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INTRODUCTION

In recent decades, machine learning (ML) has significantly ad-
vanced in terms of analytical and predictive capabilities, estab-
lishing itself as a vital tool across various fields. Developments 
in big data and high-performance computing have significantly 
improved the performance of ML algorithms, thereby enabling 
more effective methods for addressing complex challenges. The 
ability of ML to analyze large datasets and identify patterns can 
assist clinicians in diagnosis and prediction of clinical outcomes. 
ML applications have been investigated in various areas, includ-
ing medical-image analysis, patient prognosis, and personalized 

treatment planning. A few models have been approved by the 
Food and Drug Administration, commercialized, and imple-
mented in clinical practice [1, 2].

Additionally, ML has been investigated in laboratory medicine 
[3-5] to reduce errors and enhance the accuracy and reliability 
of test results. ML processes or analyzes large datasets, which 
facilitates the extraction of meaningful information that would 
otherwise require extensive manual effort. For example, ML has 
improved the efficiency of repetitive or manually-intensive tasks, 
such as validating general chemistry test results or analyzing 
blood cells and urine cultures [6, 7]. Owing to its inference and 
big data analytical capabilities, ML can substantially enhance 
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laboratory medicine by effectively managing diverse data types 
frequently analyzed in healthcare.

In this review, we comprehensively assessed the current state 
of ML applications in laboratory medicine. We explored the ma-
jor uses of ML, the data types processed, the results obtained, 
and the characteristics and considerations for implementing 
major ML models. Based on these findings, we also examined 
existing research challenges and identified potential future de-
velopmental trends.

RESEARCH METHODOLOGY

Literature search and screening
We searched PubMed for original articles that utilized ML in lab-
oratory medicine and were published between February 2014 
and March 2024. The search string was generated by combining 
words related to laboratory medicine with keywords related to 
ML and excluding unrelated topics (e.g., coronavirus disease 
2019 [COVID-19], genome, magnetic resonance imaging, com-
puted tomography, ultrasound, electrocardiography, and electro-
encephalography). The search strategy is detailed in the Supple-
mental Data. We initially retrieved 779 articles. A clinical pathol-
ogist first excluded articles outside the scope of laboratory med-
icine based on their title and abstract. Articles meeting the pri-
mary screening were subjected to a full-text review. The exclu-
sion criteria in the secondary screening included: (i) data were 
not used in a clinical laboratory test process or did not originate 
from a laboratory test; (ii) data were unrelated to the primary du-
ties of the laboratory; (iii) laboratory results served solely for dis-
ease prediction; (iv) the ML model used was unspecified; (v) the 
full text was unavailable; (vi) the article was not written in Eng-
lish; and (vii) the article failed to present original research. When 
results were ambiguous during the secondary screening, a clini-
cal pathologist reviewed the full text to ascertain its eligibility. Fi-
nally, 144 articles were selected for our review.

Literature analysis 
The selected articles were categorized into laboratory medicine 
subspecialties based on criteria specified in a laboratory medi-
cine textbook [8]: diagnostic hematology, clinical chemistry, clini-
cal microbiology, molecular diagnostics, transfusion medicine, 
and diagnostic immunology. The full text of each article was ana-
lyzed, and the research objectives, specimen types, data types, 
ML models, evaluation metrics, and sample sizes were summa-
rized. Research objectives were categorized as “recognition” for 
identifying specific entities or performing binary classifications, 

“classification” for categorizing into three or more groups, and 
“counting” for quantifying elements such as cell counts.

“Specimen type” refers to the type of specimen used as ML 
input data and was classified by referring to the specimen type 
list in the Logical Observation Identifiers Names and Codes [9]. 
“Data type” refers to the type of material associated with the in-
put data and was categorized into image, table, sequence, and 
other types according to common classifications used in ML-
based studies. We included all ML models used for analysis and 
comparative evaluation; however, customized models were de-
scribed as base models. In such cases, popular models (e.g., 
You Only Look Once [YOLO]) [10] were described using their re-
spective names.

“Evaluation metrics” included all metrics used to assess per-
formance, excluding lesser-known metrics not typically used in 
ML studies. “Sample size” describes the total number of sam-
ples inputted into an ML model, regardless of sample type.

Sankey diagrams were used to analyze the application trends 
of ML models in laboratory medicine in terms of research objec-
tives or data types. Where further comprehensive analysis of the 
proportion of each factor was necessary, we used pie charts, 
which display proportions intuitively, to aid in understanding the 
relative importance of each item. We created Sankey diagrams 
using a web-based visualization tool (SankeyMATIC [11]) and 
created pie charts using the Matplotlib package in Python (ver-
sion 3.12.1) [12].

