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Abstract

Accurate prediction of binding between human leukocyte antigen (HLA) class I molecules and antigenic peptide segments is a
challenging task and a key bottleneck in personalized immunotherapy for cancer. Although existing prediction tools have demonstrated
significant results using established datasets, most can only predict the binding affinity of antigenic peptides to HLA and do not
enable the immunogenic interpretation of new antigenic epitopes. This limitation results from the training data for the computational
models relying heavily on a large amount of peptide-HLA (pHLA) eluting ligand data, in which most of the candidate epitopes lack
immunogenicity. Here, we propose an adaptive immunogenicity prediction model, named MHLAPre, which is trained on the large-scale
MS-derived HLA I eluted ligandome (mostly presented by epitopes) that are immunogenic. Allele-specific and pan-allelic prediction
models are also provided for endogenous peptide presentation. Using a meta-learning strategy, MHLAPre rapidly assessed HLA class I
peptide affinities across the whole pHLA pairs and accurately identified tumor-associated endogenous antigens. During the process of
adaptive immune response of T-cells, pHLA-specific binding in the antigen presentation is only a pre-task for CD8+ T-cell recognition.
The key factor in activating the immune response is the interaction between pHLA complexes and T-cell receptors (TCRs). Therefore, we
performed transfer learning on the pHLA model using the pHLA-TCR dataset. In pHLA binding task, MHLAPre demonstrated significant
improvement in identifying neoepitope immunogenicity compared with five state-of-the-art models, proving its effectiveness and
robustness. After transfer learning of the pHLA-TCR data, MHLAPre also exhibited relatively superior performance in revealing the
mechanism of immunotherapy. MHLAPre is a powerful tool to identify neoepitopes that can interact with TCR and induce immune
responses. We believe that the proposed method will greatly contribute to clinical immunotherapy, such as anti-tumor immunity,
tumor-specific T-cell engineering, and personalized tumor vaccine.
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Introduction
T cell-based immunotherapy has achieved significant progress
in the field of clinical oncology [1, 2]. Current evidence sug-
gests that tumor immunotherapy relies on T-cell recognition of
tumor-specific neoantigens that generated by nonsynonymous
mutations in tumor tissues, thereby selectively eliminating cor-
responding tumor cells. In tumor immunotherapy, class I Human
Leukocyte Antigen (HLA-I) plays a central role in recognizing
and binding to these neoantigens [3–6]. HLA alleles are primarily

distributed on the short arm of chromosome 6 [7]. Short peptides
bound to HLA-I molecules mainly originate from intracellular pro-
teins, which are proteolytically cleaved by proteasomes and pep-
tidases before loading and expression. HLA-I molecules present
antigens to CD8+ T-cell receptors (TCRs), which elicts the clonal
expansion of cytotoxic T-cells to achieve the elimination of cancer
cells and precise therapy [8]. Therefore, predicting the affinity of
HLA I antigen peptides has become a key factor in neoantigen
immunotherapy and may serve as a breakthrough [9]. However,

http://orcid.org/0000-0003-4952-9178
http://orcid.org/0000-0002-6524-9443
http://orcid.org/0000-0001-8022-9793
http://orcid.org/0000-0002-6645-6890
http://orcid.org/0000-0003-1347-3491
http://orcid.org/0000-0002-9738-2361
http://orcid.org/0000-0003-3662-0335
http://orcid.org/0000-0002-7108-357
http://orcid.org/0000-0001-7381-2374

 12681 28509 a 12681 28509
a
 
mailto:lixiaokun@hlju.edu.cn
mailto:lixiaokun@hlju.edu.cn
mailto:lixiaokun@hlju.edu.cn

 29671 28509 a 29671
28509 a
 
mailto:wangkq@hit.edu.cn
mailto:wangkq@hit.edu.cn
mailto:wangkq@hit.edu.cn

 44693 28509 a 44693
28509 a
 
mailto:luogongning@hit.edu.cn
mailto:luogongning@hit.edu.cn
mailto:luogongning@hit.edu.cn

 5325 29560 a 5325 29560
a
 
mailto:ghwang@nefu.edu.cn
mailto:ghwang@nefu.edu.cn
mailto:ghwang@nefu.edu.cn


2 | Xu et al.

though many computational methods have been developed for
predicting binding affinities of HLA I bound epitopes, deficiencies
still remain in indicating immunogenicity.

Computational models for predicting the binding affinity
between peptides and HLA alleles, particularly for HLA-A and
HLA-B alleles, have been greatly improved. Based on decades
of laboratory work and accumulated data on HLA binding
sequences, more than 30 tools are now available for predicting
HLA-antigen interactions. However, even widely used algorithms,
such as NetMHCpan [10, 11], show an increase in incorrectly
predicted binding entities when the half-maximal inhibitory
concentration (IC50) exceeds 100 mol. Most of the predictors,
such as NetMHCpan, MHCnuggets [12, 13], and MHCflurry [14]
only focus on the binding between HLA and peptide segments,
whereas further experimental verification is needed to determine
the immunogenicity of HLA I epitopes. Besides, some tools, such as
MixMHCpred2.2 [6, 15, 16] and HLAthena [17, 18], rely on randomly
generated negative samples or utilize transfer learning with HLA
eluted peptide data to adapt the model to immunogenicity.

Several computational models are available for predicting
peptide-HLA (pHLA)-TCR binding specificity. They are mainly
divided by two categories: (1) peptide-specific TCR binding
prediction models, including TCRGP [19], MixTCRPred [20], and
NetTCR2.0 [21]; (2) predictive models for peptide-TCR binding
using peptide-nonspecific peptides that are trained based on
known binding TCRs, including pMTnet [22], DLpTCR [23], ERGO2
[24], PanPep [25]. Unfortunately, the models in the first category
are restricted to specific peptides with limited utility, and the
second category to develop general pHLA-TCR binding prediction
models.

