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Abstract

Breast cancer is an alarming global health concern, including a vast and varied set of illnesses with different molecular characteristics.
The fusion of sophisticated computational methodologies with extensive biological datasets has emerged as an effective strategy
for unravelling complex patterns in cancer oncology. This research delves into breast cancer staging, classification, and diagnosis by
leveraging the comprehensive dataset provided by the The Cancer Genome Atlas (TCGA). By integrating advanced machine learning
algorithms with bioinformatics analysis, it introduces a cutting-edge methodology for identifying complex molecular signatures
associated with different subtypes and stages of breast cancer. This study utilizes TCGA gene expression data to detect and categorize
breast cancer through the application of machine learning and systems biology techniques. Researchers identified differentially
expressed genes in breast cancer and analyzed them using signaling pathways, protein–protein interactions, and regulatory networks to
uncover potential therapeutic targets. The study also highlights the roles of specific proteins (MYH2, MYL1, MYL2, MYH7) and microRNAs
(such as hsa-let-7d-5p) that are the potential biomarkers in cancer progression founded on several analyses. In terms of diagnostic
accuracy for cancer staging, the random forest method achieved 97.19%, while the XGBoost algorithm attained 95.23%. Bioinformatics
and machine learning meet in this study to find potential biomarkers that influence the progression of breast cancer. The combination
of sophisticated analytical methods and extensive genomic datasets presents a promising path for expanding our understanding and
enhancing clinical outcomes in identifying and categorizing this intricate illness.
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Introduction
Breast cancer is the second most common cancer among women,
following skin cancer, and is the second leading cause of cancer-
related mortality, after lung cancer [1]. Globally, breast cancer has
surpassed lung cancer as the most frequently diagnosed cancer
in women. In 2020, an estimated 2 261 419 women worldwide
were diagnosed with breast cancer [2]. According to the American
Society for Clinical Oncology, it is projected that in 2023, 297 790
women in the USA will be diagnosed with invasive breast cancer,
while 55 720 will be diagnosed with noninvasive (in situ) breast
cancer. Since the mid-2000s, the incidence of invasive breast
cancer in women has increased by ∼0.5% annually, likely driven
by factors such as declining fertility rates, delayed age of first
childbirth, and rising obesity rates. Additionally, invasive breast
cancer is expected to affect ∼2800 men in the USA in 2023 [3].
Early detection of breast cancer is critical for selecting appropriate
treatments and reducing the risk of metastasis [4]. Breast cancer is
a heterogeneous and evolving disease, marked by various somatic
mutations and changes in gene and protein expression. It is
classified into several subtypes based on the expression of the
progesterone receptor (PR), estrogen receptor (ER), and human
epidermal growth factor receptor 2 (HER2). Each subtype requires

specific treatment approaches, which can affect drug resistance,
cancer recurrence, and mortality rates [5, 6]. Identifying novel
clinical biomarkers is essential for better patient stratification;
enhancing the accuracy of initial diagnoses; and monitoring the
progression, metastasis, and recurrence of breast cancer [7].

In present days, tumor markers have become increasingly
prevalent in areas of cancer detection and therapy. For tumor
screening, diagnosis, efficacy and prognosis evaluation, recur-
rence detection, and so forth, the optimal tumor marker should
possess high specificity and the ability to recognize tiny lesions
and quantify the tumor burden [8]. Staging a cancer is the process
of quantifying the extent of the cancer’s metastasis throughout
the body. The process of measuring and evaluating the extent
to which cancer has progressed to various sections of the body
is referred to as cancer staging. It is helpful in choosing the
most efficient kind of therapy as well as detecting the degree to
which the cancer has spread. Additionally, it is used by physicians
in the process of calculating survival rates. The Joint Working
Committee for Cancer Tumor-Lymph Node-Metastasis states that
there are typically five different stages of cancer: Stages 0, I, II,
III, and IV [9].In addition to determining the cancer’s size and
location, the stage of the disease will also impact the existence of
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indicators of cancer spread and how much cancer has progressed
to neighboring tissues, lymph nodes, and other body regions [10].
For individuals between the ages of 18 and 55 who suffer from
breast cancer, with the greatest grade detected at stage I, the 5-
year survival rate is 97% and can be cured with the right care,
whereas the projected 5-year survival rates of stages II, III, and IV
are 92%, 77%, and 28%, respectively [11]. Among all cancers, breast
cancer mutations are the most prevalent and lethal. A patient’s
chances of survival are significantly increased when the illness is
identified in its early stages [12].

Machine learning could uncover correlations that are diffi-
cult to recognize in vast, noisy, or complicated datasets. This
skill is specifically appropriate for data analysis applications in
the healthcare sector, particularly those requiring intricate pro-
teomics and genomic expression–based applications, which have
been employed commonly in recent years for the identification
and treatment of cancer [13]. In the medical area, machine learn-
ing techniques are commonly employed including random forests
(RFs) [14], support vector machine (SVM) [15–17], and decision
trees (DTs) [18, 19]. Applications like Xie et al.’s [20] employed
spectral data to create SVM models with an average accuracy
of 100% for quick and noninvasive keratitis detection, and SVM
and DT models were utilized by Chen et al. [21] to quickly detect
gliomas with a predictive accuracy of ∼90%. It demonstrates even
more that machine learning is more applicable to the diagnosis
of diseases. A supervised learning model called SVM is capable of
handling both linear and nonlinear problems. It works to address
issues with classification and regression. The ultimate class of a
test object is determined by combining a collection of DTs that are
randomly chosen from the training set. RFs are a powerful force
in machine learning because DTs, which are renowned for their
adaptability, excel in classification and regression tasks.

