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We explored the utility of cerebrospinal fluid (CSF) circulating tumor DNA (ctDNA) sequenc-
ing as a noninvasive diagnostic tool for detecting central nervous system (CNS) involve-
ment in patients with diffuse large B-cell lymphoma (DLBCL). Secondary CNS involvement 
in DLBCL, although rare (~5% of cases), presents diagnostic and prognostic challenges 
during systemic disease progression or relapse. Effective treatment is impeded by the 
blood–brain barrier. This was a prospective cohort study (Samsung Lymphoma Cohort 
Study III) involving 17 patients with confirmed CNS involvement. High-throughput sequenc-
ing was conducted using targeted gene panels designed to detect low-frequency variants 
and copy number alterations pertinent to lymphomas in ctDNA extracted from archived 
CSF samples. Despite challenges such as low DNA concentrations affecting library con-
struction, the overall variant detection rate was 76%. Detected variants included those in 
genes commonly implicated in CNS lymphoma, such as MYD88. The study highlights the 
potential of CSF ctDNA sequencing to identify CNS involvement in DLBCL, providing a 
promising alternative to more invasive diagnostic methods such as brain biopsy, which are 
not always feasible. Further validation is necessary to establish the clinical utility of this 
method, which could significantly enhance the management and outcomes of DLBCL pa-
tients with suspected CNS involvement.
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always feasible, and conventional cerebrospinal fluid (CSF) anal-
yses via cytopathology or flow cytometry and diagnostic mag-
netic resonance imaging (MRI) have shown suboptimal sensitiv-
ity and discriminative capacity to enable the diagnosis of CNS 
involvement without tissue confirmation. The development of 
methods that overcome these limitations and allow reliable non-
invasive identification of CNS involvement would be transforma-
tive for the clinical care of patients with suspected secondary 
CNS involvement by DLBCL.

Liquid biopsy, which involves analyzing circulating tumor DNA 
(ctDNA) in the blood or body fluid, is revolutionizing cancer diag-
nosis and surveillance. ctDNA originating from tumor tissue or 
lysed circulating tumor cells offers a noninvasive method for 
monitoring cancer progression and treatment responses [7]. Ad-
vances in next-generation sequencing (NGS) have enabled the 
analysis of variants in ctDNA, allowing tumor genotyping using 
blood samples [8]. High-throughput ctDNA sequencing can pro-
vide comprehensive genetic information regarding the tumor, 
serving as a surrogate for sequencing the entire tumor genome. 
This approach holds promise for the identification of therapeutic 
targets and early detection of relapse or residual disease. We 
have shown that ctDNA can be detected in plasma from patients 
with various subtypes of B-, T- or NK-cell lymphomas, correlating 
with tumor volume and patient outcomes [9-12]. However, only 
a minority of patients with primary CNS B-cell lymphomas have 
detectable ctDNA in their plasma, possibly because of the 

blood–brain barrier [13]. Consequently, ctDNA from CSF has 
emerged as a promising biomarker for CNS involvement of B-cell 
lymphomas. In this study, we optimized a customized targeted 
sequencing approach to achieve ultrasensitive ctDNA profiling 
and investigated its potential for identifying CNS involvement 
without the need for biopsy.

We analyzed archived CSF samples collected between July 
2020 and October 2022 from patients diagnosed as having 
large B-cell lymphoma who participated in a prospective cohort 
study (Samsung Lymphoma Cohort Study III, Institutional Review 
Board of Samsung Medical Center, File No. SMC 2017-12-068; 
ClinicalTrials.gov Identifier: NCT03117036). All patients were 
pathologically confirmed as having large B-cell lymphoma using 
immunohistochemistry [14]. As we monitored the patients en-
rolled, we identified those suspected of CNS involvement either 
based on clinical neurological symptoms and/or manifestations 
or radiologically by detecting parenchymal or leptomeningeal ab-
normalities in the brain or spine MRI scans. From these patients, 
we collected CSF samples in EDTA tubes via lumbar puncture or 
using an Ommaya reservoir (Integra LifeSciences, Inc., Prince-
ton, NJ, USA). The samples were aliquoted into cryotubes and 
stored at −80°C until analysis. We selected a cohort of 17 pa-
tients with confirmed CNS involvement for a detailed study. CNS 
involvement was confirmed via brain biopsy in cases of paren-
chymal abnormalities and via cytological CSF examination for 
leptomeningeal cases. Patients with leptomeningeal involve-
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Fig. 1. Study flow. 
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ment who were cytology-negative were identified based on their 
response to CNS-directed therapy and imaging findings. We 
monitored all patients’ clinical outcomes, including survival sta-
tus, via follow-up MRI. 