Generally, predicting pHLA binding affinity or antigenic–TCR
interactions are usually treated as two separate tasks. However,
these tasks are highly repetitive and correlated with the data
used for model training as well as human physiological processes.
This inspired us to adapt the previously learned parameters from
the predicted antigenic pHLA immunogenicity model to improve
the T-cell receptor interaction task using transfer learning. As
shown in Fig. 1(a), available training data mainly come from
eluting bound pHLA, detecting bound peptide sequences using
mass spectrometry, and detecting HLA allele types by gene expres-
sion profiling. However, such data only represent whether the
candidate antigenic peptide can be presented by HLA, but can-
not explain whether the peptide can elicit an immune response
from CD8+ T-cells. Therefore, we used laboratory-validated pHLA
data capable of eliciting an immune response to simulate this
physiological process based on a deep learning model, aiming to
accurately predict whether a candidate antigen is immunogenic.

In this paper, we propose two MHLAPre models, namely
MHLAPre IM and MHLAPre TT. To predict the immunogenicity
of neoantigens, MHLAPre IM is trained on experimentally
confirmed class I HLA-bound epitopes (pHLA pairs) that possess
immunogenicity. Subsequently, based on MHLAPre IM, transfer
learning is directly performed on pHLA-TCR data to build the
MHLAPre TT model. Although transfer learning changes the
scope of the original task, it has highly contextual relevance
in terms of data representation because of the temporal order
of tasks throughout the immune response process. Specifically,
we propose the MHLAPre IM model to predict the epitope
immunogenicity by Model-Agnostic Meta-Learning (MAML) [26],
which allows more sensitive learning of data feature information
on immunogenic samples with insufficient HLA eluted peptide
data. For amino acid sequence encoding, the Blosum62 (Block
substitution Matrix 62) are empolyed to encode antigenic peptides

and HLA alleles [27, 28]. The complementary decision region 3
(CDR3β) of the TCRs β chain is considered as one of the inputs
at the beginning of transfer learning. The representation of HLA
is derived from the polymorphic residues of alleles A, B and C. A
pseudosequence consisting of the 34 most important amino acid
residues is used to represent each allele. In our experiments,
we compared MHLAPre IM with five state-of-the-art models
of HLA-antigen binding prediction and four models for pHLA-
TCR binding prediction and discussed the results based on the
comparison. In order to dig deeper into MHLAPre, we further
compared it with pHLA-specific models (NetTCR2.0, MixTCRPred),
and further research directions in the field afterwards are
discussed.

Results
Framework development
MHLAPre is a generalized framework designed to predict whether
epitopes of pHLA pairs are immunogenic. The development of
MHLAPre was inspired by the effective integration of meta-
learning [29–33] strategies and powerful learning ability of
transfer learning [34]. The overall architecture of our model is
shown in Fig. 2. MHLAPre includes a meta-learning strategy, a
backbone network, and a transfer learning module. We use a
Model-Agnostic Meta-Learning framework, which enables the
model to be trained on multiple tasks, optimizes the initialization
of the model, and allows the model to adapt quickly when
encountering a new task. Additionally, since the training data are
in a long-tailed distribution, we introduce a dynamic sampling
technique to dynamically extract the support and query sets
of pHLA or pHLA-TCR based on peptide types. Furthermore, it
enables quickly respond to whether a neoantigen can trigger
the immune reactivity of CD8+ T-cells by learning a priori
immunogenicity data. To construct the MHLAPre IM model, we
introduce the encoder module of the Transformer [28, 29] to
process the encoded amino acid sequences. Transformer has
achieved outstanding results in the encoding and processing of
textual data. The Transformer encoder takes the pHLA matrix as
an input to obtain a matrix in the same format as the input of
the backbone network. The backbone network adopts TextCNN
[30, 31], while taking the support set and query set data as input.
We combined the knowledge of antigenic peptide sequences and
HLA alleles in a biologically meaningful way as the input data,
vectorized it, and enriched the potential features of the data by
multiple coding rules. After obtaining the standardized output of
the TextCNN network, we constructed a tri-layer fully-connected
network to perform the dimensionality compression, and finally
obtained the scoring model. Furthermore, we developed the
MHLAPre TT model by introducing a transfer learning module.
The immunogenic pHLA-TCR data were fed into the optimized
backbone network. As shown in Fig. 1(c), we cleaned and divided
the raw immunogenicity data collated from the IEDB [32] into
different datasets. As shown in Fig. 1(b) and 1(d), we statistically
characterised the sequence features of the antigenic peptides
and the distribution of HLA alleles in the training set to better
observe the feature information of the training data, which we
investigate in detail later. Of note, the changes between the input
data of IM and TT model were generated. In order to unify the
input data format as well as to retain the features of the pHLA
data, we spliced the antigenic peptides that have been vectorized
and quantized with the TCR CDR3 sequence data to construct the
neural network to unify the vector dimensions. Thus, MHLAPre
TT is capable of predicting the immunogenicity of a pHLA
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Figure 1. Statistical information on immunogenicity data. (a) Sequence determination by mass spectrometry methods after elution of antigenic peptides;
allele type determination by gene expression. (b) Amino acid site frequency plots of three HLA alleles binding antigenic peptides classified according
to peptide length (HLA-A∗02:01, HLA-B∗07:02, HLA-C∗24:02). (c) Raw data cleaning process, division ratio between training and test sets; (d) Observed
peptide Length frequencies across alleles. HLA-A alleles bind longer peptides more frequently compared with HLA-B and -C alleles, which tend to bind
shorter peptides. Panel a created with BioReader.com.

complex and corresponding pHLA-TCR pair to determine whether
a neoantigen trigger an immune response with the cytotoxic
T-cells. The specific model structure information is provided in
Supplementary Fig. 2 and Supplementary Table S6.