In the field of biomedicine, there have been some encour-
aging results using gene network–based cancer prediction and
biomarker screening. Jubair et al.’s [22] subtype-specific network
biomarker approach, for example, has demonstrated high predic-
tive effectiveness for identifying the survivorship of breast cancer
patients with it. Li et al. [23] constructed a model to predict the
prognosis of cervical cancer patients using the weighted gene
coexpression network paired alongside the Least Absolute Shrink-
age and Selection Operator (LASSO) technique and showed that
the approach is legitimate and reliable. In this work, we first per-
formed a differential expression analysis between breast cancer
and healthy controls. The LASSO feature selection approach has
been employed in a variety of biological applications. Lasso is a
well-known feature selection approach that takes into account
an L1 type penalty, which places a restriction on the combined
value of all absolute values for the feature parameters to ensure
global optimal performance as well as computing efficiency [24].
The 2021 IEEE International Conference on Bioinformatics and
Biomedicine found that LASSO consistently beats other methods
in several key classification parameters, especially the area under
the curve (AUC), and that the LASSO framework can generate
more meaningful feature selection algorithms relative to similar
feature selection methods for features [25]. Furthermore, Maurya
et al. [26] effectively utilized the Lasso algorithm in the field of can-
cer by extracting signature genes by LASSO and other techniques,
leading to the discovery of TMEM236—a new biomarker for the
detection of colorectal cancer. Additionally, two separate groups
of the first three stages of breast cancer were identified to carry
out the differential expression analysis: the first stage versus the
subsequent three phases and early-stage disease versus advanced
or metastatic cancer, respectively [27]. Depending on whether the
breast cancer had spread to nearby lymph nodes or somewhere

else, it was split into two groups. For the staging groups, differ-
ential expression analysis was performed. Following PPI analysis,
the final feature genes used for classification were searched for
prognostic genes. Breast cancer and breast cancer staging were
finally classified using machine learning algorithms such as the
SVM, RF, and DTs. In this case, the results of the model constructed
using the features we extracted produced better results for the
early and late diagnosis of breast cancer, and the prognostic genes
that were examined provided further recommendations for the
treatment of breast cancer.

This work presents a new strategy in breast cancer research
by combining systems biology methods and machine learning
algorithms—an unusual combination. In addition to providing
a greater understanding of the molecular pathways underlying
the disease, this dual approach improves the accuracy of cancer
diagnosis and staging. Furthermore, the discovery of certain pro-
teins (MYH2, MYL1, MYL2, MYH7) and microRNAs (hsa-let-7d-5p)
linked to the advancement of breast cancer offers new, prospec-
tive biomarkers for diagnosis and therapy, opening the door for
innovative therapeutic approaches. The work increases our under-
standing of breast cancer by applying sophisticated computa-
tional algorithms to uncover stage-specific genetic markers using
the extensive TCGA dataset, one of the biggest cancer datasets
available. Some of the significant contributions of our work are
outlined as follows:

i) Diagnosis of breast cancer using gene expression profiling
data from the TCGA dataset.

ii) Establishment of protein–protein interaction (PPI) network of
the differentially expressed genes (DEGs).

iii) Classification of different stages of breast cancer using the
TCGA dataset with machine learning analysis.

Materials and methods
Workflow of the analytical approach
To progress the work, we start by acquiring the TCGA-BRCA
dataset from the Genomic Data Commons (GDC) portal; RNAseq
data and clinical data from TCGA-BRCA are collected and
downloaded for further progress. To find the marker genes,
we performed an analytical approach presented in Fig. 1. First,
we identified the DEGs in the BRCA dataset using the gene
expression counts matrix. After this, some DEGs were amended
based on potential DEG selection criteria, which is |logFC| > 1.0
& adj.P < 0.05. From the selected DEGs, top 10 unregulated and
top 10 downregulated DEGs were used for further examination
of PPIs, ontological and enrichment analysis, regulatory analysis,
and prediction of drug and chemical compounds. Later on, from
survival analysis, the survival curves of the most influential
genes from the top 10 up and downregulated genes were found.
The identification of signaling and ontological terms was fourth
from gene enrichment analysis. Potential hub proteins were
identified from the PPI network analysis. TFs (transcription
factors) and miRNAs were identified from the gene regulatory
network analysis. Furthermore, samples from the TCGA-BRCA
project were employed in the experiment for the diagnosis of
breast cancer and general health. Following feature extraction,
important genes have been selected as diagnostic classification
features. SVMs, RF, DTs, XGBoost, and AdaBoost are the classifiers
used in this experiment by the researchers.

Dataset description
We collected the TCGA-BRCA gene expression data from the
GDC portal (https://portal.gdc.cancer.gov/repository). The tran-
scriptome gene expression data from the TCGA-BRCA projects
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Figure 1. Working flowchart of the analytical study performed in this research.

were chosen for this study, and, from these, 1224 samples of
1111 tumor tissue samples and 113 normal tissue samples were
obtained for further analysis.

Analysis of differential expression gene
Examining transcriptomic data using differential expression (DE)
analysis allows for analyzing variations in gene expression across
the entire genome linked to significant biological conditions
[28]. DEGs play a vital role in order to gain additional biological
insights, such as identifying enriched functional pathways, gene
ontologies, and PPI analysis. In this study, the R package limma
[29] with |logF C| > 1.0 and adj.P.Val < 0.05 was used to perform
the differential expression analysis. Breast cancer tissues were

compared to normal tissues to identify genes that were dif-
ferentially expressed. Later on, the top 10 upregulated and
downregulated genes were selected based on the logFC values
from the DEGs that were used for analyzing further processes.

