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Abstract

Conventional approaches to predict protein involvement in cancer often rely on defining either aberrant mutations at the single-gene
level or correlating/anti-correlating transcript levels with patient survival. These approaches are typically conducted independently
and focus on one protein at a time, overlooking nucleotide substitutions outside of coding regions or mutational co-occurrences in
genes within the same interaction network. Here, we present CancerHubs, a method that integrates unbiased mutational data, clinical
outcome predictions and interactomics to define novel cancer-related protein hubs. Through this approach, we identified TGOLN2 as a
putative novel broad cancer tumour suppressor and EFTUD2 as a putative novel multiple myeloma oncogene.
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Introduction
General methods to predict protein involvement in cancer rely on
straight-forward approaches based primarily either on genomics
or transcriptomics. In the first case, analyses are performed on
genomic data to determine the presence of aberrant mutations
in the protein coding sequence of genes. In the second case, tran-
script levels are analysed to define correlation or anti-correlation
with overall patient survival or eventual differential abundance
between cancer tissues and corresponding non-tumoural regions.
A series of approaches in these directions have been elaborated
and implemented and some of them are also available as user-
friendly online tools. Examples include the well established
PolyPhen-2 tool, which predicts possible impact of amino acid
substitutions on the structure and function of human proteins
[1]; CanPRedict, a combination of computational methods capable
of predicting cancer-associated mutations [2]; AlloDriver, a tool
to identify and analyse cancer driver genes/proteins based both
on mutations and structural and dynamic protein features [3];
GEPIA [4], which is based on TCGA (https://www.cancer.gov/
ccg/research/genome-sequencing/tcga) and GTEx data (https://
gtexportal.org/home/) and offers expression, correlation and
patient survival analyses; GSCA [5], an integrated platform for
analysing genomic, pharmacogenomic, and immunogenomic
cancer gene sets (https://guolab.wchscu.cn/GSCA/#/); Precog [6],
a system for querying associations between genomic profiles and
cancer outcomes; the Network of Cancer Genes (NCG), a database
to retrieve canonical and putative cancer-driver genes based on
mutational data [7] and OncoScore, a tool based on a text-mining
approach to assess the specific cancer association of genes [8].

However, approaches relying solely on either mutational or
clinical outcome predictions derived from single-gene data can be
fallacious, as cancers are complex diseases, generally caused by
the concerted dysregulation of gene sets falling into precise func-
tional modules [9]. Indeed, emerging evidence is pointing on how
altered protein–protein interactions rather than single protein
modifications are the actual driving forces orchestrating tumour
progression [10], suggesting to start considering oncogenes or
tumour suppressors not as single entities but as components of
broader cancer-related systems. Starting from this assumption,
an increasing number of approaches has been proposed in order
to determine the wide protein network perturbations correlated
with either gene mutations [11, 12] or altered mRNA expression
[13, 14] and how these can be exploited for therapy implementa-
tion [15].

Most approaches in this direction however, rely primarily on
either mutational or gene expression data coupled with interac-
tomics [16–18], neither merging the two types of information nor
keeping in mind any potential correlation between gene expres-
sion and clinical outcomes.

Moreover, the vast majority of gene mutation analyses rely on
the well-established assumption that only missense, non-sense
and frameshift mutations affect protein functionality. Recent
studies showed that also synonymous mutations can actually
affect transcript stability, splicing and/or translation efficiency
by altering mRNA secondary structure, splice sites or codon
sequences, respectively [19–21], suggesting toreview this dogma
and consider any kind of nucleotide modification as capable of
affecting proper downstream protein abundance/functionality.
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Here, we present CancerHubs, a method that combines, for the
first time, unbiased mutational data, clinical outcome predictions
based on gene expression and interactomic data, in order to define
if, and to what extent, cancer-related proteins are part of more
broad-cancer-mutated networks. By exploring the data produced,
we discovered several putative novel broad cancer and cancer-
specific genes and validated two of them: TGOLN2, a putative
novel broad cancer tumour suppressor and EFTUD2, a new puta-
tive oncogene in Multiple Myeloma.

Materials and methods
The CancerHubs algorithm
Our study developed an R pipeline to identify novel gene hubs
predicted to be highly involved in cancer (available on GitHub
at https://github.com/ingmbioinfo/cancerhubs). Specifically, the
CancerHubs framework aims to identify novel gene hubs that play
a critical role in cancer by integrating mutational data, clinical
outcome correlations, and interactomics. This approach identifies
genes likely involved in cancer progression, by ranking them based
on the newly defined ‘network score,’ a metric reflecting gene
involvement/impact in a specific cancer based on the number of
mutated interactors its encoded protein has.

We used several publicly available datasets to implement our
method, which include:

– Mutational Data: various published sources [22–29] were
used to gather mutational data across multiple cancer types.
From each file, both the gene name and mutation variant
columns were retained. The classification column label for
each tumour was then harmonized by dividing the gene
variants into ‘ORF’ and ‘NON_ORF’ mutations.

– Clinical Outcome Data: Clinical data related to patient sur-
vival was collected from the Precog Meta-Z dataset [6], which
includes gene expression profiles and their correlation with
survival outcomes.

– Interactomic Data: Protein–protein interaction data was
retrieved from the BioGRID database [30], providing a
comprehensive interactome for genes of interest.

The data were then processed and integrated in the following
way:

1. Gene Classification: for each gene, a label was appended
based on the location of mutations in its sequence: ‘ORF’,
mutations falling exclusively in the ORF sequence of the
gene; ‘NON_ORF’, mutations falling exclusively in non-
coding regions of the gene; ‘BOTH’, mutations falling in both
the ORF sequence and non-coding regions of the gene, or
‘NONE’, no mutation detected.

