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Abstract

Automatic single particle picking is a critical step in the data processing pipeline of cryo-electron microscopy structure reconstruction.
In recent years, several deep learning-based algorithms have been developed, demonstrating their potential to solve this challenge.
However, current methods highly depend on manually labeled training data, which is labor-intensive and prone to biases especially
for high-noise and low-contrast micrographs, resulting in suboptimal precision and recall. To address these problems, we propose
UPicker, a semi-supervised transformer-based particle-picking method with a two-stage training process: unsupervised pretraining
and supervised fine-tuning. During the unsupervised pretraining, an Adaptive Laplacian of Gaussian region proposal generator is
proposed to obtain pseudo-labels from unlabeled data for initial feature learning. For the supervised fine-tuning, UPicker only needs
a small amount of labeled data to achieve high accuracy in particle picking. To further enhance model performance, UPicker employs
a contrastive denoising training strategy to reduce redundant detections and accelerate convergence, along with a hybrid data
augmentation strategy to deal with limited labeled data. Comprehensive experiments on both simulated and experimental datasets
demonstrate that UPicker outperforms state-of-the-art particle-picking methods in terms of accuracy and robustness while requiring
fewer labeled data than other transformer-based models. Furthermore, ablation studies demonstrate the effectiveness and necessity
of each component of UPicker. The source code and data are available at https://github.com/JachyLikeCoding/UPicker.
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Introduction
Cryo-electron microscopy (cryo-EM) is a powerful three-dimen-
sional (3D) bioimaging technique for visualizing biological macro-
molecules at near-atomic resolution without requiring crystal-
lization and is widely applied in structural biology [1]. One of its
key applications is single-particle analysis (SPA), where 3D struc-
tures are reconstructed from a series of 2D micrographs captured
by an electron microscope. Accurate particle picking is essential
for reconstructing high-resolution 3D structures. It is also a chal-
lenge due to the low signal-to-noise ratio (SNR) micrographs. It
involves detecting and extracting individual but randomly ori-
ented macromolecular particles while avoiding misselection of
contaminants, carbon film regions, and malformed particles [2].
It is usually necessary to select more than 100 000 particles for a
near-atomic structure reconstruction [3]. Advancements in cryo-
EM data acquisition technologies have substantially increased
the demand for accurate, robust, and efficient particle-picking
methods.

Traditional automatic particle-picking methods, such as XMIPP
[4], DoG Picker [5], FindEM [6], EMAN2 [7], APPION [8], and RELION
[9], are mainly based on template matching or specific feature
extraction techniques. However, they are often error-prone,

require manual post-processing, and show reduced performance
when dealing with non-ideal datasets characterized by high noise,
low contrast, heterogeneous particle populations, or significant
ice contamination.

In recent years, deep learning-based methods, particularly
those leveraging convolutional neural networks (CNNs), have
emerged as powerful tools for particle-picking in cryo-EM.
Notable examples include DeepPicker [10], FastParticlePicker
[11], AutoCryoPicker [12], crYOLO [13], Topaz [14], Warp [15], and
CenterPicker [16]. These approaches typically involve training a
neural network on a manually selected subset of particles, and
then automatically picking particles across the dataset using the
trained model. Despite their advancements, these methods still
require significant amounts of labeled data, often fail to achieve
satisfactory accuracy, and rely on complex post-processing and
extensive parameter tuning.

Afterward, transformer-based models have emerged as a
promising alternative, particularly because of their ability
to capture global dependencies and model complex spatial
relationships. The Detection with Transformer (DETR) model
[17] has brought forth a new era of object detection by directly
modeling object relations through self-attention mechanisms,
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providing a more holistic view of the image count. In the context of
cryo-EM, this capability is crucial, as particles often exhibit subtle
variations in morphology and are densely packed. Transformer-
based methods like TransPicker [18] and CryoTransformer [19]
have demonstrated that transformers can capture richer global
information and be less sensitive to noise and carbon film regions.
However, these models typically require more labeled data and
longer training times compared with the CNN-based methods.