Analysis of the enrichment of gene set
A computational and statistical approach known as “gene set
enrichment analysis” is typically used to determine if a collec-
tion of determined genes exhibits statistical significance under
various biological circumstances [30]. The structural and com-
putational data pertaining to gene product–based functions can
be found in the Gene Ontology (GO) resources [31]. Molecular
function, biological process, and cellular component are the three
subcategories of GO that can be used to annotate gene products
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[32]. In this research, the online web tool “Enrichr” was utilized for
performing gene enrichment and ontology analysis. Enrichr is
a user-friendly, web-based enrichment analysis application that
offers a variety of visualization summaries of the combined activ-
ities of gene lists [33]. We assessed the biological relevance of
the top 10 upregulated and top 10 downregulated DEGs of BRCA
using signaling and gene ontology terms. In gene enrichment
analysis, we selected pathways based on adjusted P-value <0.05.
The top signaling pathways were found using three databases:
Kyoto Encyclopedia of Genes and Genomes (KEGG), BioPlanet,
and BioCarta. Top gene ontology terms of molecular function,
biological activity, and cellular components were also identified
using EnrichR.

Identification hub-bottleneck proteins from
protein–protein interaction network
Analysis of PPIs yields prominent insights into the functions of
proteins and is considered the first step in systems biology and
drug discovery [34]. We utilized the top 10 upregulated and down-
regulated DEGs of BRCA to design a PPI interaction network using
the NetworkAnalyst tool. NetworkAnalyst is a web-based appli-
cation that allows bench researchers to conduct both simple and
complex meta-analyses of gene expression data [35]. We obtained
the hub bottleneck genes from PPI analysis by using Cytohubba in
Cytoscape software. Cytoscape is an open-source software frame-
work that can integrate complicated network visualizations with
any kind of attribute data [36]. Cytohubba is a Cytoscape plugin
that can predict and investigate key nodes and subnetworks
inside a given network [37]. In a complex PPI network, hub nodes
are often identified by their extensive connectivity [38]. Hub nodes
play a crucial role in both regulating several biological processes
and maintaining the structural integrity of PPI networks.

Analysis of gene regulatory networks
To understand the functions of TFs and microRNAs (miRNAs),
which play a significant role in modifying the expression of DEGs
linked to breast cancers, the gene regulatory network analysis was
performed. Comprehensive studies are completed with the help of
the online tool NetworkAnalyst [35], which utilizes databases like
the TarBase [39] and miRTarBase [40] for DEG–miRNA interactions
and the JASPAR database [41] for TF-DEGs interactions. The target
of these experiments is to gain a clear concept of the complex
transcriptional and post-transcriptional regulatory mechanisms
affecting gene expression in breast cancer. Understanding the
molecular mechanisms underlying the pathogenesis of breast
cancer is improved by defining these regulatory relationships.

Prediction of drugs and chemical compounds
Using the top 10 upregulated and downregulated genes of BRCA,
we were able to create networks of interactions between proteins
and chemicals and drugs in this analysis. The combined protein–
drug and protein–chemical interactions are obtained using the
NetworkAnalyst web tool. Analyzing protein–drug interactions is
crucial to comprehending the structural features required for
receptor sensitivity [42]. Protein–chemical interaction analysis is
essential for advancing our understanding of biology, accelerating
drug discovery efforts, and improving diagnostics and treatments
for various diseases.

Survival analysis
One widely used characteristic in research to predict and iden-
tify gene signatures in cancer is patient survival analysis, which
combines both gene expression and clinical data [43]. The top 10

upregulated and downregulated genes from DEG analysis were
subjected to survival analysis to find genes affecting breast cancer
survival. Survival analysis of the top 10 upregulated and top
10 downregulated genes was performed using GEPIA2 (http://
gepia2.cancer-pku.cn/#index). GEPIA2 is an upgraded web server
designed for interactive assessment and large-scale gene analysis.
GEPIA2 facilitates the investigation of a particular cancer subtype
and subgroup comparison, extending gene expression measure-
ment from the genetic level to the transcripts level [44].

Building the model
In this study, 1224 samples from the TCGA-BRCA research were
utilized for the diagnosis and classification of breast cancer
stages. These samples included 1111 tumor tissue samples and
113 corresponding control tissue samples. The primary objective
was to identify DEGs to serve as classification features, which
were then used to diagnose early and late stages of breast
cancer. The dataset comprised 918 samples in the early stage
and 306 samples in the late stage. Early-stage breast cancer
generally refers to Stages I and II and late-stage breast cancer
usually encompasses Stages III and IV. Differential analysis was
conducted on these samples to identify DEGs, highlighting the
genes that are significantly upregulated or downregulated in
breast cancer tissues compared to control tissues, providing vital
information for accurate diagnosis and staging of the disease.

The study employed multiple classifiers to ensure robust and
accurate predictions. These classifiers include Gaussian Naive
Bayes (GNB), RF, DT, K-Nearest Neighbors (KNNs), XGBoost, and
SVM with RBF Kernel Function. To guarantee that the features
were on a similar scale, each classifier started by normalizing
the data. This is an important step for enhancing performance,
particularly for algorithms that are sensitive to data scale. The
dataset was split at random into a test set (30%) and a training
set (70%) to give enough information for learning while keeping a
sizeable amount for objective assessment. The Synthetic Minority
Over-sampling Technique (SMOTE) is used to solve the problem of
sample imbalance, particularly between the early and late stages
of breast cancer. To balance the class distribution and improve
the model’s capacity to generalize and perform well in minority
classes, SMOTE creates synthetic examples for the training set.
The test set data were used to assess the trained models, and
the performance metric was the AUC of the receiver operating
characteristic (ROC) curve. A higher AUC denotes greater perfor-
mance. The AUC gives an indication of how well the model can
discriminate across classes. The outcomes were averaged across
10 runs using cross-validation, a resampling technique used to
assess machine learning models on a small data sample, in order
to assure robustness and reliability. The decision function for SVM
with RBF kernel can be represented as: With an RBF kernel, the
SVM decision function is expressed as:

f(x) =
n∑

i=1

αiyiK
(
x, xi

) + b

In this case, the Lagrange multipliers are represented by αi, the
class labels by yi, the kernel function by K, the bias term by b, and
the support vectors by xi.