2. Precog Integration: the resulting dataframe was then inte-
grated with Precog information, and a threshold for defining
‘cancer-relevant’ genes was introduced according to previ-
ously defined metrics [6] (Z-score = |1.96|, 95% confidence
level), ensuring that the identified genes exhibited mean-
ingful correlations with clinical outcomes while minimizing
false positives [31, 32]. Each gene with a score ≥ 1.96 was
labelled as ‘oncogene’, while those with a score ≤ −1.96 were
labelled as ‘tumour suppressor’ [6]. All others were labelled
as ‘none’. Genes absent in the mutation dataset and labelled
as Precog ‘none’ were discarded, as they were unlikely to
significantly affect the initiation, progression, or clinical out-
come of the tumour of interest.

3. Filtering by Mutation Numbers: to account for biases due to
differences in cohort size and mutation rates of each tumour,
and considering the non-normal and skewed distribution of
mutations per gene [33, 34], which is due to the intrinsic
nature of mutation occurrences, the median (‘md’) and the
minimum number (‘min’) of mutations across all genes per
each cancer were used to filter those genes exhibiting higher
mutation frequencies.
This strategy provided a form of range-based normaliza-
tion allowing us to focus only on mutations with clinically
relevant frequencies while minimizing noise. Specifically,
‘NON_ORF’ genes with a Precog effect were retained if their
mutation frequency was ≥ ‘md + min’. For ‘NON_ORF’ genes
without a Precog effect, the threshold was increased given
the lack of correlation between their expression and a clini-
cal outcome, and genes were retained only if their mutation
frequency was > ‘3 ∗ md + min’. ‘ORF’ genes, regardless
of their Precog effect, were considered to be more relevant
than ‘NON_ORF’ genes, and hence were retained with a
lower threshold, namely if their mutation frequencies was
≥ ‘md - min’. ‘BOTH’ mutated genes were retained if their
mutation frequency was ≥ ‘md - min’ in the presence of a
Precog effect, or > ‘3 ∗ md’ in the absence of a Precog effect,
again because lack of correlation between gene expression
and a clinical outcome requires a threshold increase. Genes
without mutations but with Precog Meta-Z scores ≥2.58
or ≤ −2.58 (99% confidence level) were also retained, given
their strong correlation with clinical outcomes. Genes were
consequently clustered as ‘Non-Precog’ (genes that are only
mutated, aka MUT class), ‘Precog only’ (genes that are not
mutated but have a significant Meta-Z score, aka PRECOG
class), and ‘Precog’ (genes that are mutated and also have
a significant Meta-Z score, aka MUT + PRECOG class).

4. Network Score Calculation: a network score for each retained
gene was calculated by multiplying the total number of pro-
tein interactors (from BioGRID) by the percentage of mutated
interactors (from BioGRID), defining the number of mutated
neighbors of the corresponding protein.

5. Output Generation: output files ranking genes based on their
network scores were then generated for each tumour. Genes
were subdivided into the seed (PRECOG and MUT + PRECOG
classes) or interactor (MUT class) gene types. Additional infor-
mation can be found in the Supplementary Methods section.

Results
Overview of the CancerHubs method
In order to define a new method to predict proteins and path-
ways involved in cancer disease, we implemented an approach
based on merging: (i) mutational data, (ii) correlation of gene
expression with clinical outcomes, and (iii) interactomics (Fig. 1
and Supplementary Fig. S1). Our final aim was to rank genes
that were either mutated or whose expression correlated with a
clinical outcome, based on the capacity of their encoded protein
to interact with other cancer-mutated proteins. In so doing we
planned to define protein hubs and networks with a potentially
high impact/involvement in cancer disease.

At first, we selected five representative cancers, a liquid
tumour and four types of adenocarcinomas, and, datamining the
published literature, we retrieved mutational data derived from
clinical samples (Step 1).
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Figure 1. Overview of the CancerHubs workflow. Step 1. Mutational data was retrieved from previously published datasets and mutated gene lists were
produced for each cancer selected (please refer to the Materials and Methods section for details). Step 2. Significant Z-scores for each gene of each
cancer analysed (see Step 1) were retrieved from Precog datasets and merged/intersected with mutational data from Step 1. Step 3. Cancer-related
genes were subdivided in three classes based on their mutational status and on the correlation/anti-correlation of their expression with clinical
outcome predictions. We defined as MUT those genes that were found exclusively mutated, as PRECOG those genes that were not found mutated,
but whose expression showed correlation/anticorrelation with a clinical outcome prediction and MUT + PRECOG those genes that were mutated and
whose expression also correlated/anticorrelated with clinical outcome prediction. Step 4. Global protein interaction data was exported from the BioGrid
database. The interactomes of each cancer-related gene (see Step 3) were defined considering as interactees only those proteins encoded by genes
falling in the mutated gene lists defined in Step 1. Step 5. Cancer-related genes were now divided in two types: seeds, mutated genes whose expression
correlated/anti-correlated with prediction of a clinical outcome and interactors, mutated genes whose expression did not correlate/anti-correlate with
prediction of a clinical outcome. Each gene was then given a network score, based on the normalized number of mutant protein interactors its encoded
protein had (please refer to the Materials and Methods section for details). Step 6. By ranking genes based on network scores we defined cancer-related
protein hubs. For seed hubs we also give predictions regarding oncogenic or tumour suppressor behaviours. Step 7. Based on the predictions made in Step
6, we validated selected novel oncogenes/tumour suppressors proteins through wet-lab experimentation.MM: Multiple Myeloma; BC: Breast Cancer; PrC:
Prostate Cancer; CRC: Colorectal Cancer; PaC: Pancreatic Cancer.