SUMMARY OF THE LITERATURE REVIEW 
RESULTS

Key characteristics for categorizing ML-based laboratory 
medicine research
Table 1 summarizes the key points of our literature review of ML 
in laboratory medicine, including the research objectives, speci-
men types, data types, ML models, and evaluation metrics de-
scribed in each article. The research objectives were categorized 
into 12 topics: autoverification, classification, clinical decision 
support (CDS) for laboratories, counting/enumeration, disease 
screening, error detection, estimation/prediction, recognition, 
tools based on artificial intelligence (AI), data generation/pro-
cess simulation, ML optimization, and preprocessing assistance. 
The number of input samples used for ML modeling varied 
widely among studies, i.e., 5–25 million, and was not clearly re-
ported in some cases.

The main evaluation metrics used were accuracy, sensitivity, 
specificity, and area under the ROC curve (AUROC). Accuracy re-
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fers to the percentage of correct predictions, whereas sensitivity 
(also known as recall) measures the ability of a model to identify 
true positives. Specificity measures a model’s ability to identify 
true negatives, which is useful when correct classification of 
negative cases is necessary. The AUROC is commonly used to 
comprehensively evaluate classification model performance and 
represents the true and false positive rates at different thresh-
olds. Mean squared error (MSE) is an important metric in regres-
sion analysis and refers to the average of the squared differ-
ences between predicted and actual values; a lower MSE indi-
cates greater accuracy. The mean absolute error and coefficient 
of determination were also used to evaluate performance. 
Rarely used metrics included the relative distance error for con-
tour-based measures and the mean structural similarity index 
for evaluating image similarities. Further details of our literature 
analysis are provided in Supplemental Data Table S1.

Applications of ML in laboratory medicine domains
The Sankey diagram in Fig. 1 illustrates relationships among 
representative laboratory medicine fields, the main objectives of 

using ML, and the best-performing ML models. The recognition, 
classification, and counting/enumeration categories were clas-
sified under “detection” because they serve similar purposes. 
Before the classification, these categories accounted for 24.3%, 
23.6%, and 4.7% of the overall objectives, respectively. Among 
the six laboratory medicine fields, diagnostic hematology was 
the most actively investigated area in terms of ML, representing 
48.6% of all studies evaluated in this review. Clinical chemistry 
ranked second (28.5%), followed by clinical microbiology 
(15.3%). Molecular diagnostics, transfusion medicine, and diag-
nostic immunology each constituted <3% of the total number, 
indicating that ML utilization is low in these areas. ML was pri-
marily used for detection in diagnostic hematology, constituting 
70% of all applications. The next most common use of ML was 
disease screening, representing 15% of the studies. Although 
various other purposes were reported for molecular diagnostics, 
transfusion medicine, and diagnostic immunology studies, no 
reports documented the application of ML for error detection. 
Conversely, >50% of ML applications in clinical chemistry fo-
cused on error detection or estimation/prediction.

Table 1. Categorical summary of key points from the literature review of studies applying ML in laboratory medicine from February 2014 to 
April 2024

Laboratory medicine field Research objective Specimen type Data type ML model Evaluation metric and 
performance

▪ Clinical chemistry
▪ Clinical microbiology
▪ Diagnostic hematology
▪ Diagnostic immunology
▪ Molecular diagnostics
▪ Transfusion medicine

▪ Autoverification
▪ Classification
▪ CDS for laboratories
▪ Counting/enumeration
▪ Disease screening
▪ Error detection
▪ Estimation/prediction
▪ Recognition
▪ Tools based on AI
▪ Others

· Data generation/process 
simulation

· Machine learning
· Optimization
· Preprocessing assistant

▪ Blood
· Blood image
· WBC image
· Blood cell image
· RBC image
· CGM data
· CBC data