The projected outcome for RF may be shown as:

ŷ = mode
(
y1, y2, . . . , yn

)

where the individual tree predictions are denoted by y1, y2, ..., yn
and the predicted class is represented by ŷ
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Table 1. Top 10 upregulated and top 10 downregulated DEGs of BRCA.

Gene symbol Description Regulation

UCN3 Urocortin-3 Upregulated
MUC2 Mucin 2 Upregulated
CGA Glycoprotein hormones, alpha polypeptide Upregulated
CSAG1 Chondrosarcoma-associated gene Upregulated
MAGEA12 MAGE family member A12 Upregulated
ACTL8 Actin like 8 Upregulated
MAGEA1 MAGE family member A1 Upregulated
IBSP Integrin binding sialoprotein Upregulated
KLHL1 Kelch-like family member 1 Upregulated
MAGEA3 MAGE family member A3 Upregulated
MYH2 Myosin heavy chain 2 Downregulated
CKM Creatine kinase Downregulated
MIR1–1HG MIR1–1 host gene Downregulated
MYL2 Myosin Light Chain 2 Downregulated
MYH7 Myosin Heavy Chain 7 Downregulated
PPP1R3A Protein Phosphatase 1 Regulatory Subunit 3A Downregulated
MYL1 Myosin Light Chain 1 Downregulated
STRIT1 Small Transmembrane Regulator of Ion Transport 1 Downregulated
C10orf71 Chromosome 10 Open Reading Frame 71 Protein Coding Gene Downregulated
NRAP Nebulin-related anchoring protein Downregulated

One way to describe the DT decision rule is as:

if X feature ≤ thresholdthenclass = leftchildelseclass = rightchild

Given the GNB features, the likelihood of a class may be
expressed as follows:

P
(
y|x1, x2, . . . , xn

) = = P(y)
∏n

i=1P
(
xi|y)

P (x1, x2, . . . , xn)

The XGBoost forecast can be shown as:

ŷ =
M∑

m=1

fm(x)

where the forecast of the m − th tree is denoted by fm(x) and M is
the number of trees.

Results
Identification of differentially expressed genes
Seven thousand six hundred thirty-seven genes were ultimately
found to be differentially expressed when breast cancer tissues
were compared to normal tissues for differential expression anal-
ysis. Figure 2 depicts the volcano plot of differential expression
results where red dots represent upregulated DEGs and blue
dots represent downregulated DEGs. Table 1 describes the top 10
upregulated and top 10 downregulated DEGs of the BRCA dataset.

Analysis of protein–protein interaction
In order to obtain hub-bottleneck genes, we have generated a PPI
network using the top 10 upregulated and top 10 downregulated
genes from the DEGs. Figure 3 represents the PPI network of the
top 10 upregulated and top 10 downregulated genes of BRCA. We
have identified four hub-bottleneck genes, i.e. MYH2, MYL1, MYL2,
and MYH7 from the PPI analysis.

Identification of signaling and gene ontology
terms
We employed a gene set enrichment analysis to obtain ontological
and signaling pathways. In this analysis, we used the top 10
upregulated and top 10 downregulated genes from the obtained
DEGs to identify signaling pathways using five global pathway
databases, including KEGG, BioPlanet, and BioCarta. Molecular
function, biological process, and cellular component were the
three classifications from which the ontological pathways were
obtained. The top 10 signaling and ontological pathways based
on the adj P-value are represented in Tables 2 and 3, respectively.

Identification of differentially expressed
genes–microRNA and transcription factor–gene
interaction
With the top 10 up- and downregulated DEGs from BRCA, we
were able to obtain regulatory components from miRNA–DEGs
and TF–DEGs interactions. Figure 4 represents the miRNA–DEGs
interactions. In Fig. 4, purple squares represent the miRNAs, and
sky-blue circles represent the DEGs.

Figure 5 represents the TF–DEGs interactions based on the top
10 up- and downregulated genes. In Fig. 5, indigo-blue rhombus
shape nodes represent the TFs, and the red circular shape nodes
represent the associated DEGs. Based on the degree of a node, its
dimension is generated. Four red circular nodes, namely, MYL1,
MYH2, MYL2, and ACTL8, are considered as significant hub genes,
and four rhombus TFs, namely, YY1, FOXC1, FOXL1, and MEF2A,
are considered as regulatory molecules.

Identification of protein–drug and
protein–chemical interactions
Figure 6 represents the combined protein–drug and protein–
chemical network based on the top 10 up- and downregulated
genes obtained from BRCA. In Fig. 6, the red circular nodes
indicate drugs, and the blue pentangle nodes represent the
chemical compounds that have an impact on how genes are
expressed. The proteins MAGFA1, MUC2, IBSP, CKM, and MYH2
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Table 2. The top 10 signaling pathways of the DEGs obtained from BRCA.

