. 
3).

TERMINOLOGY STANDARDS

The first requirement for establishing laboratory big data is the 
use of terminology standards, including Logical Observation 
Identifiers Names and Codes (LOINC) and Systematized Medical 
Nomenclature for Medicine Clinical Terminology (SNOMED CT) 
for coding laboratory requests and reporting results.

A LOINC term comprises a LOINC code and a corresponding 
fully specified name (FSN). The LOINC code serves as a unique, 
permanent identifier. The FSN consists of five or six primary 
components: the name of the component or analyte measured 
(e.g., albumin, vancomycin), the property observed (e.g., sub-
stance concentration, mass, volume), the temporal aspect of 
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Fig. 1. Improving patient outcomes through analytics performed on big data gathered from various sources.
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Table 1. Key data types, preprocessing techniques, and applications for artificial intelligence in electronic health records

Data type Examples of data Preprocessing techniques Applications

Numerical Clinically measured parameters (e.g., blood 
pressure level, blood glucose level)

Outlier removal, imputation for missing 
value, scaling (standardization, 
normalization)

Disease/patient status identification, disease occurrence 
prediction, clinical outcome estimation/prediction, 
numerical abnormality detection, reasoning of contributing 
factors to outcomes

Categorical Coded parameters (e.g., patient type,  
disease code)

Imputation for missing value, encoding Same as for numerical data

Text Nursing note, doctor’s note, manual error 
report

Tokenization, non-words removal, 
vectorization (e.g., bag of words, term 
frequency-inverse document frequency, 
word embedding)

Generating report, disease/patient status identification, 
disease occurrence prediction, reasoning of contributing 
factors to outcomes

Image X-ray, CT, MRI, PET, US (image), tissue image, 
skin photography

Image conversion (e.g., resampling, bit-
depth conversion, domain transformation, 
normalization, regularization), image 
processing (e.g., noise reduction, image 
quality enhancement, image restoration, 
segmentation), recognition/feature 
extraction (e.g., region of interest, object/
situation, feature)

Improving traditional image processing technology, 
identification/classification (e.g., cell type),  
counting/enumeration (e.g., cell, chromosome),  
numerical estimation (e.g., ventricular volume,  
lung volume), disease/patient status identification, 
reasoning of contributing factors to outcomes,  
data curation (e.g., annotation, labeling, description)

Video US (video), echo, endo, telemedicine/
teleconsultation, surgical video, video for 
medical education

Same as for image preprocessing 
and  
frame processing (e.g., frame extraction 
and selection, temporal resampling, 
temporal segmentation)

Same as for image data  
and  
captioning

Speech Psychiatric consultation, diagnostic 
conversation

Traditional audio processing (e.g., noise 
reduction, normalization, feature 
extraction, segmentation. domain 
transformation)

Generating reports, speech-to-text transformation for 
medical dialogue, disease identification using voice or 
contents

Signal Auscultation (heart and lung sound), ECG, 
EEG, EMG, EOG, snoring

Signal conversion (e.g., resampling, bit-
depth conversion, domain transformation, 
normalization, regularization), signal 
conditioning (e.g., noise reduction, signal 
quality enhancement, signal restoration), 
feature extraction (e.g., QRS complex)

Improving traditional bio-signal processing technologies, 
disease/patient status identification, clinical outcome 
prediction, reasoning of contributing factors to outcomes, 
data curation (e.g., annotation, labeling)

Abbreviations: CT, computed tomography; MRI, magnetic resonance imaging; PET, positron emission tomography; US, ultrasound; ECG, electrocardiography; 
EEG, electroencephalography; EMG, electromyography; EOG, electrooculography; Echo, echocardiography; Endo, endoscopic imaging; QRS, Q, R, and S 
waves.
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Fig. 2. ‘Big data-to-big data loop’ of 
laboratory tests in the Industry 4.0 era.
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the measurement (e.g., over a period or at a specific moment), 
the system or sample type (e.g., plasma, urine), the measure-
ment scale (e.g., qualitative vs. quantitative), and, where appli-
cable, the method of measurement (e.g., chemiluminescence 
immunoassay, mass spectrometry) [10, 11]. LOINC was initiated 
by Dr. Clem McDonald in 1994, and updates are released bian-
nually (in February and August). LOINC v2.77, distributed in Feb-
ruary 2024, contains 102,465 terms and has been translated 
into 20 languages, including Korean [11].