As liquid tumour we selected multiple myeloma (MM), a
haematological malignancy (data retrieved from [22]), while as
adenocarcinomas we analysed Breast Cancer (BC) (data retrieved
from [23, 24], Prostate Cancer (PrC) (data retrieved from [25]),
ColoRectal Cancer (CRC) (data retrieved from the CRC atlas [26])
and ductal adenocarcinoma of the Pancreas (PaC) (data retrieved
from [27–29]).

Since emerging evidence is underlining the importance of
any kind of substitution as potentially capable to affect protein
functionality [19–21], we decided to unbiasedly consider any type
of nucleotide substitution in our analysis. So, after retrieving the
mutational data, we intentionally generated, for each cancer, a
non-stringent list of mutated genes (Supplementary Table S1).
Next, to associate those genes with a prediction of clinical-
outcome, we took advantage of Precog Meta-Z data [6]. In Precog,
Z-scores quantify the correlation or anti-correlation between
expression of a specific gene and overall survival of patients.
So, we extracted, for each of the tumours analysed, the Z-scores
associated with all the genes present in the Precog database
(Step 2) and intersected clinical outcome prediction data with

our mutational data. By doing so, we divided genes in three
classes: MUT, genes which were found exclusively mutated,
PRECOG, genes whose expression only correlated/anti-correlated
with a clinical outcome or MUT + PRECOG, genes that were
mutated and whose expression also correlated/anti-correlated
with overall patient survival (Step 3, please refer to the Materials
and Methods section for details). Next, for each newly classified
gene, we determined the global interactome of its encoded protein
(Step 4). To do so we used data derived from the BioGrid [30], a
general repository for interaction datasets that combines both
physical and genetic interactions. For our analysis, among the
full-list of interactors, we considered as cancer-related interactees
only those proteins for which the corresponding gene was
considered ‘cancer relevant’ based on the specific parameters we
had implemented (please refer to the Materials and Methods
section for threshold parameter setting), and in so doing we
generated a virtual interactomic network of cancer-related
proteins (Step 5). In these networks we defined as seeds those
genes with a predicted correlation/anti-correlation with clinical
outcome (i.e. proteins of either the PRECOG or MUT + PRECOG

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae635#supplementary-data
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classes) and as interactors those genes which were significantly
mutated, but not correlated to any clinical outcome (proteins
of the MUT category). We then determined for each gene, seed
or interactor, a ‘network score’ based on the normalized number
of mutant interactors its encoded protein had (please refer to
the material and methods section for specific score formula and
normalization) and we generated, for each cancer, two lists of
genes, one containing seeds and the other containing interactors
(Step 6). In both lists, cancer genes were ranked by the capability of
their corresponding protein to interact with other mutant proteins
(Supplementary Tables S2-S3).

The different steps we have implemented in our approach are
detailed in Fig.1 and Supplementary Fig. S1.

The network score
The logic behind the network score was to find a way to straight-
forwardly predict the importance/involvement of a gene in a
specific cancer, based primarily on the number of cancer-mutated
interactors its corresponding codified protein had.

Before exploring network score data and starting to use them to
obtain useful information, we assessed the statistical soundness
and informativeness of the score itself and the validity of our
approach.

To do so, we analysed correlation between the network score
attributed to a gene and either the number of total mutations
found in that gene or, in the case of seeds, its Z-score (Fig. 2A,
Supplementary Fig. S2A, top). We found that the network score
had no correlation with mutation number, suggesting that the
information stored in the network score is not redundant with that
present in the data used to define it. Moreover, network scores did
not correlate in any way with Z-scores (Fig. 2A and Supplementary
Fig. S2A, middle), underlining how the two values actually embed
non-redundant information. We also found no linear correla-
tion between Z-scores and number of mutations (Fig. 2A and
Supplementary Fig. S2A, bottom), suggesting, as expected, that
non-redundant information is also held in each of these variables.

Looking at the overall network scores for all gene classes
throughout the tumours analysed (Supplementary Tables S2-
S3), we found that they were, as expected, higher in those cancers
known to have higher mutational rates, i.e. PrC and CRC, and lower
in those known to have a lower mutational rate, i.e. BC and PaC
(Fig.2B, Supplementary Fig. S2B and S2C) [35]. This is something
expected, as the network score takes into account the total number
of mutated interactors, which is higher when mutational rates
increase. For this same reason, the network score, as is, is not an
absolute value, and quantitative comparisons can be performed
only between scores derived from the same cancer.

However, through clustering analysis on network scores from
the different tumours using Min-Max normalization to ensure
comparability, we observed that PrC and CRC clustered closely
together. Additionally, MM clustered near BC, while surprisingly,
PaC exhibited the highest degree of diversity among the tumour
types (Fig. 2C, Supplementary Fig. S2D and S2E). Globally, we
found that some genes had generally relatively high scores among
most tumours and that some others had high scores only in
specific cancer types (Fig.2C, Supplementary Fig. S2D and S2E),
suggesting that some genes/pathways might be commonly
altered/important in cancer, while some others might be instead
cancer-specific.

Overall, these results demonstrate that the network score is
informative and that it might predict the involvement of specific
genes/pathways in cancer.