With limited training data, pretrained models become a valid
option, gaining increasing popularity. These models are first
trained on large-scale datasets and subsequently fine-tuned
for specific tasks, reducing the need for extensive labeled data
[20]. In recent years, self-supervised pretraining (PT) has shown
promise in minimizing labeling costs while providing superior
performance compared with traditional supervised PT methods
[21]. In particle-picking, methods such as CrYOLO [13] and Topaz
[14] implement PT strategies where a global model is initially
trained on diverse datasets and then fine-tuned on specific
datasets. EPicker [22] adopts a continuous learning approach
by sequentially training on multiple datasets and fine-tuning
(FT) on new data to update the model incrementally. CryoSegNet
[23] leverages advanced pretrained foundational AI segmentation
model for cryo-EM particle-picking. However, these methods rely
heavily on labeled training data from extensive datasets and may
underperform when applied to new data. Moreover, current PT
methods often do not fully utilize the information available in
the abundant unlabeled images from new datasets, suggesting
potential for improvement in representation learning.

In this study, we propose a novel method named UPicker
(particle PICKing transformER with Unsupervised Pretraining)
for cryo-EM images. UPicker is designed to address the limitations
of existing methods by leveraging the strengths of transformer
models and self-supervised learning. UPicker initially undergoes
unsupervised PT on unlabeled images to significantly reduce
the reliance on labeled datasets, and then it is fine-tuned
with a small subset of labeled images. A novel Adaptive-LoG
region proposal generator produces high-recall pseudo-labels
during PT, effectively guiding the model to learn critical features
from the data. To handle densely packed and morphologically
similar particles common in cryo-EM datasets, UPicker employs
a contrastive denoising training (CDN) strategy that accelerates
convergence and stabilizes bipartite matching throughout the
two-stage training process. This strategy further enhances the
model’s robustness and ensures precise localization of particles.
Additionally, a hybrid data augmentation strategy is employed,
further enhancing UPicker’s performance in scenarios with
extremely limited labeled data.

Extensive experiments on both simulated and experimental
real-world datasets demonstrate that UPicker outperforms exist-
ing state-of-the-art methods in detection accuracy. UPicker con-
sistently shows robust performance across diverse datasets, effec-
tively handling various particle sizes and shapes. It achieves near
real-time inference speeds and reduces the reliance on extensive
labeled data compared with other transformer-based methods
while eliminating the need for complex post-processing steps.
These advantages make UPicker a highly effective and adaptable
solution for cryo-EM particle-picking challenges.

Methods
UPicker workflow overview
UPicker is designed to enhance particle-picking in cryo-EM micro-
graphs through a four-stage workflow: preprocessing (PP), PT, FT,
and picking (Fig. 1a).

Preprocessing. This stage aims to reduce noise, improve particle
visibility, and optimize the inputs for subsequent processes.
Micrographs undergo motion correction and frame averaging
before PP. The micrographs are normalized and denoised using
a bilateral filter. Image contrast is then enhanced by histogram
equalization or contrast-limited adaptive histogram equalization.
Furthermore, two optional operations can be adopted: (i) down-
sampling large-scale images to speed up computation and reduce
memory consumption, and (ii) splitting images into smaller,
overlapping patches that are processed individually and later
merged for final predictions. This patch-based approach is
especially beneficial for micrographs with high particle densities
(e.g. more than 300 particles), addressing challenges posed by
detection transformers when handling numerous objects.

Pretraining. For the PT stage, UPicker employs approximately
100–300 unlabeled and preprocessed micrographs (U′) and gen-
erates region proposals that serve as pseudo-labels, allowing the
model to learn from patterns in data without explicit labels.
This unsupervised learning stage equips the model with a basic
understanding of particle features and distributions in cryo-EM
micrographs.

Fine-tuning. The model is fine-tuned using a smaller set of
labeled images (L′), typically consisting of 20–50 images labeled
with particle coordinates and diameters. The number of required
labeled images is significantly lower than TransPicker [18], which
typically needs over 100 labeled images, and CryoTransformer
[19], which relies on a sufficiently large labeled dataset. UPicker
further reduces the labeling requirements by allowing partial
labels in each image. Although the labels are limited in L′, they
provide critical information that enhances the model’s accuracy.

Picking. After PT and FT, the model picks particles across the
entire dataset. Due to the design of UPicker and its training
strategies, the majority of redundant detections are effectively
avoided. As an optional refinement step, non-maximum suppres-
sion (NMS) can be applied when necessary to filter overlapping
detections, ensuring only the most confident results are retained.
Finally, coordinate files are generated for each micrograph and
used to extract the corresponding particles, which are then orga-
nized into stacks for downstream SPA.