▪Bone marrow
▪Plasma
▪Urine

· Urine sample
· Urine micrograph image
· Urine culture image

▪Others
· Bacteria
· Antibiogram
· Sperm
· Stool

▪ Image
▪ Sequence
▪ Tabular

· Numeric
· Category

▪Text

▪ CNN
▪ DNN
▪ DT
▪ MLP
▪ LR
▪ RF
▪ RNN
▪ SVM
▪ XGB
▪ Others

· CatBoost
· CNN+LSTM
· DBN
· Ensemble
· HCA
· KNN
· LLM
· PLS-DA
· UMAP

▪ AC
▪ AUROC
▪ SE
▪ SP
▪ PPV
▪ NPV
▪ F1 score
▪ FNR
▪ MSE
▪ MAE
▪ R2
▪ RMSE

Abbreviations: AC, accuracy; AI: artificial intelligence; AUROC, area under the ROC curve; CBC, complete blood count; CDS: clinical decision support; CGM, 
continuous glucose monitoring; CNN, convolutional neural network; DBN, deep belief network; DNN, deep neural network; DT, decision tree; FNR, false-nega-
tive rate; HCA, hierarchical cluster analysis; KNN, k-nearest neighbor; LLM, large language model; LR, logistic regression; LSTM, long short-term memory; 
MAE, mean absolute error; ML: machine learning; MLP, multilayer perceptron; MSE, mean squared error; NPV, negative predictive value; PLS-DA, partial least 
squares-discriminant analysis; PPV, positive predictive value; R2: coefficient of determination; RBC, red blood cell; RF, random forest; RMSE, root mean 
squared error; RNN, recurrent neural network; SE, sensitivity; SP, specificity; SVM, support vector machine; UMAP, uniform manifold approximation and pro-
jection; WBC, white blood cell; XGB, extreme gradient boosting.
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Notably, all ML-based error detections were performed in the 
field of clinical chemistry. In clinical microbiology, detection ac-
counted for >50% of the ML applications, but error detection 
was not included. In addition, estimation/prediction, CDS for 
laboratories, and tools based on AI were reported in these stud-
ies. In molecular diagnostics, ML was only applied for detection 
purposes. Conversely, in transfusion medicine and diagnostic 
immunology, ML was primarily applied for detection and estima-
tion/prediction. Studies using ML in molecular diagnostics, 
transfusion medicine, and diagnostic immunology were uncom-
mon (<5 studies each), making generalizations difficult.

Analysis of the ML models used for clinical laboratory testing 
showed that convolutional neural networks (CNNs), multilayer 
perceptrons (MLPs), and tree-based models were used in 77% 
of all studies. For detection, approximately 70% of the studies 
used CNNs, whereas the remainder used support vector ma-
chine (SVM), tree-based, MLP, or other models. Similarly, CNNs 
were prominently used in disease screening, i.e., in approxi-
mately 70% of the studies, owing to advantages in image analy-

sis, such as the ability to recognize and classify specific cell 
types (e.g., white blood cells [WBCs] and red blood cells [RBCs]) 
from specimen images.

Tree-based models were most frequently used for estimation/
prediction, comprising approximately 30% of the total. The “tools 
based on AI” category refers to studies that primarily evaluated 
the performance of AI-based models and typically did not specify 
the model type. Fig. 2 depicts the percentages of ML models 
used in each laboratory medicine field. As shown in Fig. 2A, 
CNNs were most commonly used in diagnostic hematology, con-
stituting 80% of all studies investigated, largely owing to their 
application in analyzing blood cells and images for recognition 
and classification.

The most diverse range of models used was found in clinical 
chemistry (Fig. 2B), reflecting a broader range of purposes than 
in other fields (Fig. 1). Tree-based models, such as random for-
est (RF), extreme gradient boosting (XGB), and CNN models 
were primarily used in clinical microbiology (Fig. 2C). Although 
the effectiveness of these models has not been confirmed 
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Fig. 1. Sankey diagram showing the relationships among representative laboratory medicine fields, their main objectives, and ML models 
identified through a literature review of studies applying ML in laboratory medicine from February 2014 to April 2024.
Abbreviations: AI, artificial intelligence; CNN, convolutional neural network; DNN, deep neural network; LR, logistic regression; ML, machine learning; MLP, 
multilayer perceptron; N/S, not specified; SVM, support vector machine.
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through multiple studies, researchers are actively investigating 
their potential. CNN, logistic regression (LR), and SVM models 
have been used in molecular diagnostics, transfusion medicine, 
and diagnostic immunology; however, significant trends could 
not be observed because of the limited number of relevant stud-
ies (Fig. 2D–F).

The following sections present representative use cases of ML 
in each laboratory medicine field.

Clinical chemistry
In clinical chemistry, ML has been applied to predict physiologi-
cal and biochemical parameters, such as blood glucose levels 
[13, 14], clinical lipid concentrations [15], and urine culture re-

sults [16], with an emphasis on prediction and error detection. 
Blood glucose prediction studies using continuous glucose mon-
itoring (CGM) data have demonstrated accuracy rates exceeding 
90% in predicting type 1 diabetes using neural network models, 
such as CNNs, MLPs, and deep neural network (DNNs), as well 
as long short-term memory [13, 14]. ML has been used to de-
tect errors in clinical laboratory test results, including wrong 
blood in tubes, sample labeling, and sample contamination, 
which may occur during clinical laboratory testing [17, 18]. Sev-
eral studies have evaluated the feasibility of using ML models 
for the autoverification of clinical laboratory test results [19, 20], 
whereas other studies used ML for preprocessing and workflow 
improvement to increase the efficiency of clinical laboratory test-