Next, we performed comparative analyses between our method
and similar well-established cancer-gene discovery resources.
Being our approach based on a novelly-defined metric, the network
score, we were unable to perform canonical benchmarking but
instead tested if, and to what extent, our pipeline was capable
to give results that were comparable to those generated by
other cancer-gene discovery methods. Specifically, we used the
‘CancerBrowser’ feature of CancerGeneNet, which derives the
most likely paths of causal interactions linking cancer associated
genes to cancer phenotypes [36], and the NCG database, a
comprehensive catalogue of known and candidate cancer genes
derived from cancer sequencing screens [7]. For each tumour
considered, we extracted the lists of genes that were either
defined or predicted to be cancer-related. Subsequently, we
intersected these gene lists with those generated by CancerHubs,
focusing only on outlier genes, i.e. those genes with network scores
significantly higher than the mean (refer to the Supplementary
Materials and Methods section for details). We found that
∼15% of the genes predicted to be cancer-related by either
CancerGeneNet or NCG were also outlier genes in CancerHubs.
This percentage ranged from a peak of 26% for BC to 8% for PaC
using CancerGeneNet, and from 23% for PrC to 9% for CRC using
the NCG database (Supplementary Table S4). Such percentages
underline a level of coherence between the three approaches
while also highlighting CancerHubs’ potential to enhance and
provide novel insights into cancer-gene predictions.

Next, we wanted to determine if genes with higher network
scores were indeed cancer-related. To do so we performed unbiased
pre-ranked Gene Set Enrichment Analysis (GSEA) on the full list
of genes ranked by network scores for each cancer under consid-
eration. Strikingly, we found that genes with the highest network
scores defined well-established cancer-related pathways, such as
the Myc, mTOR, and WNT/β-Catenin pathways, as well as path-
ways related to cell cycle and apoptosis (Supplementary Fig. S3,
Supplementary Table S5). These findings underscore the reliabil-
ity of our approach and its ability to define with confidence well-
established cancer-related pathways.

Overall, our results show that CancerHubs not only accurately
predicts the cancer association of genes involved in canonical
cancer pathways but also identifies putative novel cancer-related
genes.

Network scores define well-known and novel
broad cancer protein hubs
Having benchmarked our approach, we next wanted to use net-
work scores to define cancer related genes.

After evaluating that some high-ranking genes/proteins were
shared between cancers (Fig.2C, Supplementary Fig. S2D and S2E),
we decided to explore them in more detail. We analysed genes
by category (seed or interactor) and applied a strict threshold by
focusing specifically on the top 50 scoring genes of each cancer.

We started from our seed lists (Supplementary Table S2), since
we considered seeds as the most potentially impacting genes for
cancer. Intriguingly, among the top 50 scoring seed genes of each
cancer, the vast majority were also mutated (45/50 in MM, 41/50
in BC, 50/50 in PrC, 50/50 in CRC and 41/50 in PaC) underlining
a clear connection between cancer association and genes that
are concomitantly mutated and predicted to influence clinical
outcomes. We intersected the seed gene list of each cancer with
one another, in order to find common-cancer hubs. No gene
was shared by all cancers (Supplementary Table S6), something
not suprising given their heterogeneity. However, 12 genes were
actually common between at least 3 of the 5 cancers analysed
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Figure 2. Informativeness of the network score. A) Correlation-plot between number of mutations, Z- and network scores for all gene classes and all the
cancers types analysed. Circle dimensions are proportional to absolute correlation coefficient values, which are shown inside each circle. B) Histogram
representing for each cancer considered the number of genes with a networks score of over 100. C) Heatmap representing the normalized networks
scores for each gene in each cancer considered.MM: Multiple Myeloma; BC: Breast Cancer; PrC: Prostate Cancer; CRC: Colorectal Cancer; PaC: Pancreatic
Cancer.
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(Fig. 3A and Supplementary Fig. S4A, left) suggesting they had a
broad involvement in cancer disease.

Among these 12 genes, we found: (i) 10 previously-established
oncogenes: namely FN1, which is involved in oral squamous
cell carcinoma [37], gastric cancer [38, 39] and BC [40], UBE2M,
which is involved in several types of tumours including lung
cancer and esophageal squamous cell carcinoma [41], RECQL4,
whose overexpression is associated with poor prognosis in gastric
cancer patients [42], MCM2, which is involved in BC, non-small
cell lung cancer and hepatocellular carcinoma (HCC) [43], EZH2,
whose expression is associated with poor prognosis in several
malignancies including breast, bladder, endometrial cancer, and
melanoma [44], YWHAB and YWHAZ, encoding components of
the 14-3-3 complex, which has long been known to be involved
in cancer onset [45], HSP90AB1, which is involved in BC [46] and
ovarian cancer [47], IFI16, whose expression and overexpression
correlate with proliferation of CRC cells [48] and with progression
of human pancreatic adenocarcinoma, respectively, and SHMT2,
whose expression promotes tumour growth in BC cells [49] and
which is found overexpressed in multiple cancer types [50], (ii) one
tumour suppressor: HEXIM1, which encodes for a protein involved
in the TP53 pathways [51] and which was shown to be involved
in BC, PrC, melanoma and acute myeloid leukaemia [52], and (iii)
TGOLN2, a gene that was previously never reported to be involved
in cancer, which encodes for a trans-Golgi network protein.

When we performed this same analysis on the interactor
protein list (Supplementary Table S3), we found that 13 genes
were present in at least 4 of the 5 tumours analysed (Fig. 3C,
Supplementary Fig. S4A, right and Supplementary Table S7).
Among these, NR2C2 and PRPF8 were present in all five cancers.
NR2C2 encodes for a nuclear receptor that was recently shown to
function either as an oncosuppressor [53] or as an oncogene [54]
based on the specific tumour type analysed, while PRPF8 encodes
for a protein involved in mRNA splicing and its expression was
recently demonstrated to increase the aggressiveness of HCC [55].