UPicker model architecture
The UPicker model consists of four main components: an Adap-
tive Laplacian of Gaussian (A-LoG) region proposal generator, a
CNN backbone, a multilayer Transformer encoder-decoder, and
prediction heads.

The A-LoG region proposal generator analyzes the prepro-
cessed, unlabeled micrographs to generate high-confidence
region proposals that are likely to contain particles (Fig. 1b). These
regions are used as pseudo-labels in the PT stage, enabling the
model to learn meaningful features from data without manual
labels. This component is crucial for overcoming the challenge of
limited labeled data in cryo-EM.

The CNN backbone (ResNet50 [24] by default) extracts
multiscale feature maps from preprocessed images, capturing
both low- and high-level particle features at various resolutions.
The multiscale feature extraction is essential for handling
the inherent heterogeneity and different sizes of particles in
cryo-EM micrographs. While CNNs effectively capture localized
features, they are limited in their ability to capture long-
range dependencies and global context, which is crucial for
distinguishing particles from background noise and artifacts.

To address this limitation, the multilayer Transformer encoder-
decoder architecture (Fig. 1c) is employed. The extracted
multiscale features along with the corresponding positional
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Figure 1. (a) UPicker identifies and localizes particles by a four-stage workflow: preprocessing, pretraining, fine-tuning, and picking. (b) Illustration of
the Adaptive-LoG region proposal generator. (c) Illustration of the Transformer architecture used in UPicker. (d) The process of generating positive and
negative queries and a demonstration of contrastive denoising training.

and scale-level embeddings are flattened and passed through
the Transformer encoders for further refinement and fea-
ture enhancement. By utilizing the attention mechanism,
the Transformer effectively integrates both local and global
information, allowing it to adaptively focus on relevant regions,
even in noisy micrographs where particles may be difficult to
differentiate based solely on local features. The Transformer
then employs a mixed query selection strategy: it initializes

high-quality positional queries (Qp) from the encoder’s output
while maintaining content queries (Qc) as learnable parameters
in the decoders. This strategy enables the model to dynamically
focus on relevant regions, and enhance the robustness of particle-
picking. To efficiently handle a large number of particles in high-
density micrographs, UPicker employs a multiscale deformable
attention module [25]. This module combines the features output
by the encoder and iteratively updates the queries at each decoder
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layer, effectively modeling complex spatial dependencies while
maintaining computational efficiency.

The prediction heads output both bounding boxes and
classification scores for each detected region. A set-based loss
is employed using the Hungarian algorithm [26] for bipartite
matching to ensure a unique prediction for each ground truth
(or pseudo-ground truth) bounding box. To further stabilize this
matching process and accelerate convergence, UPicker adopts a
CDN strategy [27].

Unsupervised pretraining with A-LoG region
proposals
To alleviate the pressure of labeling large training sets, unsu-
pervised PT based on region proposals is integrated to leverage
unlabeled data. Region proposal methods for object detection
have been extensively studied, with some representative methods
including objectness [28], selective search [29], EdgeBox [30], and
RPN [31]. Although these methods have shown promising perfor-
mance in PT multiple object detection networks, they may not be
suitable for obtaining candidate regions in cryo-EM micrographs.
For instance, objectness methods typically rely on the texture,
color, and shape features of objects. Selective search segments
and merges super-pixels based on similarity to generate propos-
als. The EdgeBox method relies on edge information and does
not perform satisfactorily in detecting multiple objects in a single
category. Overall, the extremely low SNR, unclear edges, and
dense particle distribution in cryo-EM images make it challenging
for existing methods to accurately identify region proposals.

Before the rise of deep-learning methods, a common class of
traditional template-free automatic particle-picking algorithms
was filter-based algorithms, including the Laplacian of Gaussian
(LoG) picker in RELION [32], the blob picker in CryoSPARC [33], etc.
However, their detection is often affected by contaminated areas
and carbon film areas, resulting in reduced accuracy. Considering
all these factors, a novel A-LoG region proposal generator is
proposed to obtain pseudo-labels for unsupervised PT.