A Diagnostic hematology (70)
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SVM
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2 (2.9%)

2 (2.9%)

6 (8.6%)

3 (4.3%)

1 (1.4%)

CNN 4 (100.0%)

D Molecular diagnostics (4)

B Clinical chemistry (41)

CNN

XGB

RF

SVM

DT
RNN N/S

MLP

DNN

Ensemble

Others (DBN, HCA,
KNN, LLM, UMAP)

6 (14.6%)

4 (9.8%)

3 (7.3%)

3 (7.3%)

2 (4.9%)

2 (4.9%)

1 (2.4%)

5 (12.2%)

2 (4.9%)

2 (4.9%)

11 (26.8%)

CNN

LR
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SVM
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Fig. 2. Pie charts showing the proportions of ML models used in various laboratory medicine fields based on a literature review of laboratory 
medicine studies involving ML applications from February 2014 to April 2024. Numbers in parentheses indicate the number of published 
articles related to ML in each field. The frequencies at which various ML models were used in (A) diagnostic hematology, (B) clinical chemis-
try, (C) clinical microbiology, (D) molecular diagnostics, (E) transfusion medicine, and (F) diagnostic immunology are shown.
Abbreviations: CNN, convolutional neural network; DBN, deep belief network; DNN, deep neural network; HCA, hierarchical cluster analysis; LLM, large lan-
guage model; LR, logistic regression; LSTM, long short-term memory; ML, machine learning; MLP, multilayer perceptron; N/S, not specified; PLS-DA, partial 
least squares-discriminant analysis; RF, random forest; RNN, recurrent neural network; SVM, support vector machine; UMAP, uniform manifold approximation 
and projection; XGB, extreme gradient boosting.
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ing [21, 22]. ML models used for validating clinical laboratory 
test errors include neural networks (e.g., CNNs, DNNs, and 
MLPs), tree-based algorithms (e.g., RFs and XGB), and statistical 
analysis-based techniques (e.g., SVMs and LR). Additionally, ML 
models have been applied to interpret thyroid function and uri-
nary steroid profiles [23-25] and to recognize and classify spe-
cific cells and structures in medical images, urine, and blood 
samples [26-28].

Diagnostic hematology
In diagnostic hematology, ML has been primarily used to recog-
nize or classify blood cells in blood images, with a focus on ex-
tracting characteristics from WBC images, diagnosing blood-re-
lated diseases, such as leukemia [29-31], or classifying different 
types of blood cells [32-35]. For example, ML has been utilized 
to recognize sickle-shaped RBCs [36-38] and count cells [39-
41]. One study used a generative adversarial network to gener-
ate images of leukemia cells [42].

Transfusion medicine
In transfusion medicine, ML has been used to assess the appro-
priateness of blood for transfusions or to analyze the blood in-
formation required by testing the antigens present. For example, 
ML has been used to analyze hemoglobin and iron contents in 
blood to prevent iron overload during transfusions [43] or for 
ABO blood typing [44].

Clinical microbiology
Most clinical microbiology studies focused on bacteria and urine 
culture interpretations. ML models have been used to identify 
the main bacterial species causing urinary tract infections in 
urine samples to prevent delays in antibiotic treatment [45], 
classify bacterial strains [46], interpret antibiotic susceptibility 
test images [47], or classify colonies of bacterial species, such 
as Escherichia coli and Staphylococcus aureus [48]. Some stud-
ies have evaluated the accuracy of a commercialized AI-based 
urine culture interpretation system known as Automated Plate 
Assessment System (APAS; LBT Innovations, Adelaide, Australia) 
[49, 50]. The application of CNNs for image analysis in clinical 
microbiology has been investigated. LR, RF, and SVM models 
have been used to analyze urine culture results and clinical in-
formation of patients with urinary calculus for antibiotic dosing 
management [51].

Diagnostic immunology
In diagnostic immunology, most studies analyzed the patterns of 

HEp-2 cells, which serve as a diagnostic biomarker for autoim-
mune diseases [52, 53]. An automatic immunofluorescence 
pattern classification framework that uses CNNs to detect HEp-2 
cell features was proposed and demonstrated to be useful to re-
duce manual errors and efficiently classify large amounts of 
data.