Epitope immunogenicity prediction of pHLA
complex
The vast majority of neoepitopes are not immunogenic, and it is
inevitable that errors may occur when learning features in dif-
ferent training process. Specifically, MHLAPre learned large-scale
eluted peptides with HLA I epitope data first, and then learned
a pHLA-TCR dataset by transfer learning. Thus, directly using
immunogenicity data for training and mining immunogenicity
features in limited samples by meta-learning may avoid bias in
weights during pre-training and knowledege transfering.

We evaluated with NetMHCPan [10, 11], MHCnuggestl [12, 13],
MHCflurry [14], MixMHCpred2.2 [15, 16], and HLAthena [17, 18]
on the same epitope immunogenicity data, which collate from
IEDB. The area under the Receiver Operating Characteristic (ROC)
curve (AUROC) and the area under the Precision-Recall (PR) curve
(AUPRC) were used as evaluation criteria. Based on the data
characteristics of pHLA pairs, the epitope immunogenicity task
was evaluated in two different modes, 1) allele-specific mode to
study the binding preference of three HLA loci, and 2) length-
specific modes to survey the peptide length influence the binding
performance [6].

As shown in Fig. 3(a-b), we stratified the results according to
the subdivided categories of HLA and demonstrated the distri-
bution of AUROC and AUPRC for each classifier on HLA loci.
MHLAPre showed significantly compelling performance for all

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae625#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae625#supplementary-data
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Figure 2. Workflow diagram of the model. (a) Data input structure of the MHLAPre model and model workflow. (b) Training process of MHLAPre IM against
pHLA complex epitope immunogenicity. (c) Transfer learning and prediction process of MHLAPre TT in the pHLA-TCR scenario. Panels a-c created with
BioReader.com.

HLA loci, whereas other models obtained a slight decrease, espe-
cially on HLA-C. Under the application of full data evaluation,
MHLAPre obtained an average AUROC and AUPRC values of 0.9041
and 0.8462, respectively. In comparison, the best available priori
method, HLAthena, obtained an average AUROC and AUPRC of

0.8601 and 0.7878. The data of other methods are shown in
Supplementary Table S1.

As shown in Fig. 3(c), we stratified according to HLA and anti-
genic peptide length. After applying a more refined stratification,
MHLAPre obtained an average AUROC and AUPRC of 0.8542 and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae625#supplementary-data
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Figure 3. Performance evaluation of different pHLA antigen affinity prediction algorithms. (a) The figure presents a comparative analysis of the predictive
accuracy of several antigen presentation prediction algorithms. The top panel displays the AUROC for each algorithm, whereas the bottom panel shows
the AUPRC. Each bar represents the average performance score of the respective algorithms—MHCflurry, NetMHCpan, MHCnuggets, MixMHCpred
2.2, and HLAthena—across all HLA types (ALL) as well as individually stratified for HLA-A, HLA-B, and HLA-C alleles. The error bars correspond to
the standard deviation of the performance scores, encapsulating the variability of the algorithm’s predictive power. This comprehensive assessment
underscores the varying degrees of efficacy that these computational tools exhibit when tasked with predicting the presentation of antigens by different
HLA molecules. (b) The left panel shows the AUROC for each algorithm and the right panel shows the AUPRC. Each line represents the average
performance score of different algorithms for different lengths of antigenic peptides.

0.6414, respectively, compared to an average AUROC and AUPRC
of 0.7680 and 0.5957 for HLAthena. MHLAPre was most effec-
tive for peptides of length 9, which is also the most common
peptide length for HLA-I classes. Although the predictive power
of MHLAPre for immunogenic pHLA decreases with increasing
antigenic peptide length, it still outperforms existing advanced
methods to a certain extent in cross-sectional comparisons of all
peptide lengths. In conclusion, MHLAPre can accurately predict

the epitope immunogenicity of pHLA pairs in both allele-specific
and length-specific modes (shown in Supplementary Tables S2
and S3).

Compared to other models, MHLAPre IM demonstrates
outstanding performance advantages in predicting candidate
immunogenic antigens. This is because MHLAPre is trained on
immunogenic pHLA data, whereas NetMHCpan, MHCnuggets,
MHCflurry, and MixMHCpred2.2 are trained on eluted peptide

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae625#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae625#supplementary-data
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data after mass spectrometry determination. The predicted
results of these models represent the affinity of candidate
peptides and HLA, which significantly differs from our model’s
prediction performance. Notably, HLAthena achieves perfor-
mance close to our model because it transfers the parameters
from the eluted peptide data to the immunogenicity data through
transfer learning. However, since not all candidate antigens
presented via HLA can elicit an immune response from CD8+
T-cells, HLAthena’s reliance on eluted peptide data and the
parameters learned through transfer learning based on small-
scale immunogenicity data still result in some bias in learning the
overall features of the immunogenicity data. Therefore, HLAthena
is still insufficient compared to MHLAPre.