Mapping LOINC codes to each institution’s codes is a vast and 
tedious task; thus, developers have created automated mapping 
tools based on various methods, such as using medical device 
identifiers or machine learning [12-14]. However, none of these 
tools have demonstrated an adequate level of accuracy for prac-
tical use.

The problem lies in the low accuracy of LOINC mapping within 
laboratories. In a 2018 College of American Pathologists (CAP) 
coagulation and cardiac markers survey of 1,916 laboratories, 
out of 275 reported LOINC codes, 54 (19.6%) were incorrect, 
and two codes (5934-2 and 12345-1) (0.7%) were not found in 
the LOINC database [15]. In a LOINC mapping accuracy evalua-
tion conducted by three major institutions in the United States 
(ARUP, Intermountain, and Regenstrief), out of 884 test codes 
evaluated, four tests were mapped to completely unrelated 
LOINC codes, and 36 tests had at least one error in the mapping 
to one or more of the six LOINC axes [16]. In another study in 

the United States targeting quantitative tests registered in 
PCORnet, a large-scale research consortium of more than 60 in-
stitutions, the reported error rate for LOINC mapping was 4.6% 
(0.4% for clinical chemistry tests and 7.5% for hematology tests) 
[17]. When comparing LOINC mappings prepared for the clinical 
data model for tests commonly conducted in seven major uni-
versity hospitals in South Korea, 169 out of 961 LOINC codes 
(17.6%) did not match [unpublished data].

The primary reasons for LOINC mapping errors are the ab-
sence of a LOINC code for the test, omission or neglect of LOINC 
mapping by the institution, or incorrect mapping to a similar 
code that is not the gold standard [18]. In Korea, rather than re-
lying on the less accurate bottom-up approach, where each 
medical institution manually maps LOINC codes, plans are un-
derway to introduce LOINC mapping codes to each institution 
through a top-down approach via a proficiency testing (PT) pro-
vider, the Korean Association of External Quality Assessment 
Service (KEQAS). In this approach, each laboratory enters their 
test local codes for the PT tests. Then, the KEQAS links the cor-
responding LOINC codes to these test codes and provides them 
to the laboratories. This approach has the advantage of accu-
rate LOINC mapping for common tests, but it cannot be applied 
to tests not available through the PT provider via external quality 
assessment (EQA). Similarly, the Royal College of Pathologists of 
Australasia Quality Assurance Programs has implemented Infor-
matics External Quality Assurance as a pilot program. In this 
project, using the Health Level Seven (HL7) v2.4 transmission 
standard, laboratories send EQA test results mapped to LOINC 
to the PT provider [19].

SNOMED CT is a standard terminology for the laboratory test 
field that can be utilized for test naming, result reporting, and 
the coding of clinical concepts, such as clinical findings, body 
sites, and specimen types [20]. Originating in 1965 as the Sys-
tematized Nomenclature of Pathology, SNOMED CT has evolved 
into an international terminology that includes all medical spe-
cialties. It comprises over 352,000 concepts, including clinical 
findings (32%), procedures (18%), and body structures (11%). 
Unlike LOINC, concepts are arranged hierarchically, with relation-
ships to similar concepts displaying varying degrees of specific-
ity [20]. SNOMED CT enables the creation of new codes by com-
bining concepts (post-coordinated codes) in addition to using 
pre-coordinated codes. It remains the preferred terminology for 
result reporting, result interpretation, and specifying specimen 
type, source, and condition acceptability in the United States 
Core Data for Interoperability.

In Australia, the Royal College of Pathologists of Australasia 
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data.