Category Pathway Genes in the pathway P-value

KEGG Cardiac muscle contraction MYL2,MYH7 .003377564
Hypertrophic cardiomyopathy MYL2, MYH7 .003609434
Dilated cardiomyopathy MYL2,MYH7 0.004094897 MYL2,MYH7 .004094897
Adrenergic signaling in cardiomyocytes MYL2,MYH7 .009716646
Focal adhesion IBSP,MYL2 .016953582
Neuroactive ligand–receptor interaction UCN3,CGA .044995524
Arginine and proline metabolism CKM .04885255
Ovarian steroidogenesis CGA .049806079
Autoimmune thyroid disease CGA .051710413
Regulation of lipolysis in adipocytes CGA .053611122

BioPlanet Tight junction MYH2,MYL2,MYH7 3.02E-04
Striated muscle contraction MYL1,MYL2 6.54E-04
Muscle contraction MYL1,MYL2 .001086179
Retinoblastoma protein regulation CKM,MYL1 .001961104
NFAT involvement in hypertrophy of the heart MYH2,MYL2 .002141024
Viral myocarditis MYH2,MYH7 .002265166
Cardiac muscle contraction MYL2,MYH7 .00286498
Dilated cardiomyopathy MYL2,MYH7 .0044345
Glycoprotein hormones CGA .004990441
SARS coronavirus protease CKM .006979996

BioCarta Regulators of Bone Mineralization Homo sapiens h npp1Pathway IBSP .01094778
PKC-catalyzed phosphorylation of inhibitory phosphoprotein of myosin
phosphatase H. sapiens h myosinPathway M

MYL2 .020801468

CCR3 signaling in Eosinophils H. sapiens h CCR3Pathway MYL2 .022760983
ALK in cardiac myocytes H. sapiens h alkPathway MYL2 .026668846
NFkB activation by nontypeable Hemophilus influenzae H. sapiens h nthiPathway MYL2 .028617205
Rho cell motility signaling pathway H. sapiens h rhoPathway MYL2 .0315328
Rac 1 cell motility signaling pathway H. sapiens h rac1Pathway MYL2 .03540733
Trefoil factors initiate mucosal healing H. sapiens h tffPathway MUC2 .03540733
NFAT and hypertrophy of the heart H. sapiens h nfatPathway MYL2 .043112259

Figure 3. The PPI network of the top 10 upregulated and top 10 downreg-
ulated genes of BRCA. The bigger circle with different colors represents
the top 4 hub proteins.

were considered as the highly expressed therapeutic targets in
the combined network.

Survival analysis results
Survival analysis revealed that only 4 genes among the top 10
upregulated genes and downregulated genes found from DEG
analysis were associated with the prognosis of breast cancer,
namely, ACTL8, CGA, IBSP, and MUC2 genes, and their survival
curves are shown in Fig. 7.

Results of different machine learning models
Table 4 shows the assessment metrics for several machine learn-
ing models used to classify different stages of breast cancer. Each
model was evaluated using numerous performance indicators,
including accuracy, precision, recall, F1 score, and specificity. The
stages of breast cancer were divided into three categories: I–II,
III, IV, V; I, II–III, IV, V; and I, II, III–IV, V, allowing for a thorough
examination across stages. Notably, RF and XGBoost consistently
achieved good accuracy, precision, recall, and F1 scores across
different stages of breast cancer. These models’ accuracy eval-
uations, which indicate their capacity to distinguish between
different cancer stages, varied from 85.51% to 97.19% for RF and
from 85.51% to 95.23% for XGBoost. Excellent accuracy ratings
were generated by both RF and XGBoost, ranging from 85.58%
to 97.20% for RF and from 85.59% to 95.34% for XGBoost. These
results show that both methods can consistently recognize real
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Table 3. The top 10 gene ontology terms of the DEGs obtained from BRCA.

Category Pathway Genes in the pathway P-value

Molecular function Histone deacetylase binding MAGEA12, MAGEA1, MAGEA3 1.26E-04
Actin binding MYL2, NRAP, KLHL1 7.66E-04
Myosin heavy chain binding MYL2 .005985691
Cuprous ion binding MUC2 .007973357
Caspase binding MAGEA3 .012926021
Peptide hormone receptor binding UCN3 .012926021
Muscle alpha-actinin binding NRAP .013913732
Neuropeptide receptor binding UCN3 .016871235
Protein phosphatase 1 binding PPP1R3A .016871235
Actin monomer binding MYL2 .022760983
Alpha-actinin binding NRAP .022760983
Copper ion binding MUC2 .044071254
Myosin binding MYL2 .05266122
Hormone activity CGA .071488248

Biological process Actin-myosin filament sliding MYH2, MYL1, MYH7 4.25E-05
Muscle filament sliding MYL1, MYH7 9.90E-05
Cardiac myofibril assembly MYL2, NRAP 1.08E-04
Muscle contraction MYH2, MYL1, MYH7 2.81E-04
Ventricular cardiac muscle tissue
development

MYL2, MYH7 4.34E-04

Cardiac muscle tissue morphogenesis MYL2, MYH7 4.92E-04
Cardiac muscle contraction MYL2, MYH7 4.92E-04
Ventricular cardiac muscle tissue
morphogenesis

MYL2, MYH7 4.92E-04

Positive regulation of intracellular transport MYL1, STRIT1 6.89E-04
Heart contraction MYL2, MYH7 7.61E-04
Cardiac ventricle morphogenesis MYL2, MYH7 7.99E-04
Myofibril assembly MYL2, MYH7 9.58E-04
Striated muscle contraction MYL2, MYH7 .001467055
Host-mediated regulation of intestinal
microbiota composition

MUC2 .005985691

Cellular component Myofibril MYH2, MYL1, MYL2, MYH7 1.70E-08
Muscle myosin complex MYH2, MYL1, MYH7 3.09E-07
Myosin filament MYH2, MYH7 9.90E-05
Supramolecular fiber MYH2, MYH7 5.86E-04
Golgi lumen MUC2, CGA .0044345
Sarcoplasmic reticulum membrane STRIT1 .026668846
Intercalated disc NRAP .03056186
Cell–cell junction MYH2, NRAP .035451148
Actin cytoskeleton MYL2, ACTL8 .04171588
Sarcoplasmic reticulum STRIT1 .044071254
Caveola MYL1 .06023514
Actin filament ACTL8 .068687033

positive circumstances. The high-recall figures (85.51%–97.19%
for RF and 85.51%–95.23% for XGBoost) show that both techniques
were successful in gathering all positive examples. Moreover,
RF and XGBoost routinely had high F1 ratings, which show the
harmonic mean of accuracy and recall, indicating their overall
efficacy. With an accuracy range of 63.30%–85.19%, the SVM also
performed well, most notably in differentiating between phases
I–II and III, IV, and V.