Prediction of TCR binding specificity with pHLA
Since the immunogenicity candidate antigen results predicted
by MHLAPre IM can be used as a precursor task for pHLA
interaction with TCRs, this provides a basis for transferring
from the antigen-HLA affinity prediction task to the TCR-pHLA
interaction prediction task. Therefore, we proposed the MHLAPre
TT model based on the MHLAPre IM model (shown in Fig. 2(a-c),
and Supplementary Fig. 2) to enable the prediction of the TCR-
pHLA interaction task. We collated the TCR-pHLA dataset from
the IEDB database as a training set for the transfer learning
process. As shown in Fig. 4(a), the loss of MHLAPre TT model
decreasesd rapidly and tended to be stable when the epochs
were approximately 50 during the 241 transferring process. Since
the limited number of experimental validated pHLA-TCR data,
it is necessary to construct a candidate list of immunogenic
candidate neoepitopes to support validation in clinical settings.
Therefore, only the top prediction results in practical applications
can be further proven by experiments, and the prediction results
must maintain a high accuracy. To evaluate the accuracy, it is
usually necessary to use Positive Predictive Value (PPV) and more
dimensional performance indicators to evaluate models. We
suggested that the mean value of the 2% PPV among the highest
scoring peptides is a more appropriate measurement to assess
predictors of TCR binding specificity. Because it is important
to assess the true positive rate at the actual 2% prevalence of
the conjugate. AUROC and AUPRC were also used as evaluation
indicators. To summarize the performance comparison with the
prior method, the average PPV was plotted in Fig. 4(c-d). As shown,
the average PPV of MHLAPre TT was 0.7397, which is better than
the current best prior method pMTnet with an average PPVn
of 0.7105. In mean AUROC and AUPRC, MHLAPre TT yeilded
values of 0.7996 and 0.7623, and pMTnet was 0.7603 and 0.7899
(shown in Supplementary Table S4). We evaluated MHLAPre TT
according to different HLA genotypes. MHLAPre performed well
in different genotyped samples (shown in Fig. 4e-f). The results
demonstrated the effectiveness of transfer learning in the transfer
of epitope immunogenicity data to Tcell binding specificity
data to reveal the significantly clincal benefits for cancer
immunotherapy.

Network architecture study
We further discussed how the meta-learning framework affected
the performance of MHLAPre. To investigate this, we ablated the
meta-learning framework and retrained the model. When strati-
fied by allele and peptide length, the MAML framework improved
the IM AUROC by 0.0256 and AUPRC by 0.0158, particularly for
longer peptides (11–15 mers). Similarly, the TT model’s AUROC
was improved by 0.0014 and AUPRC was improved by 0.0058,

which was not as significant as on the IM data, but still a modest
improvement.

MHLAPre IM reveals how to predict unseen pHLA
data mechanism
To investigate the prediction performance of MHLAPre IM on rare
alleles and antigenic peptides not present in the training set,
we integrated class I human-derived HLA-peptide pairs from the
VDJdb (Score≥1) and McPAS-TCR databases. These were then
compared and filtered against the previously compiled IEDB
data to identify pHLA pairs not present in the IEDB dataset. We
finally collected 69 pairs of positive pHLA samples that had not
been seen before (VDJdb: 43, McPAS-TCR: 26). We searched to
obtain 19 peptides that did not appear in the training set. HLA
alleles with less than 30 occurrences in the training set were
defined as rare alleles, and 36 rare alleles were obtained. We
input the unseen positive HLA-peptide dataset into MHLAPre IM
and obtained predictions (Fig. 5(a), Supplementary Table S12).
We observed that pHLA pairs with high-frequency HLA alleles
and antigenic peptides that had appeared in the IEDB dataset
received higher scores (Supplementary Figs 16 and 17). Notably,
the unseen antigenic peptides (FLGKIWPSHK_HLA-A∗02:01
and GPEPLPQGQLTAY_HLA-B∗07:02) also obtained excellent
prediction scores due to the very high frequency of HLA-A∗02:01
(Frequency: 9 741) and HLA-B∗07:02 (Frequency: 2 402) in the
training set, and these two HLA alleles were sufficiently trained
in the MHLAPre IM training set. MHLAPre learned enough binding
features of the related genes. The novel pHLA data samples
(WLDNFELCL_HLA-B∗51:193, TYDTVHRHL_HLA-A∗08:01) had the
lowest scores, suggesting that the model did not sufficiently learn
the information from this sample. We found that HLA sequences
of HLA alleles with high sequence similarity to the high frequency
alleles performed excellently in the prediction results (e.g. HLA-
A∗02:01 is similar to the sequences of HLA-A∗02:11, HLA-A∗02:09,
HLA-A∗02:14, and HLA-A∗02:10).

Overall, our results show that predicting unseen pHLA samples
and candidate antigen immunogenicity is highly dependent on
the training set for the current scale of pHLA sequence data.
Successful prediction is only possible when the unseen pHLA
is associated with the presence of HLA alleles or antigens in
the MHLAPre IM training set, or when the HLA allele sequences
have a high level of sequence similarity to the HLA alleles in
the training set. These findings further demonstrate the expan-
sion potential of the MHLAPre IM model. Future directions could
involve addressing the shortage of pHLA data by mining the
sequence similarity features of high-frequency alleles and rare
allele sequences to achieve more accurate prediction of antigen
immunogenicity with large-scale training.

MHLAPre TT exhibits high potential performance
in peptide-specific TCR binding prediction
To further validate the performance and potential of MHLAPre
in pHLA-TCR data, we compared the prediction performance
with the pHLA-specific models NetTCR2.0 and MixTCRPred. We
therefore further validated the antigen-specific binding predic-
tion performance of MHLAPre TT against antigens restricted to
the HLA-A∗02:01 allele. We compared this with the current perfor-
mance in peptide-TCR binding prediction models NetTCR2.0 and
MixTCRPred. The NetTCR2.0 model restricts pMHC-TCR interac-
tion prediction to the HLA-A∗02:01 allele, and supports prediction
using both paired CDR3α/β versus CDR3β only on TCR inputs.
MixTCRPred is a pMHC-specific predictor, where a separate model
is trained for each epitope. It is based on the pMHC classes, 113