Kim S, et al.
Toward high-quality laboratory big data

https://doi.org/10.3343/alm.2024.0258 www.annlabmed.org    5

has been leading the Pathology Terminology and Information 
Standardisation Projects since 2011 [21]. The standards devel-
oped here include test terminology used in Australia, standard-
ized units, secure reporting rendering, information models, har-
monized reference intervals, and best practice guidelines for 
safe pathology requests and reporting. Laboratories are required 
to use SNOMED CT for requesting tests and standardize report-
ing using LOINC codes for the test result name [21].

DATA FORMAT STANDARDS

The second requirement for establishing laboratory big data is 
the standardization of reporting units and unit sizes (i.e., the 
number of significant figures; integers or decimal places) for re-
porting test results. An international standard for reporting test 
results is lacking, and most countries have no national stan-
dards [19, 22].

Cho, et al. [23] examined the reporting units and significant 
figures for 99 clinical chemistry tests across 99 Korean labora-
tories. They discovered that for 93 tests (93.9%), >80% of labo-
ratories utilized the same units, whereas only 46 tests (46.5%) 
had consistent units across all laboratories. For high-sensitive 
troponin I, although clinical guidelines [24, 25] recommend report-
ing results in ng/L, 52% of the Korean institutions used ng/mL. 
Failure to consider the units used by institutions when compar-
ing troponin results among laboratories may lead to errors in 
data integration [23]. Similarly, in a troponin survey conducted 
in Europe, diverse units were utilized  [26, 27]. Thus, standardiz-
ing units remains a global challenge.

One solution to this issue involves emulating the approach in 
Australia of nationally standardizing appropriate units for each 
test item [28]. Alternatively, EQA providers could designate suit-
able reporting units for each test and receive EQA results from 
participating laboratories in a uniform manner, with laboratories 
adhering to the reporting format specified by the EQA provider. 
KEQAS allows only one unit per test, whereas the American EQA 
provider, CAP, permits multiple units for a single test. Reaching a 
consensus among international EQA providers regarding stan-
dard reporting units would be beneficial.

When reporting quantitative test results, determining the clini-
cally or statistically appropriate number of significant figures 
presents challenges. In cases where clinical guidelines specify 
the reporting unit size, adherence to these guidelines is advis-
able. For instance, serum creatinine is recommended to be re-
ported as an integer (μmol/L) or with two decimal places (mg/
dL), the estimated glomerular filtration rate (eGFR) as an integer 

(mL/min/1.73 m2) [29], cardiac troponin as an integer (ng/L) 
[24, 25], and HbA1c with one decimal place (mmol/L or %) [30]. 
For tests not specified in clinical guidelines, given the variety of 
instruments and reagents used in laboratories and the consid-
eration of measurement uncertainty, further research is re-
quired to determine the appropriate number of decimal places 
for reporting results [23]. However, when the performance of 
testing instruments and reagents do not significantly differ, rele-
vant professional societies or EQA providers may recommend 
suitable decimal places. In this context, the safety of result inter-
pretation must be considered [31].

EQUATION STANDARDS

Test results such as calculated low-density lipoprotein choles-
terol (LDL-C), total globulins, unconjugated bilirubin, corrected 
total calcium, international normalized ratio, creatinine clear-
ance, plasma osmolality, and anion gap can be obtained using 
specific tests’ results. Additionally, analyzers, especially hema-
tology and blood gas analyzers, calculate and report various test 
results, such as mean corpuscular volume, mean corpuscular 
hemoglobin (Hb), and mean corpuscular Hb concentration 
HCO3

– [32].
Most calculated tests are based on a single formula, but for 

some specific tests, multiple formulas are used. For example, in 
clinical settings, two methods are used to calculate the anion 
gap; one includes the potassium value, whereas the other does 
not [33]. Including results from both anion gap formulas in labo-
ratory big data may decrease the accuracy of analyses. Similarly, 
multiple formulas exist for calculating LDL-C [34, 35].