However, compared to RF and XGBoost, the SVM has a
lower specificity, suggesting that it would have trouble correctly
identifying actual negative scenarios. Phase-by-phase variations
in the DT’s accuracy ranged from 67.22% to 85.19%. While the
DT had poorer accuracy than RF and XGBoost, it nevertheless
obtained acceptable performance metrics, demonstrating its
potential value in specific applications. GNB showed lower
accuracy than other models, ranging from 63.30% to 83.74%. This
shows that GNB may be less efficient at reflecting the complexity

of breast cancer staging than more advanced models such as
RF and XGBoost. KNNs achieved reasonable accuracy, ranging
from 77.77% to 80.63%. While the KNN demonstrated lesser
accuracy than RF and XGBoost, its performance was nonetheless
respectable, demonstrating its potential use in certain scenarios.

Overall, the results show that RF and XGBoost are successful
in properly classifying different stages of breast cancer, implying
that they might be used in clinical practice for precise diagnosis
and treatment planning. Figure 8 displays the precision–recall
curve, while Fig. 9 displays the ROC curve for the four distinct
models.

Discussion
In women globally, breast cancer is the primary cause of cancer-
related death. In both developed and developing nations, it comes
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Figure 4. miRNA–gene interaction regulatory network. Target regulatory molecules are represented by square nodes, while associated genes are
represented by circular nodes.

Table 4. Model evaluation metrics.

Stage Model Accuracy Precision Recall F1 Specificity

I–II, III, IV, V RF 94.46% 94.61% 94.46% 94.45% 93.77%
SVM 85.19% 84.19% 85.19% 84.98% 77.16%
DT 83.66% 83.44% 84.66% 83.47% 67.50%
GaussianNB 79.76% 68.02% 73.33% 69.42% 36.23%
KNN 80.63% 68.02% 73.33% 69.42% 60.89%
XGBoost 93.01% 93.27% 93.01% 92.99% 92.38%

I, II–III, IV, V RF 97.19% 97.20% 97.19% 97.18% 92.88%
SVM 77.95% 77.95% 77.95% 76.56% 83.90%
DT 85.19% 84.19% 85.19% 84.98% 77.16%
GaussianNB 83.74% 86.25% 83.74% 82.65% 97.36%
KNN 77.77% 80.23% 77.70% 73.46% 96.08%
XGBoost 95.23% 95.34% 95.23% 95.23% 87.45%

I, II, III–IV, V RF 85.51% 85.58% 85.51% 85.53% 89.71%
SVM 63.30% 63.43% 63.30% 61.87% 82.69%
DT 67.22% 67.00% 67.22% 67.00% 74.44%
GaussianNB 74.82% 77.85% 74.82% 72.67% 96.13%
XGBoost 85.51% 85.84% 85.51% 85.59% 88.78%

in second place among the main causes of cancer-related deaths.
Treatment effectiveness dramatically reduces metastasis and
postcarcinogenesis, highlighting how crucial early identification
is. Not only does prompt diagnosis increase patient survival
rates, but it also makes it easier to put therapies into place that
can reduce morbidity and increase overall survival rates [45].
Breast cancer screening in various European countries is mostly

performed via mammography or breast magnetic resonance
imaging (MRI), although these technologies present problems.
Although breast MRI can be costly and has certain drawbacks,
radiologists’ experience is crucial in interpreting mammograms.
Both screening techniques are widely used; however, it is
important to carefully weigh their advantages and disadvantages
[46]. In this study, we focus on identifying and classifying breast
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Figure 5. TF–gene interaction regulatory network. Square nodes indicate target regulatory molecules (TFs), and circular shape nodes represent the
associated DEGs.

cancer using system biology and machine learning approaches.
We have studied the breast cancer gene expression data from
TCGA datasets. First of all, we utilized the DEGs of the gene
expression data of TCGA datasets, and then, we found 20
DEGs including 10 upregulated and 10 downregulated genes
of breast cancer (Table 1). To discover prospective therapeutic
targets, we examined differentially expressed breast cancer genes
using PPI, molecular signaling pathway, ontology, and regulatory
analysis. Similarly, system biology studies were done to study
the molecular markers and therapeutic targets by Barua et al.
[47–49]. We utilized gene enrichment analysis to obtain the
responsible genes of breast cancer by discovering gene ontologies
and pathways. We identified 20 DEGs using gene ontological
exploration based on P-value to obtain insight into the molecular
importance of breast cancer. The three types of GO analysis such
as molecular function (molecular-level performance), biological
process (biological activities), and cellular component (gene
regulatory activities) were employed from the GO database
using Enrichr as an annotation source [50]. In the molecular
function, histone deacetylase binding and actin binding activity
are significant among the top GO terms. Actin-myosin filament
sliding and muscle filament sliding for biological processes and
myofibril and muscle myosin complex for cellular components
are among the top GO terms.