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae625#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae625#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae625#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae625#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae625#supplementary-data
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Figure 4. Performance comparison of MHLAPre TT with different pHLA-TCR interaction prediction models. (a) Trend of loss function loss for the MHLAPre
TT transfer learning process, where it can be observed that the MHLAPre TT model learnt new environmental knowledge and fitted quickly. (b) PPV of
the top 2% for the comparison of different models. each bar or violin represents the average performance score of the respective algorithms pMTnet,
PanPep, DLpTCR, ERGO2 across all HLA types (ALL) as well as individually stratified for HLA-A, HLA-B, and HLA-C alleles. (c,d) Mean AUROC and AUPRC
for different model comparisons. (e, f) Mean AUROC and AUPRC plots grouped by HLA-A, -B, -C alleles.

pMHC-specific predictor models are trained on human source
data for different pMHCs. The focus of this study is on data
from the 10X Genomics Chromium Single Cell Immunoassay
Profiling platform, which applies feature barcoding technology
to generate single-cell 5’ libraries and V(D)J-enriched libraries
for TCR sequences identified using highly multiplexed pMHC
multimer reagents. We examined a single-cell dataset containing
44 pMHC complex-unspecific CD8+ T-cell profiles from a healthy
donor who had not been virally infected. We studied their clonal
Tcell expansions to screen for TCRs capable of interacting with
pMHC binding and counted them according to the original unique
molecular identifiers (UMIs), when UMIs ≥ 10, we determined
that the pMHC-TCR pair could interact with T cells and counted
it as a positive sample. Since NetTCR 2.0 and MixTCRPred have

specificity requirements for pMHC, and NetTCR is even more
restricted to the input of HLA-A∗02:01 with specific three peptides
(GILGFVFTL, NLVPMVATV, GLCTLVAML), we finally used the HLA-
A∗02:01 and GILGFVFTL combination for screening. We finally
screened 2 083 TCR-pHLA pairs as a test dataset, and since the
results of the test set were all positive data, we performed statis-
tics based on the average of the final scores of each model. The
results are shown in Fig. 5(b). The average scores of the four mod-
els on our collated TCR-pHLA positive test set are MHLAPre TT
(0.8953), NetTCR2.0β (0.7608), NetTCR2.0α+β (0.9404), MixTCR-
Pred (0.8046). MHLAPre scores over TCRNet2.0β and MixTCRPred
and below TCRNet2.0α+β for CDR3β-only inputs. The results sug-
gest that migrating the a priori learned parameters of MHLAPre IM
in immunogenicity data to the pHLA-TCR environment has the
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Figure 5. MHLAPre TT gets excellent performance on independent dataset. (a) MHLAPre with undetected pHLA affinity scores, observed to be well
predicted by the presence of high-frequency HLA alleles and alleles with sequence similarity to high-frequency genes in the training data. (b) Comparison
of MHLAPre TT and pMHC-specific model performance (NetTCR2.0 α, NetTCR2.0 α+β, MixTCRPred). We obtained a dataset based on 10X Genomics
single-cell sequencing data collation to restrict the score comparison of pHLA-TCR-positive samples with pHLA of A0201_GILGFVFTL.

function of enhancing the model parameters to fit the pHLA-TCR
data (shown in Supplementary Table S5).

As a pan-peptide model, MHLAPre is able to achieve supe-
rior performance with pHLA-specific predictors. It is shown that
MHLAPre has great potential for transferring from immunogenic-
ity models to the TCR-pHLA environment. In future studies, we
will use CDR3α and CDR1 and CDR2 as inputs to improve the
predictive and generalisation performance of the model [33].

Discussion
In this study, we proposed a deep learning framework based on
meta-learning and transfer learning to predict the immunogenic-
ity of candidate antigens. An immunogenicity metadata dataset
was constructed, which contained 146 HLA alleles and 47 831
samples from the IEDB database [32]. The Transformer [28, 29]
Encoder module was empolyed to context-preprocess the encoded
pHLA matrix. The MHLAPre IM model was proposed and the
MAML [26, 34–36] framework was used to generate the task learn-
ing of TextCNN [30, 31]. Additionally, the pHLA-TCR dataset was
introduced. We performed transfer learning [37] to construct the
projection of pHLA to pHLA-TCR and evaluted it with correspond-
ing metrics. The results demonstrated that meta-learning can
effectively improve the performance and generalization in epitope
immunogenicity of pHLA complexes, which is further confirmed
through ablation experiments. In addition, meta-learning enabled
the MHLAPre TT to fit the training pattern more efficiently on a
new dataset, achieving better results despite the fact that the data
was compressed to lose some of its features in order to maintain
its coherence during the transfer learning process. This is because
during the training of the MHLAPre IM model, the transferred
environment is physiologically consistent and the transferring
process carries a large number of a priori parameters achieving
faster adaptation to the new environment. With the complexity of
the TCR sequence system, which a single TCR is able to recognise
more than a million peptides [33], using random pairing would
generate numerous false-negative samples, reducing the model’s
accuracy and generalization ability. Therefore, for the selection
of negative samples, we used experimentally confirmed negative
samples from the IEDB database. The ability of the model to

generalize at multiple levels based on HLA allele type and anti-
genic sequence length was discussed and the binding frequency of
class I HLA-binding sites was determined at the microscopic level.
These results showed high predictive accuracy and demonstrated
the information mining potential of the proposed model. In con-
clusion, this study provides a novel computational model for the
discovery of immunogenic neoantigens that can trigger CD8+ T-
cell responses. It also provides new ideas to bridge the prediction
task of pHLA binding affinity with pHLA-TCR interaction.