We extracted cell-free DNA (cfDNA) from 1.0–1.5 mL of CSF 
using a MagMAX Cell-Free Total Nucleic Acid Isolation Kit 
(Thermo Fisher Scientific, Waltham, MA, USA). DNA yield and 
size distribution were assessed using a TapeStation 4150 instru-
ment (Agilent Technologies, Santa Clara, CA, USA) and Qubit 4.0 
fluorometer (Thermo Fisher Scientific). We utilized 0.04–40 ng 
of DNA for library construction. The DNA was ligated using a 
Twist MF Library prep Kit (Twist Bioscience, San Francisco, USA) 
with Illumina adapters and indexed with unique dual indices for 
duplex sequencing (Illumina, San Diego, CA, USA). The sequenc-
ing libraries were hybridized with custom probes targeting 112 
genes known to be mutated in lymphomas (Supplemental Data 
Table S1). Pooled libraries were paired-end sequenced (2×150 

bp) on the NovaSeq 6000 System (Illumina, San Diego, CA, 
USA). Single-nucleotide variants (SNVs) and insertions/deletions 
were called using PiSeq (Dxome, Sungnam, Korea) to differenti-
ate low-frequency variants from amplification artifacts and se-
quencing errors. The analytical sensitivity for SNVs was assumed 
to be 0.24% [15]. Copy number alterations were identified using 
ExomeDepth and a custom tool. Variants were visually con-
firmed using Integrative Genome Viewer (Broad Institute, Cam-
bridge, MA, USA). The variant allele frequency (%) was calculated 
as the number of sequencing reads of a specific DNA variant di-
vided by the overall coverage at that locus.

We analyzed 17 patients with CNS involvement who had CSF 
samples available for targeted sequencing (Fig. 1). Fourteen pa-
tients had systemic DLBCL with secondary CNS involvement, 
such as isolated CNS relapse or disease progression including 
the CNS, whereas three had primary CNS lymphoma (Table 1). 
However, their CSF cytology showed negative results although 

Table 1. Patient clinical characteristics at CSF sampling time and CSF ctDNA detection

Case 
No.

Age 
(yrs) Sex Diagnosis Clinical history of CNS involvement Radiologic CNS

involvement pattern
CSF 

cytology CSF ctDNA Survival

1 72 M DLBCL, ABC type RCHOP 6 cycles for stage I → Isolated CNS relapse Leptomeninges Negative Not detected- Dead

2 54 M DLBCL, ABC type RCHOP 6 cycles for stage 4 → Isolated CNS relapse Parenchyma+Leptomeninges Positive Detected Dead

3 41 M DLBCL, ABC type RCHOP 6 cycles for stage 1 → Isolated CNS relapse Leptomeninges Positive Detected Alive

4 34 M Primary CNS DLBCL Primary CNS involvement Parenchyma Negative Detected Alive

5 57 F DLBCL, ABC type RCHOP 6 cycles for stage 1 → Isolated CNS relapse Parenchyma Positive Detected Dead

6 39 F DLBCL, GC type RCHOP 6 cycles for stage 4 → Systemic relapse →  
ICED followed by ASCT → Systemic relapse with CNS 
involvement

Leptomeninges Negative Library construction 
failed

Dead

7 73 M DLBCL, GC type RCHOP 6 cycles for stage 3 → Isolated CNS relapse Leptomeninges Positive Detected Dead

8 61 M DLBCL, ABC type RCHOP 6 cycles for stage 2 → Isolated CNS relapse Parenchyma Positive Not detected Alive

9 40 M DLBCL, GC type RCHOP 3 cycles for stage 4 → Progression with CNS 
involvement

Leptomeninges Positive Detected Dead

10 72 M DLBCL, ABC type RCHOP 6 cycles for stage 4 → Isolated CNS relapse Leptomeninges Negative Detected Dead

11 52 M DLBCL, GC type RCHOP 6 cycles for stage 4 → Systemic relapse with 
CNS involvement

Parenchyma+Leptomeninges Negative Not detected Dead

12 72 M Primary CNS DLBCL Primary CNS involvement Parenchyma Negative Detected Alive

13 53 M DLBCL, ABC type RCHOP 2 cycles for stage 4 → Progression with CNS 
involvement

Parenchyma Negative Detected Dead

14 73 F DLBCL, GC type RCHOP 3 cycles for stage 4 → Isolated CNS relapse Parenchyma+Leptomeninges Negative Detected Dead

15 71 M Primary CNS DLBCL Primary CNS involvement Parenchyma+Leptomeninges Negative Detected Dead

16 41 F DLBCL, ABC type RCHOP 6 cycles for stage 4 → Systemic relapse with 
CNS involvement