A-LoG region proposal generator
The A-LoG region proposal generator is designed to detect poten-
tial particle locations through a three-step process: multiscale
LoG filtering, mask filtering, and top-K selection (Fig. 1b). The
process begins by applying a series of multiscale LoG filters to
the micrographs in the Fourier domain. These filters are designed
to detect spots within the image, typically representing particle
locations. The LoG filter with an optimal response to particles of
diameter d is defined as follows:

LoG(k) = |k|2
σ 2

exp
(

− |k|2
2σ 2

)
(1)

where k denotes the image frequency, and σ = 2/d. The gener-
ator utilizes a series of multiscale LoG filters, each tailored to
detect particles of a specific size. Given the estimated minimum
(dmin) and maximum (dmax) particle diameter range, the generator
employs 11 filters: four for detecting blobs smaller than dmin, four
for detecting blobs larger than dmax, and three for detecting blobs
within the specified size range.

Pixels are selected for potential particle identification based
on two criteria: they must exhibit the highest LoG-filtered value
(LoGbest) across all filtered micrographs, surpassing a predefined
threshold θ . Additionally, the corresponding blob size (dbest) must
fall within the particle diameter range. Particles are selected iter-
atively based on the remaining peak values, and the pixels within

a circle of diameter dbest around each selected particle are set to
zero. This iteration continues until no suitable pixels remain. To
standardize the threshold across datasets, the default threshold
is set to the average of all LoGbest values. The picking threshold can
be adjusted to control the number of particles selected.

However, the initial candidate regions often include areas with
high-contrast ice contamination or carbon film, which are unde-
sirable for accurate particle picking. To reduce such non-ideal
regions, a mask-filtering step is applied using the Micrograph-
Cleaner software package [34]. This software generates a pre-
dicted mask for each micrograph, which is then thresholded to
classify the image into ideal and non-ideal regions. Region propos-
als located within non-ideal areas are filtered out. In the final step,
to reduce computational cost and further improve recall, the top-
K proposals are selected, represented as a set of bounding boxes
{bi}K

i=1, where bi ∈ R
4.

Pretraining process
During the PT stage, UPicker is trained using the top-K region
proposals generated by the A-LoG region proposal generator. The
model aims to align its N outputs with these K proposals.

UPicker consists of two prediction heads: Hbox(·) for predicting
bounding boxes b̂i, and Hobj(·) for predicting whether a given box
represents a particle (ĉi). The model output is defined as ŷi =
(b̂i, ĉi), and the complete set of outputs is denoted as ŷ = {ŷi}N

i=1.
Since the number of queries N is larger than K, the proposals are
padded to create N tuples. Each bounding box is assigned a label
ci ∈ {0, 1}, indicating whether it represents a valid region proposal
or a padded entry. The ground truth (GT) is denoted as yi = (bi, ci)

and the complete set as y = {yi}K
i=1. To optimally match the

proposals with the model predictions, UPicker uses the Hungarian
bipartite matching algorithm [26]. In this context, σ denotes the
optimal permutation of the prediction indices that minimizes
the total matching cost between the GT y and the predictions ŷ.
Additionally, CDN is utilized to accelerate model convergence and
reduce duplicate detections. The PT loss function is formulated as
follows:

L(y, ŷ) =
N∑

i=1

[
λcLc(ci, ĉσ(i)) + λbLb(bi, b̂σ(i))

]
+ Ldn (2)

whereLc is the classification loss, implemented via Focal Loss [35],
andLb combines theL1 loss and the Generalized Intersection over
Union (GIoU) loss [36]. The term Ldn represents the denoising loss,
and the λc and λb are coefficients that balance the losses.

Fine-tuning stage of UPicker
In the FT stage, UPicker is initialized with pretrained parameters,
and then refined using labeled data: ygt = {(bi, ci)}M

i=1, where bi rep-
resents the bounding box coordinates, and ci denotes the particle
class.

Similarly to the PT stage, the model’s prediction heads output
both bounding boxes and object categories (particle or back-
ground) in the FT stage. UPicker optimizes object matching by
identifying the permutation that minimizes the optimal matching
cost between the GT particles ygt and the prediction results ŷ.
Unlike in the PT stage, the loss is calculated using GT labels
in the Hungarian bipartite matching process, and performance
metrics are calculated on the validation set for each epoch dur-
ing FT, leveraging the supervision of GT. The CDN strategy is
also employed to enhance model robustness during this stage.
To ensure efficient convergence and prevent overfitting, UPicker
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utilizes an early stopping mechanism, which terminates training
when no further performance improvements are detected after a
predefined number of epochs.