The remainder genes were: KIAA1429, a well-established onco-
gene [56]; CFTR, a tumour suppressor in intestinal cancer [57];
HUWE1, CUL1, CUL7, and OBSL1, encoding proteins involved in
ubiquitin-ligase binding, a pathway often deregulated in cancers;
EP300, which encodes for a histone acetyl-transferase and is a
well-established tumour suppressor [58]; XPO1, which has a broad
cancer involvement [59]; CDC5L, which is a well-established onco-
gene [60, 61]; and HNRNPL and HNRNPU, which encode for proteins
involved in RNA metabolism, but whose involvement in cancer is
just starting to be elucidated.

Overall these results indicate not only that our approach
efficiently defines already established cancer-related genes, but,
more importantly, that it can predict novel cancer hubs, e.g.
TGOLN2, HNRNPL, and NHRNPU.

Intriguingly, canonical cancer-related genes such as KRAS,
TP53, PTEN, MYC, EGFR, MDM2 and BRCA1 did not fall among
our top-scoring seed or interactor genes. However, when we further
explored our data by merging the top-50 scoring seed and interactor
genes of each cancer, we found that such genes were present
in at least three out of the five tumours analysed (Fig. 3E and
Supplementary Table S8). This suggests that our method primarily
identifies components of pathways that are utilized by canonical
cancer-related genes rather than the canonical cancer-related
genes themselves, again underlining the novelty of our approach.

Next, in order to define broad-cancer-related pathways, we
searched for shared features between the lists of common seeds
and interactors by performing Gene Ontology (GO) analysis either
separately on the two lists of genes, or by merging the lists

together (Fig. 3E and Supplementary Fig. S4A). On the seed list we
found a significant correlation with negative regulation of TGF-
β signalling, DNA replication and intracellular organelle localiza-
tion/components (Fig.3B), on the interactor list we found signifi-
cant connection with RNA splicing (Fig. 3D), while on the merged
list we found correlation with cell cycle control, RNA metabolism
and transcription (Fig.3F and Supplementary Fig. S4B).

These results suggest that regulation of cell growth and of
gene expression are among the pathways most globally altered in
cancer, as previously suggested [62], and confirm the soundness
of our approach also in predicting broad-cancer-related pathways.

Network scores define well-known and novel
cancer-specific protein hubs
Next, we aimed to determine cancer-specific protein hubs.

Again, we focused only on the top 50 ranked-genes of each
cancer and, starting from the seed gene list, we determined those
genes which were present only in one out of the five cancers
considered. The top 20 cancer-specific seed hubs per each cancer
are shown in Fig. 4 and Supplementary Table S9.

Such genes included well-established cancer-related genes, like
XPO1, MDM2 and NRAS for MM (Fig. 4A), MYC, SIRT7, and CDK9
for BC (Fig. 4C), ESR2, YAP1, and HRAS for PrC (Fig. 4E), SMAD3,
RUNX1, and NOTCH1 for CRC (Fig. 4G) and CHD4, CDK2, and MCM7
for PaC (Fig. 4I), but also genes whose involvement in the specific
cancer in which we defined them as hubs was never assessed
before. Examples include EFTUD2 and PHB for MM (Fig. 4A), OBSL1
and HIST1H2AB for BC (Fig. 4B), CUL7 and MOV10 for PrC (Fig. 4C),
GBF1 and EPRS for CRC (Fig. 4D), and TUBA1A and PSMD2 for PaC
(Fig. 4E).

Next, we focused on the interactor protein lists. Cancer-
specific interactor hubs are listed in Supplementary Fig. S5 and
Supplementary Table S10. Again, for each cancer we found
a list of well-established cancer-related genes, e.g. RELA and
HDAC4 in MM (Supplementary Fig. S5A), MYH9 and AKT1 in
BC (Supplementary Fig. S5C), ATXN3 in PrC (Supplementary
Fig. S5E), RECQL4 and EZH2 in CRC (Fig. S5G), and FN1 and HIF1A
in PaC (Supplementary Fig. S5I), but also a set of novelly defined
cancer-related genes, including CSNK2A1 and FBXW11 in MM
(Supplementary Fig. S5A), HIST1H3A, HIST1H2BB and GOLGA2
in BC (Supplementary Fig. S5C), PIH1D1 in CRC (Supplementary
Fig. S5G), and TMPO in PaC (Supplementary Fig. S5I). These results,
once again, suggest how CancerHubs can be a valid approach to
predict novel cancer-related genes.