Myofibrils are the complex structures found inside muscle
cells. They are essential for enabling muscular contraction,
which is a basic mechanism that is necessary for movement and
body function. This process also greatly contributes to general
physiological balance. Several muscle diseases and ailments that
impair movement and physical well-being may be related to
myofibril dysfunction or dysregulation [51]. Histone deacetylases

(HDACs) in breast cancer regulate gene expression by altering
histone proteins. This can affect the expression of genes involved
in cell growth, metastasis, and medication resistance [52]. HDAC
inhibitors have shown promise as possible therapies because they
reverse these processes and make cancer cells more susceptible
to therapy. Another study showed that alterations in cytoskeletal
dynamics, including gactin–myosin interactions, can indirectly
influence various aspects of breast cancer progression [53,
54]. Enrichment analysis is an important tool for identifying
correlations unique to breast cancer and other disorders [55, 56].
The KEGG pathway of the DEGs revealed the top four pathways:
cardiac muscle contraction, hypertrophic cardiomyopathy, dilated
cardiomyopathy, and adrenergic signaling in cardiomyocytes. In
a study, cardiac muscle contraction pathways could potentially
impact breast cancer growth by common molecular processes
or systemic consequences, as shown by the linked signaling
networks in cancer-associated fibroblasts and the tumor microen-
vironment [57]. According to some research, there seems to be
a link between the advancement of breast cancer and chronic
stress, which can trigger adrenergic signaling pathways [58].
In addition, Tight junction and Striated muscle contraction for
BioPlanet pathway, and Regulators of Bone Mineralization Homo
sapiensh npp1Pathway and PKC-catalyzed phosphorylation of
inhibitory phosphoprotein of myosin phosphatase H. sapiens h
myosinPathway for BioCarta pathway were revealed as the top
significant pathways (Table 2). It has been found that frequent
exercise, which burns calories through muscular contraction and
may affect the metabolism of creatine, lowers the risk of breast
cancer [59, 60]. Moreover, abnormal metabolism including the
metabolism of creatine may contribute to the advancement of
cancer [61, 62]. The Striated Muscle Contraction Pathway, PtdIns
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Figure 6. Combined protein–drug and protein–chemical interaction network. Pentangle nodes indicate chemical compounds and rhombus nodes indicate
drug regulatory molecules.

4 5 P2 In Cytokinesis Pathway, and Osteoblast Signaling are all
thought to have a role in breast cancer. While these pathways
are largely concerned with muscle function, cell division, and
bone growth, there may be indirect links or common regulatory
mechanisms with breast cancer. Dysregulation of cell division
signaling pathways, such as cytokinesis, has been linked to
the development of cancer. Furthermore, modifications in bone
signaling pathways may impact the bone microenvironment,
influencing the course of breast cancer bone metastases [63,
64]. Analysis of protein–protein networks is a crucial method
for determining the processes behind the development of illness
[65, 66]. In order to acquire hub proteins, we built a network
of interactions between proteins. The PPI analysis revealed four
hub proteins that are MYH2, MYL1, MYL2, and MYH7. It’s worth
noting that changes in numerous cytoskeleton components,
such as myosin and myosin-associated proteins, have been
linked to cancer development, particularly breast cancer. These
modifications can impact cell motility, invasion, and metastasis,
which are important factors in cancer growth [67, 68]. miRNAs
and TFs regulate gene expression through post-transcriptional
and transcriptional mechanisms. The dysregulation of miRNAs
and TFs has emerged as a critical mechanism in breast cancer
pathogenesis, impacting multiple aspects of tumor initiation,
development, and metastasis. Several studies have highlighted
the deregulation of certain microRNAs in breast cancer, such
as miR-21, miR-155, and miR-221, which are typically overex-
pressed and linked with poor prognosis [69, 70]. By specifically

targeting oncogenes or important tumor suppressor genes, these
miRNAs can alter vital signaling pathways that are involved in
invasion, apoptosis, and cell proliferation. Furthermore, abnormal
expression of TFs, including members of the E2F, FOX, and
AP-1 families, has been linked to breast cancer development
[71, 72]. TFs control the expression of genes involved in a
variety of biological functions. When TFs are dysregulated,
normal gene expression patterns can be disrupted, which can
contribute to the development of cancer. We identified the
top significant miRNA targets (hsa-let-7d-5p, hsa-mir-4500,
hsa-mir-34a-5p, hsa-let-7a-5p, and hsalet-7c-5p) which may be
interconnected with pathways of breast cancer (Fig. 3). The target
miRNAs may be regarded biomarkers and therapeutic targets
to treat breast cancer [73, 74]. The top significant regulatory
TFs (YY1, FOXC1, FOXL1, and MEF2A) may be responsible for
the related pathways of the breast cancer cellular process of
disease development. Among the discovered TFs, YY1 has been
implicated in tumor aggressiveness and medication resistance
through the regulation of cell cycle control and metastasis-related
genes [75]. FOXC1, on the other hand, promotes tumor growth
and metastasis by regulating genes associated with epithelial–
mesenchymal transition and angiogenesis, contributing to
poor clinical outcomes [76]. In another study [77], researchers
discovered that while the specific role of FOXL1 in breast
cancer remains unclear, accumulating evidence shows that it
may have tumor-suppressive activities, reducing proliferation
and invasion in breast cancer cells. Meanwhile, MEF2A has
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Figure 7. Overall survival rate of the genes ACTL8, CGA, IBSP, and MUC2.

been linked to boosting tumor development and metastasis via
modulating genes involved in cell proliferation and survival,
indicating a bad prognosis in breast cancer patients [78].