Molecular diagnostics
In molecular diagnostics, ML has been used to study chromo-
somes in karyotyping, including chromosome detection and lo-
calization [54], diagnosing hematologic neoplastic cells by 
karyotyping cancer cell chromosomes [55], and detecting circu-
lating tumor cells in blood samples [56]. CNNs were applied in 
most of these studies.

Developing ML models for laboratory-medicine practice
Fig. 3 depicts the relationships among the publication year, best 
ML model, and input data used. ML models are increasingly be-
ing used (Fig. 3). MLPs were the first to be adopted in 2014 and 
remained the most frequently used models until 2016, after 
which their usage began to decline. Since their respective intro-
ductions in 2016 and 2018, the implementation of CNNs and 
tree-based models has increased. While they remain the most 
widely used models, the growing utilization of other models is in-
dicative of concerted efforts to diversify the range of models as 
ML evolves.

Image data accounted for the largest portion, approximately 
60%, of the data types used. Among ML studies that used im-
age data, 85% employed CNNs because of their advantages in 
processing image data (Fig. 3). Various ML models except CNNs 
have been applied to analyze tabular data. To analyze sequence 
data, only DNN and tree-based models have been used. Fig. 4 il-
lustrates the basic principles of commonly used ML models in 
laboratory medicine.

LR model
LR is typically used to solve binary classification problems [57-
59]. LR uses logits to calculate the probability that a dependent 
variable belongs to a particular class, producing an output value 
between 0 and 1 (Fig. 4A). The prediction function for LR is pre-
sented in Eq. (1).
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where p represents the probability that the dependent variable y 
equals 1 (P(Y =1)), β1 is the regression coefficient for the inde-
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pendent variable x, and β0 is the Y-intercept. LR not only predicts 
class labels in classification problems but also generates the 
probability that a dependent variable belongs to a particular 
class, providing confidence that a prediction can be expressed 
as a probability. However, LR cannot perform classifications eas-
ily with nonlinear data.

SVM model
SVMs represent conventional supervised learning models used 
for pattern recognition, data analysis, classification, and regres-
sion analysis. An SVM first selects a hyperplane (Fig. 4B) that 
maximizes the margin between classes [60-62]. Subsequently, 
for each data point xi, the model identifies a weight w and bias b 
that satisfy the following condition: yi(w · xi+b)≥1, where yi is the 
class label (+1 or –1) of data point xi. SVMs are widely used in 
classification problems and are robust against outliers, render-
ing them resistant to overfitting. However, their computational 
load increases exponentially with dimensionality, posing chal-
lenges in managing large datasets. Their decision boundaries 
are linearly constrained.

MLP model
MLPs, also known as feed-forward neural networks [62, 63], 
comprise one or more hidden layers that are fully connected be-
tween input and output layers (Fig. 4C). Each layer consists of 
multiple nodes that each perform computation by multiplying 
and summing the outputs of the previous layer with weights. 
Subsequently, an activation function is applied to these values 
to determine the final output value of the node. The output of 
node j, zj, is derived using Eq. (2).
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where wij is the weight connecting node i in the previous layer to 
the current node j, ai the output of node i in the previous layer, 
and bj is the bias of node j. Although MLPs can solve complex 
nonlinear problems, the number of weight coefficients may in-
crease exponentially with model complexity, leading to overfit-
ting of the training data.
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Fig. 3. Sankey diagram showing relationships among the year, best ML models, and data type based on a literature review of studies apply-
ing ML in laboratory medicine from February 2014 to April 2024.
Abbreviations: CNN, convolutional neural network; DNN, deep neural network; LR, logistic regression; ML, machine learning; MLP, multilayer perceptron; N/A, 
not applicable; N/S, not specified; SVM, support vector machine.
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DNN model
A DNN is an extension of the MLP that comprises multiple (typi-
cally three or more) hidden layers between the input and output 
layers (Fig. 4D) [63, 64]. The increase in the number of hidden 
layers enhances the efficiency of the model in learning patterns 
in data, enabling it to solve more complex nonlinear problems. A 
key advantage of DNNs is their ability to automatically extract 
features from data, eliminating the need for manual extraction. 
However, this capability requires substantial data and computa-
tional resources, and similar to MLPs, they are susceptible to 
overfitting.