In order to determine cancer-specific hub-associated networks,
we performed GO analysis on the seed-hub lists. We found that
(i) MM-specific seeds correlated with protein homeostatis and
degradation and with protein complex enzymatic activity (Fig. 4B),
a result which is in line with the patophysiology of MM, a malig-
nancy involving highly-secreting plasmacells, which deeply rely
in a tight regulation of protein homeostasis, (ii) BC seeds mostly
correlated with transcription regulation (Fig. 4D), a results which
is in agreement with recently published results [63], (iii) PrC seeds
specifically correlated with regulation of apoptotic responses and
DNA metabolism (Fig. 4F), two pathways often altered in can-
cer, (iv) CRC genes correlated with RNA metabolism [64] and
biosynthetic enzymatic processes [65] (Fig. 4H), and (v) PaC genes
mainly correlated with DNA/RNA metabolism and cytoskeleton
organization (Fig. 4J), in agreement with recent published data
[66–68]. These results suggest that specific pathways are actually
differentially modulated/altered in different cancer, possibly due
to the different nature of the cancers themselves.
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Figure 3. CancerHubs predicts novel putative broad cancer protein hubs. A) Heatmap displaying the top 30 genes present in the top 50 network-scoring
seed genes list of at least 2 out of the 5 cancers analysed. The top 12 genes, identified in at least 3 out of the 5 cancers considered, are highlighted in
bold and were utilized for defining GO terms. B) GO terms related to the top 12 common seed genes present in at least 3 out of the 5 cancers analysed.
C) Heatmap displaying the top 30 genes present in the top 50 network-scoring interactor gene lists of at least 3 out of the 5 cancers analysed. The top
13 genes, identified in at least 4 out of the 5 cancers considered, are highlighted in bold and were utilized for defining GO terms. D) GO terms related
to the top 13 common interactor genes present in at least 4 out of the 5 cancers analysed. E) Heatmap displaying the top 30 genes present in the top 50
network-scoring seed or interactor gene lists of at least 4 out of the 5 cancers analysed. The top 21 genes, identified in all the 5 cancers considered, are
highlighted in bold and were utilized for defining GO terms. F) GO terms related to the top 21 common seed + interactor genes present in all the 5 cancers
analysed.MM: Multiple Myeloma; BC: Breast Cancer; PrC: Prostate Cancer; CRC: Colorectal Cancer; PaC: Pancreatic Cancer.
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Figure 4. CancerHubs predicts novel putative cancer-specific seed protein hubs. Histograms representing the network scores of the top-20 (A) MM-specific,
(C) BC-specific, (E) PrC-specific, (G) CRC-specific and (I) PaC-specific seed genes. GO terms related to the top-20 (B) MM-specific, (D) BC-specific, (F) PrC-
specific, (H) CRC-specific and (J) PaC-specific seed genes. If more than 10, only top-10 GO terms per each ontology of each cancer are shown. MM: Multiple
Myeloma; BC: Breast Cancer; PrC: Prostate Cancer; CRC: Colorectal Cancer; PaC: Pancreatic Cancer.
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Intriguingly, despite involving different genes, all cancer-
specific seed hubs had GO signatures correlated to organelle
components, indicating the importance of correct organelle
functionality/regulation for maintaining cellular homeostasis
and thus preventing cancer.

Next, in order to define cancer-specific interactor related path-
ways, we performed GO analysis on cancer-specific interactor hubs
(Supplementary Fig. S5 and Supplementary Table S10) and found
that (i) MM genes correlated with transcription regulation, and,
once again, with protein homeostasis (Supplementary Fig. S5B),
confirming the results obtained analysing seed-hub networks, (ii)
BC hubs correlated with cell cycle regulation, potassium channel
activity and cell junction components (Supplementary Fig. S5D),
in accordance with studies correlating functionality of these
pathways specifically with BC severity [69], (iii) PrC genes
correlated with ER stress responses and ubiquitin activity
(Supplementary Fig. S5F), in agreement with previously pub-
lished work [70], (iv) CRC hubs significantly correlated with
methyltransferase activity (Supplementary Fig. S5H), which is
well-known to be associated with cancer onset, and (v) PaC
significantly correlated with transcriptional regulation and,
intriguingly, with pathways involved with symbiont interaction
(Supplementary Fig. S5J), a result that is however in agreement
with recent data depicting the pancreas as a homoestatic
regulator of the gut microbiota [71]. Again, these data suggest
how different cancers rely on preferential modulation/alteration
of different pathways. Altogether our results indicate that
CancerHubs is functional in defining both cancer-specific hubs and
cancer-specific hub-related networks and hence could be a useful
tool for discovering novel cancer associated genes/pathways.

Validation of CancerHubs predictions: TGOLN2
has tumour suppressor-like properties is BC,
MM, and PrC and EFTUD2 behaves as an
oncogene in MM
Next, we wanted to actually validate the predictions provided by
CancerHubs regarding novel cancer genes.

Starting from the seed lists, we selected one broad cancer
tumour suppressor-like gene and one cancer-specific gene with
oncogenic potential to validate, namely TGOLN2 and EFTUD2. The
first encodes for a trans-Golgi protein involved in exocytic vesicle
formation, which is predicted by Precog to be a tumour suppressor
in BC, MM and PrC; the second encodes for a component of the
spliceosome, and is predicted to be a novel oncogene hub in MM.

At first, to formally demonstrate that TGOLN2 had tumour
suppressor properties, we selected cell lines with high TGOLN2
levels deriving from tumours for which TGOLN2 was predicted to
be a cancer hub. Taking advantage of the Human Protein Atlas
(https://www.proteinatlas.org/), we selected the MCF-7 cell line,
derived from BC, the LP-1 cell line, derived from MM and the DU-
145 cell line, derived from PrC and downmodulated the gene using
two different shRNAs (Fig. 5A, Supplementary Fig. S6A and S6D).
We then monitored cell proliferation migration and invasion in
control cells and in cells with reduced levels of TGOLN2. The two
shRNAs both downmodulated TGOLN2 mRNA levels but to differ-
ent extents (Fig. 5A and Supplementary Fig. S6A and S6D). When
we monitored cell proliferation, we found that TGOLN2 down-
modulation actually increased proliferation in all the cell lines
analysed (Fig. 5B and Supplementary Fig. S6B and S6E), something
expected when downmodulating a tumour suppressor-like gene.
Intriguingly the effect was proportional to TGOLN2 downmodu-
lation (Fig. 5A and Supplementary Fig. S6A and S6D), confirming
that cell proliferation capability is actually inversely correlated

with TGOLN2 levels. To confirm this result we performed MTT
assays, which monitor the metabolic activity of cells. We found
not only that TGOLN2 donwmodulation favoured an increase
in cell metabolism (Fig. 5C and Supplementary Fig. S6C), but
also that such increase was again proportional with TGOLN2
downmodulation, strenghtening the idea that TGOLN2 could
actually function as a tumour suppressor. When we assessed cell
migration and invasion capabilities using a transwell approach
(Fig. 5D-E and Supplementary Fig. S7A-B) we confirmed our
results: TGOLN2 downmodulation correlated with cells acquiring
the ability to migrate (Fig. 5D, Supplementary Fig. S7A) and invade
(Fig. 5E and Supplementary Fig. S7B). Overall, we showed that
TGOLN2 has tumour suppressor-like properties in BC, MM and PrC.