The GFR is widely accepted as the best overall measure of 
kidney function with a single numeric expression. Creatinine-
based eGFR calculations are widely used in clinical practice 
globally. However, there are various formulas for calculating the 
eGFR, and new formulas are continually being developed and 
evaluated [36-41]. Values can significantly differ depending on 
the formula used.

Jeong, et al. [42] compared the Modification of Diet in Renal 
Disease (MDRD) and Chronic Kidney Disease Epidemiology Col-
laboration (CKD-EPI) equations in 5,822 Koreans. They found a 
significant difference between the two formulas at stages 1, 2, 
and 3 of chronic kidney disease (CKD). Levey, et al. [43], using 
data from the National Health and Nutrition Examination Survey 
(NHANES) from 1999–2006, and Stevens, et al. [44], in a study 
involving 116,321 participants from the Kidney Early Evaluation 
Program, reported differences in the prevalence of CKD when 
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using the MDRD and CKD-EPI formulas. Accordingly, using both 
formulas interchangeably in big data analyses is inappropriate. 
To include creatinine-based eGFR or anion gap in big data, labo-
ratories must clearly indicate the specific equation used when 
reporting results. Converting and utilizing the necessary data 
with a different formula would be straightforward.

LABORATORY RESULT STANDARDIZATION AND 
HARMONIZATION

The term “standardization” has traditionally been used when 
equivalent results, within medically meaningful limits, are 
achieved among different measurement procedures through 
calibration traceable to a reference measurement procedure or 
certified reference material [45]. International Organization for 
Standardization (ISO) standard 17511 outlines five reference 
system categories. Categories 1, 2, and 3, which have a defined 
reference method, are classified for standardization, whereas 
the other categories are aimed at harmonization [46]. The Joint 
Committee for Traceability in Laboratory Medicine (JCTLM) is the 
international organization responsible for standardization. As of 
April 2024, the JCTLM database comprises 291 entries of avail-
able higher-order certified reference materials, representing 
180 measurands across 12 analyte categories. Additionally, it 
includes 234 reference measurement methods, representing 
110 measurands in 10 analyte categories [47]. In Korea, signifi-
cant efforts are being made to standardize tests through various 
activities [48-50]. A reference method, because of its time-con-
suming, labor-intensive nature, is impractical for routine work. 
Instead, laboratories indirectly assess the accuracy of their test 
results through accuracy-based PT [51, 52]. For standardized 
test items, all qualified results theoretically can be included in 
laboratory big data. However, although the tests are considered 
standardized, the degree of standardization in the real world 
may vary by region, and clinical pathologists should be aware of 
this [53].

Harmonization is a generalization of the concept of standard-
ization aimed at achieving equivalent results, within medically 
meaningful limits, among different measurement procedures 
using a scientifically sound approach [45]. This does not neces-
sarily involve standardizing the entire testing process but align-
ing outcomes to be clinically comparable [46]. Harmonization 
does not rely on the availability of primary reference materials or 
primary reference measurement procedures. It includes stan-
dardization and addresses tests that cannot be calibrated 
through traceability to a primary reference measurement. The 

International Consortium for Harmonization of Clinical Labora-
tory Results is responsible for harmonization.

The harmonization status of test items can be assessed using 
PT. Currently, most harmonization tests are conducted within 
peer groups rather than the total group to ensure accurate com-
parisons of performance metrics. Tests that can theoretically be 
harmonized within a total group include the following categories. 
The first category includes tests for which most laboratories uti-
lize the same test method, such as protein testing with the biu-
ret method and albumin testing with bromocresol green. The 
second category includes tests predominantly supplied by a sin-
gle manufacturer, such as pro-brain natriuretic peptide and tro-
ponin I. Lastly, there are tests for which international organiza-
tions have established harmonization standards, such as thyroid 
function tests. However, even for tests within these categories, 
significant challenges arise owing to substantial variation among 
instruments or reagents [54]. Therefore, most PT providers eval-
uate PT results for such tests by dividing the total group into 
peer groups, limiting harmonization to peer groups.