Despite the excellent performance of our model, several lim-
itations should be considered. Firstly, a meta-learning paradigm
based on prototype networks was used in the framework. In the
future, more advanced meta-learning paradigms may become
available. In addition, to prevent the errors of immunogenicity
data from different databases causing the contamination for
the training samples, we used the IEDB dataset alone, and only
discussed HLA-A, -B and -C subtypes. In further studies, we will
expand the abundance of HLA types and peptide types to provide
more peptide-specific tasks for meta-learning tasks, which will
greatly improve the scalability and adaptability of the model to
introduce new data. The TextCNN model is used in the backbone
module, and it can be replaced by a more advanced deep learning
model to fully learn the biological features of the peptide-HLA-
TCR triplets. This may bring better performance to a certain
extent. For the pHLA-TCR data, The reason why MHLAPre TT
showed a humble but not excellent performance may due to
two main factors. On the one hand, to ensure the consistency
with the immunogenicity data structure, the sequence length
of TCRs and peptides were compressed, which interfered the
learning efficiency of pHLA complexes’ biological features to a
certain extent. On the other hand, the immunogenicity charac-
teristics between pHLA data and pHLA-TCR data have a natural
distribution shift, bring more difficulties to comprehensively learn
the latent features of epitope-TCR in transfer learning.

Methods
Experimental environment setup
The hardware and software configurations for MHLAPre devel-
opment were 2×24GB RAM NVIDIA RTX 3090TI GPUs, running

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae625#supplementary-data
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on Python 3.8.1 and Pytorch 1.12.1 [38] with Compute Unified
Device Architecture (CUDA) version 11.7. The dataset was ran-
domly divided into training set and test set at a ratio of 4:1. The
training process used the Adam optimizer and the initial learning
rate was set to 5×10−4, and the training epochs and the batch
size were set to 350 and 128 (Supplementary Table S6). A rigorous
grid search was conducted to find out the suitable parameters
(e.g. the number of layers, attention mechanism specifics, and loss
functions) of the model with the highest predictive performance.

Immunogenicity epitope-HLA dataset
Since our work focuses on the immunogenicity of neoantigens
presented by HLA-I, our raw data are derived from experimental
data on human samples. Immunogenicity epitope-HLA data for
neoepitopes were obtained from the IEDB [32] (tcell_table.xlsx
file, downloaded on 26 November 2023) database, which consists
156 244 samples in total. Of these, there were 66 714 positive
samples and 89 531 negative samples. The data were cleaned
to remove duplicates and low-quality samples. Additionally, to
better assess the impact of peptide length on the immunogenicity
prediction of the model, the cleaning process retained antigen
sequences with a length of up to 15 amino acids. The final
dataset included 146 alleles, comprising 47 810 samples (999
(8-mers), 29 301 (9-mers), 14 339 (10-mers), 2 244 (11-mers), 98
(12-mers), 202 (13-mers), 129 (14-mers), 298 (15-mers)). The
immunogenicity HLA-antigen peptide database consisted of 36
651 negative samples and 11 159 positive samples after the
cleaning process.

TCR binding specificity dataset
The TCR binding specificity dataset that record the interaction
of pHLA-TCR pairs was also obtained from the IEDB database
[32] (recepter_table.xlsx file), with a total of 121 689 positive
samples. After deleting samples with TCR sequence lengths
greater than 30, antigen length distributions that did not satisfy
the 8–15 mer range, duplicates and samples with missing data,
33 517 samples spanning 32 alleles were retained. As the overall
sequence of TCR is very complex and a single TCR can recognise
more than one million peptides [39]. In view of the fact that
the traditional manufacturing of negative samples is done by
randomly pairing the positive samples, which is prone to the
emergence of a large number of false-negative samples, which
affects the accuracy of the training and leads to the degradation
of the model’s generalisation and prediction performance. We
screened in the IEDB, retained pHLA-TCR-negative samples that
were laboratory-confirmed. 49 988 pairs of pHLA-TCR-negative
samples were retained after screening. Since the complexity of
the CDR3 sequence of the TCR, we found regular repeats of the
CDR3 sequence by calculating the frequency of CDR3 sequence
sites, which were visualized as a logo plot (Supplementary
Fig. 11).

We acquired single-cell sequencing data from the 10X
Genomics Chromium single-cell immunoassay platform and
processed these data with Cell Ranger to obtain structured data.
We collected data from expanded T cells consistently labelled
with HLA-A∗02:01 and GILGFVFTL reagents and screened and
sorted these cells for the TCR CDR3 region. A sample dataset
containing 2083 TCR-pHLA pairs was obtained.

Input embedding
In this study, we tested three different methods for encoding
peptide sequences, including one-hot encoding, Blosum62 matrix
[19], and Atchley factor [25]. The three amino acid coding ways

were illustrated in Supplementary Fig. 1(a–c). One-hot encoding
is a numerical method to convert categorical data into binary
vectors. It generates a new column for each category and specifies
a value of 1 or 0 to indicate the presence or absence of that cate-
gory. One-hot encoding is often used to represent the statements
in a state machine, thereby eliminating the need for a decoder.
Atchley factors, proposed by William R. Atchley in 2005, also
known as Atchley parameters or Atchley amino acid descriptors,
is a set of numerical values used to quantitatively represent
various biochemical properties of amino acids. Blosum62 is a
protein substitution matrix for protein sequence alignment. This
matrix was derived from Protein Data Bank [40] analysis and mea-
sures substitution probabilities between different amino acids.
Specifically, each element in the Blosum62 matrix represents the
substitution probability between two different amino acids in a
protein family, as determined by variant analysis of actual protein
sequences.

We selected the Blosum62 matrix as the coding matrix for
amino acid sequences. Due to the Blosum62 matrix has more
information about amino acid features than the other two coding
methods, and it is easier to identify relevant interaction features
in the high-dimensional space. By integrating the coding for each
HLA I epitope sequence, Blosum62 enriches the features between
data points. This is advantageous in model training, because
it enableds deeper representations to be explored in a higher
dimensional space. Additionally, it maintains the generalization
ability of the model to a certain extent.