Next, we focused on EFTUD2. We selected a MM cell line
with high EFTUD2 levels, namely the RPMI-8226 cell line, and
downmodulated the gene using two different shRNAs (Fig. 6A).
We found that downmodulation of EFTUD2 levels actually
correlated with reduced proliferation (Fig. 6B), and that the
extent of such reductions correlated with the reduction of
EFTUD2 levels (Fig. 6A), confirming the putative oncogenic
role of EFTUD2 in MM. Next we performed MTT assays, as
described above, and found that EFTUD2 downmodulation
correlated with decreased metabolic activity (Fig. 6C). When we
performed migration and invasion assays we found that reduced
EFTUD2 levels actually correlated with decreased migration
(Fig. 6D and Supplementary Fig. S7C) and invasion (Fig. 6E and
Supplementary Fig. S7D), fully confirming that EFTUD2 is indeed
a bona fide gene with oncogenic functions in MM.

Overall, these results validate the efficacy of CancerHubs pre-
dictions and establish TGOLN2 as a novel broad cancer hub with
tumour suppressor-like properties and EFTUD2 as a novel MM hub
with oncogenic properties.

Conclusion
Here, we presented a novel method to define cancer-related genes:
CancerHubs.

Using this approach, genes related to cancer are given a score
and are ranked not on the frequency of their mutations nor on the
correlation between their expression and clinical outcome, but on
the number of mutated interactors their corresponding encoded
protein has. This approach is based on two assumptions: (i) in
cancer, proteins involved in pathways that are critical for main-
taining cell homeostasis are frequently mutated in modules and
(ii) proteins involved in the same pathway often interact with one
another. Moreover, it relies on a straight-forward rationale: cancer-
related proteins with a high impact in cancer should preferentially
fall in one (or more) interaction network(s) composed by several
other mutated proteins. Specifically, the more a protein interacts
with mutated proteins in a specific cancer type, the more that
protein should be involved in that cancer.

Our approach is a clear advance over existing state-of-the-art
methods. First of all, because it takes into account and merges
with interactomics two of the most common and widely-used
approaches to predict cancer-related genes, namely mutation
analysis and clinical outcome predictions. Secondly, because
by considering any type of mutation as potentially deleterious
for downstream protein functionality, it broadens the spectra of
genes to be analysed.

The analyses we presented in this work focused only on the top-
50 scoring genes per each cancer. This was a conscious thought
as our idea was to deal with a short and very strictly-filtered gene
list. In so doing, we showed that CancerHubs has the power not
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Figure 5. TGOLN2 has tumour suppressor-like properties in in vitro models of BC. A) TGOLN2 levels in the MCF-7 BC cell line with TGOLN2
downmodulating constructs. Top) Western blot showing the levels of the TGOLN2 protein in the MCF-7 BC cell line expressing either a control plasmid
(Scr) or Sh-RNA constructs targeting TGOLN2 (sh-TGOLN2 #1 and #2). GAPDH was used as loading control. Bottom) RT-qPCR showing mRNA levels of
TGOLN2 in the same cell lines. B) Proliferation assay in MCF-7 BC cells with TGOLN2 downmodulation. Same cell lines as in A) were used to perform a
proliferation assays (top) and assess doubling times (bottom). C) MTT assay of MCF-7 BC cell lines with TGOLN2 downmodulation. Same cells as in A)
were used to assess metabolic activity through MTT assays. Histograms represent the mean +/- SEM of four independent experiments. D) Migration
assay of MCF-7 BC cell lines with TGOLN2 downmodulation. The migration capacity of MCF-7 scr and sh-TGOLN2 #1 BC cells was assessed through
scratch assays. E) Invasion assay of MCF-7 BC cell lines with TGOLN2 downmodulation. Same cells as in D) were used to assess invasion capacity using
matrigel-coated transwell assays. Points represent cell counts/fields of view of 21 fields of view. Except where otherwise stated, all histograms represent
the mean +/- SD of a minimum of three independent experiments. Statistical P-values were calculated using unpaired t-tests. ns: P > 0.05; ∗: P < 0.05;
∗∗: P < 0.01; ∗∗∗: P < 0.001; ∗∗∗∗: P < 0.0001. Blots are representative of three independent experiments.

only to define well-established oncogenes/tumour suppressors
as cancer hubs, but also to predict novel, previously unexplored,
cancer players.

Here, we validated two selected cancer-related genes from
the seed lists: TGOLN2, a new broad cancer hub with tumour
suppressor-like properties and EFTUD2, a novel MM-specific hub
with oncogenic potential.

We demonstrated TGOLN2 involvement in BC, MM and PrC,
but can actually speculate on a much broader involvement. The

fact that TGOLN2 expression was recently shown to correlate
with irinotecan sensitivity in CRC [72] and cisplatin resistance in
lung adenocarcinioma [73] supports this idea and confirms the
reliability of CancerHubs predictions.