CNN model
A CNN is an artificial neural network containing convolutional 
layers and is typically utilized for image or sequence data pro-
cessing because it can capture spatiotemporal features [64-67]. 
CNNs generally comprise input and output layers, along with 
multiple hidden convolutional layers connected with pooled, fully 
connected layers to generate the output (Fig. 4E). The convolu-
tion operation is mathematically expressed in Eq. (3).
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where X is the two-dimensional input (e.g., image), K is the filter, 
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Fig. 4. Features of different ML mod-
els. (A) LR based on the sigmoid func-
tion, expressed as a probability value 
between 0 and 1, divided by the 
threshold. (B) An example of sample 
classification using a hyperplane and 
an SVM. (C) An MLP comprising an in-
put layer, a hidden layer, and an output 
layer composed of connected percep-
trons. (D) A DNN comprises more hid-
den layers than an MLP and is an ex-
tension of an MLP. (E) A CNN compris-
es convolution layers and is primarily 
used for image processing. (F) A DT-
based model follows decision rules in 
a tree structure.
Abbreviations: C, class; CNN, convolutional 
neural network; DNN, deep neural network; 
DT, decision tree; LR, logistic regression; 
ML, machine learning; MLP, multilayer per-
ceptron; SVM, support vector machine; Q, 
question.
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(i, j) is the two-dimensional output index, and M and N are the 
height and width of the filter, respectively. The filter (also known 
as the mask or kernel) is a matrix of numbers used in the convo-
lution operation. CNNs have been used as the fundamental ar-
chitecture of various models, including the ResNet, YOLO, and 
AlexNet models because they can preserve spatial information 
and process images through convolutional operations.

Tree-based models
Tree-based models are based on decision trees (DTs), among 
which RF and XGB (which are extensions of DTs) are prime ex-
amples. A DT model represents decision rules based on data 
features in a tree structure and is a supervised learning model 
used primarily for classification [62, 68]. DT models feature a hi-
erarchical tree structure with multiple branches and nodes, that 
represent decision results and class labels, respectively (Fig. 
4F). The decision process of a DT model can be interpreted eas-
ily; however, a single-tree model may not offer satisfactory pre-
dictions with complex datasets. RF models perform decision-
making using multiple randomly generated DTs [62, 69]. RF 
models are not prone to overfitting and offer excellent predic-
tions by combining multiple decision trees; however, their deci-
sion-making processes cannot be interpreted easily. XGB is a DT-
based boosting method that learns by sequentially connecting 
DTs and compensating for their errors [62, 70]. XGB has some 
limitations, including challenges in parameter tuning, a high 
computational cost, and (similar to RFs) difficulty in interpreting 
the decision-making process.

Validation
We employed three primary validation methods. The two-way 
method trains the model on a training set and evaluates it on a 
test set. The three-way method uses a training set for training, a 
validation set for validation, and a test set for final evaluation. 
The k-fold cross-validation method splits the dataset into k sub-
sets, training the model on k-1 subsets and testing it on the re-
maining subset. This process is repeated k times, each with a 
different test subset, to compute the average performance. The 
International Federation of Clinical Chemistry and Laboratory 
Medicine (IFCC) endorses the k-fold method for ML research 
[71]. However, 94 of the 144 studies reviewed (65.3%) did not 
adopt k-fold cross-validation. These methods are detailed in 
Supplemental Data Table S1.

Optimization
Hyperparameters, determining aspects such as training speed, 

batch size, and number of hidden layers, are pivotal for the per-
formance of an ML model. Proper hyperparameter settings en-
hance predictive accuracy, stability, prevent overfitting, optimize 
resource use, and ensure reliable performance with new data. 
Formal optimization techniques (such as grid searching, random 
searching, and Bayesian optimization) were employed in only 12 
cases (8.3%). In 16 studies (11.1%), optimization was performed 
arbitrarily, whereas In the remaining studies (80.6%, 116 cases), 
hyperparameter optimization was either not performed or was 
not comprehensively described. Details are summarized in Sup-
plemental Data Table S1.

Evaluation
We assessed the efficacy of external and internal validations 
and noted issues in studies involving external validation. In 
seven studies [15, 17, 29, 52, 72-74], performance markedly 
declined with external validation data than with training and in-
ternal validation data. For instance, in a study designed to diag-
nose leukemia using a CNN and blood slide images [29], the ac-
curacy was increased to 98.61% (compared with 92.79% in an-
other study); however, the accuracy dropped to 70.24% during 
external validation, indicating potential overfitting. However, in 
some studies [22, 75-78], the performance variation was mini-
mal or even showed higher AUROC values with external valida-
tion data [77, 78]. These outcomes were attributed to similar 
preprocessing of the training and external data or the use of ap-
propriate regularization techniques to prevent overfitting. Two 
out of 15 studies [23, 79] involved the use of external validation 
data but did not provide precise results, complicating perfor-
mance comparisons, highlighting the difficulty in evaluating per-
formance when results from external validation are lacking.

CHALLENGES AND OPPORTUNITIES FOR ML 
APPLICATIONS IN LABORATORY MEDICINE

We analyzed the application of ML in laboratory medicine, the 
general trends observed when ML models were used, and the 
primary types of ML models used in research.