From a big data perspective, the task of building comprehen-
sive laboratory big data across laboratories that use various test 
instruments yielding different test values presents significant 
challenges.

LABORATORY RESULT TRANSFERENCE

The relationship between the volume of big data and the perfor-
mance of machine learning models is a fundamental aspect of 
data science. As the amount of big data increases, the perfor-
mance of machine learning models generally significantly im-
proves [55, 56]. Additionally, larger datasets mitigate the risk of 
bias that smaller datasets might introduce, leading to more ac-
curate and robust predictions. This is particularly crucial in 
healthcare, where high accuracy is paramount.

In practical terms, in laboratory medicine, the method of 
transference through an equation is used when setting refer-
ence intervals, as introduced in CLSI guideline C28-A3c [57]. 
The best example of transference through an equation is the 
Canadian Laboratory Initiative on Pediatric Reference Intervals 
(CALIPER), whose main objective is to establish a comprehen-
sive database of reference intervals for blood test results in chil-
dren and adolescents [58]. The first comprehensive CALIPER di-
rect reference interval study was published in 2012, with age- 
and sex-specific reference intervals reported for 40 biochemical 
markers, including common chemistry markers, enzymes, lipids, 
lipoproteins, and proteins [59]. CALIPER has established a com-
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prehensive database of age- and sex-specific reference intervals 
for more than 100 pediatric disease biomarkers [58]. All direct 
reference interval studies used a robust statistical method 
based on CLSI guideline C28-A3. Most CALIPER reference inter-
vals originally established for Abbott assays have since been 
transferred to assays from other manufacturers, including Beck-
man Coulter, Ortho, Roche, and Siemens [60-63]. To transfer 
reference intervals, CALIPER uses an approach in accordance 
with CLSI guidelines C28-A3c [57] and EP09c [64].

When collecting test results from multiple institutions that em-
ploy technologies from various manufacturers to build big data, 
performing transference ensures that test outcomes resemble 
those obtained with representative test methods, as demon-
strated in the CALIPER study [58]. This approach facilitates the 
integration of all test results into big data, thereby improving 
performance of machine learning and big data

However, merely possessing more data does not automati-
cally guarantee improved performance; the quality of data, their 
relevance to the problem at hand, and the capability of machine 
learning algorithms to efficiently learn from large volumes of 
data are equally critical [65, 66].

LABORATORY RESULT ADJUSTMENT

Laboratory big data are accumulated over a long period utilizing 
various calibrators and reagents. However, manufacturing condi-
tions may not always be identical between different batches in 
producing, leading to lot-to-lot variations [67].

Clinically significant lot-to-lot variation, when undetected, may 
affect test outcomes, potentially leading to incorrect patient di-
agnoses and posing a risk to patient care. Test results can vary 
depending on the lot [68-72]. Thaler, et al. [69] reported a 0.5% 
difference in two immunoturbidimetric HbA1c reagents due to 
lot-to-lot variation and found that lot-to-lot variation in these 
tests can lead to patients being incorrectly diagnosed as having 
diabetes mellitus and erroneously medicated [69]. Kim, et al. 
[70] analyzed the accuracy-based total cholesterol PT in the 
KEQAS from 2016 to 2018 and observed that the average per-
cent bias across all participants was +0.14%. However, institu-
tions using Roche products during that period exhibited an aver-
age bias of –3.0%. This negative bias for Roche products per-
sisted until 2020. In response, Roche adjusted the total choles-
terol calibrator set point by +2.4% in early 2021. Subsequent PT 
results indicated the correction of the negative bias in accuracy-
based total cholesterol PT. When integrating total cholesterol re-
sults obtained using Roche products during the period of nega-

tive bias into big data, adjusting the values is essential for the 
accuracy of the big data.