Performance evaluation
In this paper, samples that had been experimentally verified and
proven to be immunogenic are regarded as positive samples,
and that were not immunogenic or unable to generate immune
responses were defined as negative samples. Therefore, we used
the same training data and test data to validate our method
and existing advanced models. We calculated the true and false
positive rates and plotted the ROC curves. TPR and FPR are defined
as follows, where TP and TN are the number of positive and
negative samples successfully identified, respectively.

TPR = TP
TP + FN

, FPR = FP
TN + FP

(1)

Where FN (FP) is the number of negative (positive) samples that
were incorrectly identified. AUROC was used to evaluate the pre-
dictive performance of the model. Since the number of negative
samples is much larger than the number of positive samples,
the AUPRC is more representative in assessing the overall per-
formance of prediction methods in this case. Precision is the per-
centage of correctly identified positive samples relative to those
judged to be positive, PPV has the same meaning as precision and
Recall is the same as TPR. Precision and Recall were defined as
follows:

Precision = TP
TP + FP

, Recall = TP
TP + FN

(2)

All evaluation metrics were computed by the scikit-learn python
package [41].

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae625#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae625#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae625#supplementary-data
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HLA sequence residue binding frequency
The polymorphic HLA sequence from the HLA-A, -B, and -C alleles
is encoded by a pseudosequence consisting of 34 amino acid
residues that are most likely to contact with the peptide. Since
the central antigenic peptide residues can interact with different
subsets of residues within the binding groove, there are multiple
possible binding conformations, and the residues that make
up these conformations are included in the pseudosequence
[11]. The interaction mapping between the peptide and the HLA
sequences is shown in Supplementary Fig. 1d. As shown in Fig. 3
of the Supplementary Material, we hierarchically analyzed the
frequency of each amino acid at the 34-residue position for the
HLA alleles. According to the differences of the HLA allele types in
the available immunogenicity data, we can find that the binding
grooves of the three HLA loci to antigenic peptide residues have
a relatively consistent distribution. Generally, for class I adaptive
immune, the epitope immunogenicity of pHLA complexes have a
regular distribution to support the further use of neural networks
to explore the high-level characteristics of immunogenic pHLA
pairs.

MHLAPre access HLA anchor sites at the
molecular level of antigen
The MHLAPre model uses pseudocoding sequences in the HLA
coding stage. The 34-bit pseudocoding sequence contains most
variety anchor sites in binding groove for all HLA I antigenic
peptides. This enables MHLAPre to be more sensitive to class I
HLA molecules and antigens at the molecular level rather than
one-hot coding directly for HLA names as in most studies. There-
fore, MHLAPre can make full use of the positional traits of HLA
allelic anchor sites when studying pan-peptide binding to HLA,
and can combine with high-throughput sequencing techniques to
realize in-depth exploration of spatial morphology of large-flux
data.

HLA alleles were consistent in the distribution of
antigens with different lengths
The study of antigen-binding HLA allele-specific preferences
plays a crucial role in antigen presentation. Considering this
factor, We compare the frequency of antigenic sequences with
different length distributions at the binding site of the same
allele (Fig. 1d). We selected three HLA genes in the HLA-A, - B,
and -C allele classes (HLA-A∗02:01, HLA-B∗07:02, HLA-C∗24:02),
generation of binding antigen signature maps for HLA-I using
ggseqlog [42] (Fig. 1b). Based on the logo plot generated from
our three HLA allele binding antigen data, it can be shown that
antigenic sequences of different lengths bound to the same HLA
allele are highly similar and consistent.

To validate this idea even further, we performed experimental
analyses for all existing HLA allele types and the antigenic
sequences it binds with different length distributions, and gen-
erated antigenic sequence signature maps with different length
distributions (Supplementary Figs 4–10). Experimental results
confirm this conjecture. And we found that some of the homol-
ogous alleles have a certain preference for some of the binding
sites when binding to antigens of the same length distribution.
For example, at antigen lengths of 9-mer, there is a much
higher frequency of Leucine at amino acid position 2 and Lysine,
Arginine, and Valine at amino acid position 9 in the antigenic
sequences bound by the HLA-A class allele than the other amino
acids.

HLA attention
The MHLAPre network architecture uses multi-head self-
attention mechanism with a head number of 10 in the prepro-
cessing of the data using the Transformer-Encoder. The input
to the preprocessing is a concatenated HLA-peptide encoding,
and both the output and input data are in the dimension of
50×21, where the first 34×21 matrix represents the HLA sequence
encoding. We output the pHLA attentional weights from the
preprocessing process,and intercepted the first 34 columns of
weight information representing the HLA sequences, with the
attentional weight data of 34×50 for each HLA sequence. The
columns representing each amino acid position in the HLA were
then averaged to obtain the attention-related weights of the
HLA alleles in this sample. In this way, we obtained the HLA
sequence of each sample, and then according to the positive
or negative classification of the sample, the same HLA allele
was averaged for the amino acid attention at the same position
and plotted as a heat map. The average attention for each
pseudosequence position of each allele in the IEDB dataset is
shown in Supplementary Fig. 14. It can be clearly seen that the
first half of the pseudosequence of the positive samples gained
more attention weight, and the overall attention weight averages
are greater than those of the negative samples. Therefore, we are
able to obtain a visual interpretation of the amino acid residue
position information, which has an important impact on sample
classification, based on the attention weight information.