Current landscape
As discussed earlier, ML is primarily applied in diagnostic hema-
tology, primarily because many laboratory medicine tests focus 
on blood analysis. Microscopy images contain several intricate 
details that cannot be identified easily with the naked eye, and 
results can vary between evaluators. Introducing ML should shift 
existing qualitative evaluations to quantitative evaluations and 
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reduce error margins, which may explain the growing number of 
studies involving ML applications [35, 36, 39, 80-83]. Con-
versely, fields with fewer ML applications, such as diagnostic im-
munology and transfusion medicine, have focused on well-es-
tablished processes, such as blood-type determinations for 
transfusions and immune testing [53]. This trend is likely owing 
to the limited data inputs and the paramount need for accuracy 
in tests such as ABO typing) [43, 44], which reduces the de-
mand for complex ML methods.

The application of ML in laboratory tests has risen annually 
since 2014 (Fig. 3). Initially, ML utilization was limited to models 
such as MLPs and CNNs; however, as these models have ad-
vanced, the diversity of ML models used and their applications 
have expanded. Additionally, the estimation/prediction and dis-
ease screening collectively represent approximately 25% of all 
ML applications, signifying their role in augmenting the data pro-
vided by clinical laboratories. This evolution indicates that ML is 
increasingly instrumental in predicting disease occurrences or 
enhancing disease screening processes.

CNN, MLP, and tree-based ML models have been widely used 
in clinical laboratories. With advances in ML, various models 
categorized as “others” have been evaluated for their applicabil-
ity; however, well-established models, such as CNNs, remain 
dominant. DNNs were developed much later than MLPs and 
therefore are not yet widely adopted. Stevenson, et al.[24] used 
large language models (LLMs) such as ChatGPT (v3.5) and 
Google Bard to interpret clinical test results and provide advice 
based on hypothetical inputs (similar to the roles of clinicians). 
Within the broader domain of laboratory medicine, extending 
beyond specialization, the latest evidence indicates that re-
sponses generated by chatbots such as ChatGPT consistently 
surpass the quality of those provided by clinicians [84-88]. As in-
stitutions such as the European Federation of Clinical Chemistry 
and Laboratory Medicine [89] are researching LLMs for labora-
tory medicine, this situation is likely to change in the future.

Securing clinically validated performance
Accuracy and AUROC are the most common evaluation metrics; 
however, appropriate evaluation metrics must be considered 
when processing class-imbalanced data. Data imbalance occurs 
when the proportions of a test class (e.g., patients with a dis-
ease) and control class (e.g., patients without a disease) differ 
substantially. Any case involving unequal numbers of samples 
per class indicates data imbalance and significant imbalances 
are particularly problematic during training. Although a universal 
definition is lacking, researchers typically categorize a case as 

severely imbalanced when the minority class constitutes ≤10% 
of the total dataset [90, 91]. This imbalance can skew learning 
toward the majority class, which can result in unsatisfactory pre-
diction performance for the minority class, which typically repre-
sents the disease group. To address this issue, metrics such as 
the F1 score should be used [76]; however, some studies did 
not consider this aspect [74, 81]. In future studies, data imbal-
ance must be addressed when evaluating ML model perfor-
mance, and the appropriate evaluation metrics must be em-
ployed.

Some guidelines exist for the effective use of ML in clinical 
practice. The IFCC [71] proposed 15 recommendations for ap-
plying ML in clinical research, covering (1) stakeholders, (2) ob-
jectives, (3) clinical scenarios, (4) data descriptions, (5) statisti-
cal analysis of training and validation data, (6) steps to ensure 
proper data preparation, (7) dataset diversity, (8) ethical design, 
(9) validation methods, (10) the use of test sets, (11) perfor-
mance metrics, (12) external validation, (13) interpretability, (14) 
code availability, and (15) generalizability.

Most studies examined in this review adhered to IFCC recom-
mendations 2, 4, 7, and 10, although the level of detail provided 
varied. For instance, some studies only briefly discussed the 
data collection process, whereas others provided detailed expla-
nations of all data collection and processing steps. This variation 
may reflect differences in the type, complexity, and diversity of 
the data used but may also have resulted from a lack of detailed 
guidelines for describing data collection and processing proce-
dures.