Apart from clarifying the functions of TFs in breast cancer,
protein–chemical interaction research has discovered other possi-
ble targets for treatment. Because it inhibits dihydrofolate reduc-
tase and messes with DNA synthesis, methotrexate, a commonly
used chemotherapeutic treatment, has demonstrated success in
treating a variety of malignancies, including breast cancer [79].
Because of its capacity to cause DNA damage and encourage
carcinogenesis, benzopyrene, a polycyclic aromatic hydrocarbon
present in tobacco smoke, has been linked to the development of
breast cancer [80]. 4-[4-(2,5-Dioxo-pyrroldin-1-yl)-phenylamino]
is the compound. Despite not having been well researched, -4-
hydroxy-butyric acid shows promise as a therapeutic agent since
it targets particular biochemical pathways that are implicated in
the advancement of breast cancer [81].

Furthermore, machine learning analysis is implemented to
improve the accuracy of breast cancer stage classifications.
Notably, RF and XGBoost consistently delivered excellent accu-
racy, precision, recall, and F1 scores throughout all stages, with
RF ranging from 85.51% to 97.20% and XGBoost from 85.51% to
95.34%. The SVM was effective in distinguishing between phases

I–II and III, IV, and V, with accuracy ranging from 63.30% to
85.19%. However, the SVM had poorer specificity than RF and
XGBoost. DT performance varied, although GNB accuracy was
lower. KNNs demonstrated reasonable accuracy. Overall, RF and
XGBoost indicate potential for therapeutic usage in precise breast
cancer staging.

This research has several benefits for the identification, catego-
rization, and staging of breast cancer. The TCGA dataset combines
bioinformatics and machine learning to offer a thorough exami-
nation of molecular markers and cancer development. High diag-
nosis accuracy (97.19% and 95.23%, respectively) is obtained by
the application of machine learning models like RF and XGBoost,
which may be very helpful for clinical practice. More focused
treatment approaches are also made possible by the discovery of
possible therapeutic targets through the examination of signaling
cascades, PPIs, and DEGs. Finding important proteins and miRNAs
connected to the development of cancer also provides useful
biomarkers for early identification and individualized treatment.
Through the implementation of systems biology methods, the
research expands our knowledge of the molecular pathways
underlying breast cancer and helps to advance personalized
medicine strategies that customize treatment regimens based on
the unique characteristics of each patient. All things considered,
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Figure 8. Precision–recall curve of machine learning models RF, GNB, KNNs, and XGB (XGBoost).

Figure 9. ROC curve of machine learning models RF, GNB, KNN, and XGB.
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this research offers a strong foundation for improving breast
cancer detection, staging, and treatment advancement. The
code of the project is available at the following link: https://
github.com/dassaurav404/Breast-Cancer-Classification-using-
Machine-Learning-andBioinformatics-Approach.git.

Conclusions
The complete investigation of breast cancer utilizing systems
biology and machine learning methodologies has revealed impor-
tant information about disease processes and prospective treat-
ment targets. Significant molecular activities such as histone
deacetylase binding and actin binding were found among the
elevated genes, suggesting that they have active roles in cancer
development. Similarly, downregulated genes were linked to key
biological processes such as muscle filament sliding, indicating
a possible imbalance in cellular functions. Enrichment analy-
sis helped to understand the pathways that stimulate breast
cancer development. The main pathways identified, including
heart muscle contraction and adrenergic signaling, indicate pos-
sible linkages between cancer and systemic processes such as
chronic stress. Furthermore, the enrichment of pathways asso-
ciated with muscle contraction and cytokinesis emphasizes the
role of cytoskeletal dynamics in cancer development, opening
up new possibilities for therapeutic intervention. The PPI study
revealed hub proteins such as MYH2 and MYH7, demonstrating
the role of cytoskeletal components in breast cancer etiology.
MicroRNA and TF studies revealed dysregulation of key regula-
tors such as hsa-let-7d-5p and YY1, indicating their potential
as diagnostic indicators and therapeutic targets. Furthermore,
the discovery of chemicals with therapeutic potential, such as
methotrexate and 4-hydroxy-butyric acid, emphasizes the need
to address particular biochemical pathways in cancer treatment.
In addition, machine learning studies showed that models such
as RF and XGBoost can reliably detect breast cancer stages, with
RF attaining an accuracy range of 85.51%–97.20% and XGBoost
ranging from 85.51% to 95.34%. The SVM has shown success in
differentiating between phases I–II and III, IV, and V, with an
accuracy range of 63.30%–85.19%. However, the SVM has lower
specificity than RF and XGBoost. One key limitation of the study
is the lack of clinical trials to validate the findings. While the
machine learning models show high accuracy in cancer clas-
sification, their clinical applicability requires further testing to
confirm their effectiveness in real-world settings. Additionally, the
study primarily focuses on specific subtypes and stages of breast
cancer, necessitating further research to assess the methodology’s
effectiveness across a broader range of breast cancer types and
diverse patient populations. Another key limitation of this study
is the lack of clinical trials to validate the findings, as the machine
learning models, while demonstrating high accuracy in classi-
fication, require further testing to assess their clinical applica-
bility. Additionally, the study’s focus on specific subtypes and
stages of breast cancer limits its scope, and further research
is needed to evaluate the methodology’s effectiveness across a
wider range of breast cancer types and diverse patient popula-
tions. Despite the use of SMOTE to address class imbalance, the
dataset’s imbalance, particularly in later-stage cancers, may still
impact model performance and its ability to generalize effectively.
The study’s research findings can be used in laboratory studies to
better understand potential therapeutic targets for breast cancer
treatments.

Key Points

• Determine the genes responsible for breast cancer and
construct a protein–protein interaction (PPI) network.

• Predict candidate drugs based on the PPI network’s hub
nodes and identify the diseases associated with the hub
genes.

• Role of biomarkers.
• Cross-validate the expression level of the hub genes and

perform survival analysis.
• Application of machine learning in cancer diagnosis.
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Supplementary data are available at Briefings in Bioinformatics
online.
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