Meta-learning module
Different from the traditional supervised deep learning method
of training, we introduce a meta-learning strategy to optimize
the learning parameters for the prediction of epitope immuno-
genicity. The Model-Agnostic Meta-Learning framework [43] is
utilized to adapt the peptide-specific task distribution p(Q) after
optimal training of the meta-learning architecture, where Q is
a sampled peptide-specific task. MAML is independent of the
structure and form of supervised deep learning models. It allows
quick convergence on the current task after a small number of
iterations, and can be parameterized only for the assumption that
the model is composed of a parameter vector θ . Supervised deep
learning model with MAML can be thought of as a function fθ
with parameter θ . The main objective of Meta-learner is to learn
the parameter θmeta in the meta information, to quickly adapt the
peptide task distribution according to p(Q). During meta-training,
the model samples a task Qi ={Si,Ti}⊂Dtrain, where Si denotes the
support set and Ti denotes the query set, the set of tasks obtained
from each sampling is trained as meta-learning training samples.
Based on the support set Si, the model computes predictions for
the query sequence Ti using the generated prototype.

During the training process of the meta-learning module, we
construct a peptide dataset for each outer loop peptide-specific
task. Since the distribution of the data obeys the long-tailed
distribution, each peptide binds a different number of HLAs. Thus,
a large amount of binding information is lost when building each
peptide-specific pHLA. PanPep’s dynamic sampling approach pro-
vides us with inspiration, i.e., the support and query sets for each
peptide-associated pHLA or pHLA-TCR are randomly re-selected
during the training process. This approach mitigates the impact of
unbalanced data on model training. We choose the cross-entropy
loss function to calculate the loss value:

� = −
n∑

i=1

[yilnŷ + (1 − yi)(ln(1 − ŷi))] (3)

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae625#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae625#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae625#supplementary-data
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where yi represents the label of samples and ŷi is the prediction
score of the corresponding samples.

θ
j
i = θ

j−1
i − ϕ · ∇θ

j−1
i �hla′

i ,yi∼Si

[
f
θ

j−1
i

(IMi, hla′
i), y′

i

]
(4)

where θ
j
i represents the parameter of the peptide-specific learner

after three inner loops on task Qi, and ϕ is the learning rate of
the inner loop. j represents the number of inner loops. When j=0,
θ0

i=θmeta. IMi is the immunogenic antigenic peptide i embedding.
The peptide-specific learner uses (IMi, hla′

i) as input, which repre-
sents the pair of peptide IM i and HLA i encoding of task Qi. y′

i is
the label indicating whether HLA i binds to peptide i. The model
parameters are trained by optimizing for the performance of f

θ
j−1
i

with respect to θ across tasks sampled from p(Q). More concretely,
the meta-objective is as follows:

min
θ

∑
Qi∼p(Q)
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(
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i
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(5)

The meta-learner parameter θmeta is trained by the fθi on the
query set Ti with respect to across tasks from p(Q). Meta-learner
optimizes the parameter θmeta to adapt to the new task through
the gradient steps of the inner loop of the new task. The update
of cross-task meta-learner parameter is an outer loop. In this
study, we use the Adam to optimize the meta-learner, and the next
update of the meta-learning parameter θmeta is as follows:

θmeta ← θmeta−

ϕ′ · ∇θmeta

∑
Qi∼p(Q)

[
�hla′

i ,yi∼Si
[fθ3

i
(IMi, hla′

i), yi

]
(6)

where ϕ′ is the learning rate of the outer loop. Therefore, the
updates of the meta-learner parameter involve the high-order
derivative of the gradient. Algorithm 1 describes the complete
procedure of meta-training.

Detailed meta-learner architecture of MHLAPre
MHLAPre used pHLA pairs as input and calculates the final
binding probability. Each pHLA pair was encoded by a Blosum62

matrix into a 50×21 matrix, denoted as pHLA matrix, considering
the HLA sequence and typing information and antigenic
peptides. Specifically, antigenic peptides and HLA sequences were
converted into 16×21 matrices and 34×21 matrices, and reserving
30×21 matrix space in advance for the TCR CDR3 sequences
that are later transfer learning into the pHLA-TCR data. We use
sinusoidal positional encoding to add positional information for
each amino acid in the matrix. This encoding helps the model
understand the relative distance and sequence information
between amino acid positions within a protein, and can more
clearly direct the attention of the model based on position. The
pHLA matrix, enriched with positional information, was then
fed into the Transformer encoder as input. Here, we set the
number of heads in the multi-head self-attention mechanism as
10 to capture the global relationship between the matrices. After
three layers of the Transformer encoder, a matrix with the same
structure as the original pHLA is obtained, and each amino acid
has global information from the context. The resulting matrix was
used as input for the following TextCNN, which was composed
of three one-dimensional convolutional neural networks with
ReLU activation function and one-dimensional maximum pooling
to mine the latent biological features. The output of TextCNN
was fed into a tri-layer fully connected neural network with a
0.2 dropout to prevent overfitting. Finally, the softmax function
was applied to calculate the binding probability, representing
the likelihood of a specific pHLA pair forming a stable complex.

Key Points

• In this study, we proposed a deep learning frame-
work based on a meta-learning framework, named
MHLAPre, to predict the epitope immunogenicity of
tumor-associated antigens that can be present by HLA
moleculars and elicit immune responses. The results
show that our model outperforms existing SOTA models
in predicting immunogenic HLA antigen affinity and still
exhibits excellent performance after transfer learning
based on pHLA-TCR data, which demonstrates its effec-
tiveness and robustness.

• Based on the prediction tasks of peptide-HLA affinity
and T-cell receptor interaction, in which physiological
processes and training data are highly repetitive and
correlated, we connected the two tasks using transfer
learning. According to the experimental comparison, the
proposed MHLAPre is superior to those of the existing
advanced predictors.

• Based on the model-independent MAML architecture,
the proposed method achieved robust performance
using TextCNN deep learning models, and better perfor-
mance can be expected with more advanced learning
model in the future.

• MHLAPre is the first proposal and preliminary demon-
stration of feasibility for transfer learning from pHLA
data to pHLA-TCR data.
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