Parenchyma+Leptomeninges Positive Detected Dead

17 68 F DLBCL, ABC type RCHOP 6 cycles for stage 4 → Isolated CNS relapse Parenchyma Negative Detected Dead

Abbreviations: CSF, cerebrospinal fluid; ctDNA; circulating tumor DNA; DLBCL, diffuse large B-cell lymphoma; ABC, activated B-cell like; GC, germinal center; 
CNS, central nervous system; RCHOP, rituximab, cyclophosphamide, doxorubicin, vincristine, prednisolone.
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they were suspicious of CNS involvement, such as radiological 
leptomeningeal involvement in more than half of the cases. The 
average sequencing coverage depth for CSF samples was 
53,733×  (range, 12,563–90,023× ). The median cfDNA con-
centration was 45.85 ng/mL (2.15–12,000 ng/mL). Library 
construction failed for one sample with the lowest cfDNA con-
centration (2.15 ng/mL, case No. 6), and variants were not de-
tected in three other patients (case Nos. 1, 8, and 11). The over-
all variant detection rate was 76% (13/17, Fig. 1). In total, 182 
variants were detected in 13 patients, with the most common 
variants occurring in KMT2D, HIST1H1, PIM1, and MYD88 (Fig. 
2A). CSF samples from two patients (case Nos. 9 and 16) were 
collected serially, with consistent ctDNA variant profiles (Fig. 2B). 
The inability to detect variants or successfully prepare libraries 
was significantly associated with the DNA concentration in the 
CSF (Fig. 2C).

The feasibility of detecting ctDNA in the CSF of patients with 
large B-cell lymphoma involving the CNS is an area of active re-

search. CNS involvement in large B-cell lymphoma presents di-
agnostic and therapeutic challenges, and the ability to detect tu-
mor-specific DNA in the CSF may offer valuable insights for diag-
nosis, monitoring, and treatment decisions. Droplet digital poly-
merase chain reaction demonstrated a 71% detection rate (10 
of 14 cell-free CSF samples) for MYD88 variants in patients with 
primary CNS lymphoma [16]. A later study reported a slightly 
higher detection rate of 76.9% (20 of 26 cases) in a similar co-
hort [17]. However, these studies were limited to specific vari-
ants, such as the MYD88 variant. Given the variety of variants 
present in systemic DLBCL, a broader genetic analysis is recom-
mended. For instance, a Spanish study employing a 300-gene 
panel assessed the feasibility and utility of ctDNA detection in 
CSF for both primary CNS lymphoma and systemic lymphoma 
with secondary CNS involvement [18]. Variants were success-
fully detected in all six patients with CNS involvement [18]. A re-
cent study using CSF samples from 92 patients reported a 
100% variant detection rate using cancer personalized profiling 
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by deep sequencing (CAPP-Seq) for primary CNS lymphoma or 
secondary CNS involvement [19]. Despite its effectiveness, 
CAPP-Seq may not be universally available, making targeted se-
quencing of a large number of genes a more practical option in 
some settings. Our variant detection rate aligns with these find-
ings, and our study provides a feasible approach for routine clini-
cal application.

Despite its promising performance in variant detection, CSF 
ctDNA analysis still has some challenges. One challenge is the 
low concentration of ctDNA in CSF compared to that in periph-
eral blood, hampering detection [20]. Additionally, distinguishing 
tumor-derived DNA from background DNA released from normal 
cells in the CNS presents a challenge, especially considering the 
potential for contamination from blood or other sources during 
CSF collection. Despite these challenges, advancements in NGS 
techniques have improved the ctDNA detection sensitivity, en-
abling researchers to detect tumor-specific variants in CSF sam-
ples. 

Our study demonstrated the feasibility of CSF ctDNA sequenc-
ing as a diagnostic tool for detecting CNS involvement in DLBCL 
despite most patients showing negative CSF cytological results. 
The development of early detection methods for identifying tu-
mor cells in CSF may significantly impact treatment strategies 
for patients with systemic DLBCL. This would enable the initia-
tion of targeted therapies for patients who are CSF cytology-neg-
ative yet suspected of CNS involvement, potentially altering their 
disease course. Advancements in CSF-based targeted sequenc-
ing may help in predicting the risk of CNS relapse or progression 
in patients with systemic DLBCL, facilitating the development of 
preemptive strategies for those at high risk. Given these poten-
tial benefits, there is a pressing need for further research to en-
hance the feasibility and accuracy of CSF targeted sequencing. 
This may ultimately lead to more precise and effective manage-
ment of patients with DLBCL with or at risk of CNS involvement.

SUPPLEMENTARY MATERIALS

Supplementary materials can be found via https://doi.
org/10.3343/alm.2024.0257
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