Among the list of cancer-specific seeds we validated EFTUD2
in MM. Intriguingly, despite EFTUD2 was found as a seed only in
MM, the protein was present as a top scorer interactor hub also
in BC, PrC, and CRC, suggesting that it might actually possess a
broader cancer-related role. Indeed, EFTUD2 is also identified as a
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Figure 6. EFTUD2 has oncogenic properties in in vitro models of MM. A) EFTUD2 levels in the RPMI-8226 MM cell line with EFTUD2 downmodulating
constructs. Top) Western blot showing the levels of the EFTUD2 protein in the RPMI-8226 MM cell line expressing either a control plasmid (Scr) or Sh-RNA
constructs targeting EFTUD2 (sh-EFTUD2 #1 and #2). β-actin was used as loading control. Bottom) RT-qPCR showing mRNA levels of EFTUD2 in the same
cell lines. B) Proliferation assay in MM RPMI-8226 cells with EFTUD2 downmodulation. Same cell lines as in A) were used to perform a proliferation assays
(top) and assess doubling times (bottom). C) MTT assay of RPMI-8226 MM cell lines with EFTUD2 downmodulation. Same cells as in A) were used to assess
metabolic activity through MTT assays. Histograms represent the mean +/- SEM of a minimum of four independent experiments. D) Migration assay of
RPMI-8226 MM cell lines with EFTUD2 downmodulation. The migration capacity of RPMI-8226 MM control and sh-EFTUD2 #1 cells was assessed through
transwell assays. E) Invasion assay of RPMI-8226 MM cell lines with EFTUD2 downmodulation. Same cells as in D) were used to assess invasion capacity
using matrigel-coated transwell assays. Except where otherwise stated, all histograms represent the mean +/- SD of a minimum of three independent
experiments. Statistical P-values were calculated using unpaired t-tests. ns: P > 0.05; ∗∗: P < 0.01; ∗∗∗: P < 0.001; ∗∗∗∗: P < 0.0001. Blots are representative
of three independent experiments.

candidate cancer driver by the NCG database and recent evidence
pointed at an oncogenic role for EFTUD2 in both BC [74] and CRC
[75] but also in HCC [76], again strengthening the idea that our
approach is a valid method to predict cancer-related genes, and
underlining the importance also of interactor hubs.

Besides TGOLN2 and EFTUD2, our method predicted several
other broad cancer or cancer-specific hubs.

UBE2M, FN1, and RECQL4, for example, fell among our top 12
common-cancer seed hubs.

While UBE2M, is only recently starting to be envisaged as a
cancer player [77], FN1 and RECQL4 are two well-known onco-
genes. Intriguingly, however, despite CancerHubs predicted them to
be involved in MM (they both fell in the top-15 MM hub genes), this
was never experimentally confirmed neither by us nor by others,
underlining once again the predictive utility of our approach.

Another exemplificative case is that of KIAA1429. Just like
EFTUD2 for MM, KIAA1429 was found to be a cancer-specific
seed hub for BC, but also a broad cancer interactor hub, pointing
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to a broader cancer role for KIAA1429. Recent work actually
confirms this, as KIAA1429 involvement in BC was thoroughly
demonstrated [78–81], as well as its involvement in other malig-
nancies, including B cell lymphoma [82], HCC [83] and liver cancer
[84]. Again, these considerations confirm the reliability of the
predictions of CancerHubs and suggest that seed and interactor lists
are actually equally usefull and predictive for defining cancer-
related genes. Intriguingly, despite having significantly high net-
work scores, some well-established oncogenes and tumour sup-
pressors, like KRAS, TP53, PTEN, MYC, EGFR, MDM2 and BRCA1, did
not fall among the top-50 scoring genes shared by the cancers
analysed. This suggests that (i) CancerHubs primarily defines genes
that work in pathways employed by canonical cancer genes rather
than the canonical cancer genes themselves and (ii) focusing
only on the top-50 scoring genes might be too restrictive, poten-
tially causing some putative novel cancer-related genes to be
overlooked. Therefore, future analyses should use wider thresh-
olds, which could help identify additional and entirely new can-
cer hubs.

We also predict future implementations for our method and
these will include: (i) addition of new representative datasets for
the cancers we have already included in our analysis, in order
to strengthen the significance of the gene lists we produce, (ii)
expansion of our protein–protein interaction data using also other
repositories, in order to strengthen the reliability of the network
scores generated, (iii) addition of clinical data derived from other
cancers, in order to define more comprehensive and precise gene
lists, specifically, we plan to add other liquid tumours, and (iv)
merging of other clinical outcome data in order to strengthen our
predictions regarding oncogene or tumour suppressor functions.
In conclusion, CancerHubs is a novel approach to predict gene
involvement in cancer. By ranking cancer-related genes based
on the number of mutant interactors their encoded proteins
have, this approach establishes hubs of mutated proteins with
a putative relevance for cancer. This method globally improves
the detection of cancer genes, as we show that it is capable to
effectively predict protein hubs that were previously never found
related to cancer.

Key Points

• CancerHubs combines, for the first time, unbiased muta-
tional data, clinical outcome predictions and interac-
tomic data in order to define if, and to what extent,
cancer-related proteins are part of broader cancer-
mutated networks.

• The CancerHubs method relies on the newly defined
network score, a metric which reflects gene involvemen-
t/impact in a specific cancer based on the number of
mutated interactors its encoded protein has.

• Ranking of genes/proteins based on network scores
reveals novel broad cancer and cancer-specific pro-
tein hubs.

• By validating CancerHubs predictions we demonstrated
that TGOLN2 is a protein with tumour suppressor fea-
tures in Multiple Myeloma, Breast and Prostate Cancer
and that EFTUD2 has an oncogene-like behaviour in
Multiple Myeloma.

Supplementary data
Supplementary data is available at Briefings in Bioinformatics
online.
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