In national surveys conducted over a long period, lot-to-lot re-
agent variations can lead to inconsistencies in test results. 
Hence, adjustments are required when such variations occur. 
There have been cases where the results of long-term national 
surveys have been adjusted using calibration equations. For ex-
ample, in the NHANES conducted by the Centers for Disease 
Control and Prevention (CDC) in the United States since 1971, 
values for serum creatinine, cystatin C, high-density lipoprotein 
cholesterol (HDL-C), and 25-hydroxyvitamin D have been cor-
rected using calibration equations [73-75]. In the Korea 
NHANES, HDL-C values from 2008–2015 showed substantial 
positive bias when compared with the CDC reference method 
values. To address this issue, the original HDL-C values were ad-
justed to CDC reference method values using calibration equa-
tions [76].

Lot-to-lot verification in laboratory medicine is a crucial aspect 
of monitoring the long-term stability of a measurement proce-
dure. In current practice, subsequent reagent lots are generally 
compared with each other [77]. CLSI EP-26A provides an exten-
sive description of this approach using patient samples to com-
pare subsequent lots [78]. Additionally, EP-31-A-IR provides 
guidance on how laboratories can verify the comparability of in-
dividual patient results within a healthcare system [79]. The 
practice is challenged by resource requirements and uncertainty 
regarding the experimental design and statistical analysis that 
are optimal for individual laboratories [80].

When constructing accurate big data, maintaining long-term 
test result stability is crucial. Laboratories must identify lots with 
variations and refrain from using such lots to ensure consistent 
test outcomes. Loh, et al. [80] suggested that collaborations 
among all stakeholders, including regulatory bodies, manufac-
turers, and laboratory medicine institutions, are key to develop-
ing a balanced system whereby regulatory, manufacturing, and 
clinical requirements are met to minimize differences among re-
agent lots and ensure patient safety.

Since 2011, Korean Society of Laboratory Medicine has col-
laborated with the Korea Disease Control and Prevention Agency 
to implement the Academia–Government Collaboration for Lab-
oratory Medicine Standardization in Korea. This initiative aims to 
standardize several tests, including creatinine, total cholesterol, 
LDL-C, HDL-C, triglyceride, and HbA1c tests. Additionally, since 
2017, they have been evaluating and issuing certificates for 
each combination of calibrator lot, reagent lot, and instrument 
[48].
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When testing is performed using lots for which undetected lot-
to-lot variation exists, considering methods to adjust or modify 
test values becomes essential. For this purpose, data elements 
required for each test result include test analyzer, test method, 
calibrator lot number, calibration value for each test, reagent lot 
number, slope factor, interceptor factor, and software version of 
the instrument, to facilitate result adjustment or transference.

DATA CERTIFICATION

For building big data based on real-world laboratory results, data 
reliability is more crucial. [52]. To achieve high-quality outcomes 
through big data analysis, only high-quality data should be used. 
The certification of laboratory data, achieved through the peri-
odic reanalysis of accumulated EQA data, could be an option for 
evaluating the quality of laboratory results [52].

Cho, et al. [81] compared the results of participants for seven 
tests using EQA data. Institutions with low-quality ratings exhib-
ited significantly biased results. They noted that the EQA results 
of participants could be used as surrogates for the quality of 
real-world patient data. EQA evaluates results at a single point in 
time, and many laboratories tend to adhere to relatively lenient 
criteria in their evaluations. Therefore, passing the EQA criteria 
does not guarantee the highest data quality. Hence, not all data 
that pass EQA criteria are suitable for building big data. There-
fore, when constructing laboratory big data architecture, evalu-
ating the data quality for big data analysis and excluding low-
quality data is imperative.

Kim, et al. [52] proposed a model for reanalyzing EQA results 
to evaluate real-world laboratory results for big data research, 
emphasizing the reliability of laboratory results for quality man-
agement in big data research. Furthermore, they advocated for 
implementing a certification system for laboratory data quality 
at the national level.

CONCLUSIONS

With Industry 4.0, integrating real-world laboratory data into 
high-quality big data is essential but presents challenges like 
unstandardized terminology and insufficient result harmoniza-
tion. This review highlights the key elements needed to build 
high-quality medical big data, emphasizing the vital role of labo-
ratory medicine professionals in preparing for the healthcare big 
data and AI era.
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