Recommendations related to verifying model reliability and 
performance validation, such as IFCC recommendations 9, 11, 
12, and 15, were observed in few studies. Despite being crucial 
for evaluating not only model performance but also robustness, 
generalizability, and clinical utility, these recommendations are 
not yet widely adopted, suggesting that researchers may not be 
aware of the importance of proper validation methods and pro-
cedures in ensuring the reliability of ML-based research findings. 
IFCC recommendations that are less directly related to perfor-
mance (e.g., 1, 3, 5, 6, 8, 13, and 14) were not commonly ad-
dressed in most studies, suggesting that ML is still in the early 
stages of adoption in the field of laboratory medicine and that 
confirming its potential for high performance should be the pri-
mary focus. Notably, recommendation 14 to make data and 
code publicly available is frequently followed in general ML re-
search but is generally restricted in the medical field because of 
patient privacy and data security concerns.

In conclusion, several ML-based studies may have been per-
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formed without sufficient mechanisms to ensure the reliability 
of the results. Establishing standardized methods and guide-
lines is crucial for facilitating robust ML research and the gener-
ation of comparable results, and enhancing the reproducibility 
and credibility of such studies. A thorough consideration of re-
search ethics and the broader ecosystem, which are currently 
underrepresented in ML research, will be essential as ML is in-
tegrated into clinical practice. Practical strategies for incorporat-
ing these aspects as fundamental research components are ur-
gently required.

Limitations
Although we intended a comprehensive review, analyzing cer-

tain laboratory fields presents limitations. First, we could not in-
clude all specific keywords used in laboratory medicine or ML 
when constructing our search string; therefore, some publica-
tions may have been missed. Additionally, during the search and 
screening, we excluded literature we deemed less relevant to 
laboratory practice. Consequently, studies related to anatomical 
pathology and disease prediction (including sepsis) [92, 93] 
were omitted. We excluded COVID-19-related studies to avoid 
bias, as they represent a temporary epidemic rather than a uni-
versal application of ML.

Second, although gene or exome analyses are performed in 
clinical laboratories for patient care, most genome-related pa-
pers examined in this review were intended for research rather 
than clinical practice. Although these topics were not included in 
this review, they are important issues within laboratory medicine 
and warrant a separate review.

Third, some aspects must be considered when interpreting 
the results presented herein. For example, the Sankey diagram 
shows only the “best ML model,” which may not accurately rep-
resent diversity as it does not enumerate all models currently in 
use. In simplifying the model categories, DNNs are represented 
as typical networks with fully connected layers; therefore, accu-
rately capturing the tendencies of DNNs over a broader range, 
including deep CNNs, is challenging.

Fourth, assessing AI model reproducibility and variability is 
crucial in evaluating model performance. To accurately assess 
these factors, certain conditions must be controlled (e.g., identi-
cal analytical goals and datasets) and consistent evaluation 
metrics must be used. However, in the reviewed studies, the an-
alytical goals, datasets used, and performance evaluation met-
rics varied substantially, rendering it impossible to directly com-
pare and analyze the performance of different models on the 
same basis. To analyze reproducibility and variability to some 

degree, we analyzed the performance changes based on exter-
nal validation research. Although this approach differs from re-
peatedly analyzing the same data to assess the stability and re-
producibility of model outputs, comparing external and internal 
validation results can provide valuable insights into model gen-
eralizability, which is key for evaluating overall model perfor-
mance.

The categorization of ML use cases can be ambiguous and 
open to interpretation. We categorized such cases based on the 
final output of the ML model. Additionally, the criteria for evalu-
ating the appropriate number of ML input samples may vary de-
pending on the laboratory medicine field, specimen type, and 
ML model used. Hence, an analysis using a more precise search 
string and clearer categorization criteria and considering the 
evaluation criteria for different sample sizes would be useful.

Finally, although not considered herein, ensuring data quality 
is a prerequisite for ML research [94-96]. To present a more ro-
bust and practical blueprint for ML utilization, the entire process 
(from data acquisition and preprocessing to analysis with vari-
ous models) should be considered.

CONCLUSIONS

ML utilization in laboratory medicine is poised for continued 
growth and diversification. To date, CNN, MLP, and tree-based 
models have dominated the landscape, with the data type being 
the primary factor that influences model selection. However, as 
ML technology evolves, the introduction of new models is likely. 
We have identified several technical challenges associated with 
ML applications, primarily concerning data imbalances, missing 
hyperparameter optimization, inadequate evaluation metrics, 
and insufficient external validation. These findings emphasize 
the necessity for more sophisticated ML study designs and ex-
pert involvement. Considering the rapid advancement of ML and 
its established relevance in laboratory medicine, we anticipate 
that enhancing long-term education and fostering collaboration 
among domain specialists will optimize the use of ML in this 
field.

SUPPLEMENTARY MATERIALS

Supplementary materials can be found via https://doi.
org/10.3343/alm.2024.0354
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