Hybrid data augmentation
Since it is difficult to obtain labels for cryo-EM data, UPicker
utilizes a hybrid data augmentation strategy during FT, combining
offline and online data augmentation techniques to enrich the
training set. Offline data augmentation transforms the origi-
nal training data before feeding it into the model. In contrast,
online data augmentation applies transformations randomly dur-
ing training.

The hybrid data augmentation strategy can increase the size
of the training dataset significantly, thus improving the model’s
accuracy, especially when dealing with limited labeled data (e.g.
datasets containing only five labeled images). Cryo-EM images
often contain numerous particles with various orientations, and
this approach effectively integrates additional information from
particles with diverse orientations. Moreover, when online data
augmentation alone fails to converge the network training, adding
offline augmentation proves to be an effective solution to this
limitation.

Contrastive denoising training strategy
The challenge of bipartite matching in cryo-EM particle-picking
arises from the high similarity among most particles, often lead-
ing to slow convergence and duplicate predictions. The previous
methods like TransPicker [18] and CryoTransformer [19] rely on
NMS post-processing to eliminate redundant detections. Inspired
by DINO [27], UPicker implements CDN, which not only acceler-
ates convergence but also significantly eliminates redundancy,
reducing the requirement for extensive post-processing.

As illustrated in Fig. 1d, CDN involves additionally feeding
noised GT particles as positive samples into the Transformer
decoder and training the model to reconstruct these boxes, mean-
while feeding hard-negative samples and training the model to
predict as “no object”. During PT, region proposals replace GT
particles.

The introduced noise consists of both label noise and bounding
box noise. Label noise is injected based on a threshold parameter
λl. For each GT, if a randomly generated value is less than λl,
the GT is selected for noise injection, with its label replaced by
zero. Bounding box noise is controlled by two thresholds, λp and
λn (λp<λn), which are employed to generate positive and negative
queries. The positive samples are associated with smaller pertur-
bations, while negative samples are with larger ones. To generate
challenging negative samples, λn is set close to λp, thereby enhanc-
ing the model’s ability to distinguish between similar queries.

The CDN loss comprises two components: Ldn = Lp + Ln, and

Lp = λcLc(1, ĉp) + λ1L1(bp, b̂p) + λGIoULGIoU(bp, b̂p) (3)

Ln = λcLc(0, ĉn) (4)

where Lp denotes the reconstruction loss for positive queries,
including Focal Loss for classification, L1 loss, and GIoU loss
for bounding box regression. The Ln represents the classification
loss for negative queries, computed using Focal Loss. λc, λ1, and
λGIoU are the control weights. Notably, Ldn is not computed during
evaluation.

The two noise types enable UPicker to handle uncertainties of
both label and location effectively, thereby enhancing the model’s
robustness. CDN not only facilitates the model’s ability to select

high-quality, nearby queries but also aids in the rejection of more
distant ones, thereby mitigating the issues of duplicate predic-
tions and erroneous query selections.

Experiments
Datasets and evaluation metrics
To evaluate the performance of UPicker, experiments were con-
ducted on a diverse set of datasets, including both simulated
datasets and experimental datasets. The key characteristics of
each dataset are summarized in Table 1.

The experimental datasets include 16 annotated datasets from
CryoPPP [38], and the 10470 dataset [39] with particle coordi-
nates downloaded from Electron Microscopy Public Image Archive
(EMPIAR) [40]. As summarized in Table 1, these datasets contain
between 84 and 300 images and exhibit diversity in protein types,
molecular sizes, and particle densities. Figure 2 presents three
orthogonal views of the reconstructed 3D models alongside repre-
sentative micrographs for each dataset, highlighting variations in
particle shape. Some datasets are significantly affected by carbon
films and contamination. The GT labels may not be entirely
accurate, making it challenging to detect all particles, especially
in high-noise micrographs. Detailed analysis of these datasets and
selection rationale is provided in the Supplementary Materials
(see Section S1 and Fig. S1).

To complement the experimental datasets, two simulated
datasets were generated using InsilicoTEM software [41], which
simulates the cryo-EM imaging process based on physical
principles. The simulated datasets utilize the protein structures
3j79.pdb and 1ryp.pdb from the Protein Data Bank (PDB) [42],
referred to as SIM-10028(3j79) and SIM-10025(1ryp), respectively.
These simulated datasets provide precise particle counts and
coordinates.

The particle-picking performance is evaluated using three
widely recognized metrics in object detection: precision, recall,
and F1-score (i.e. 2×(Precision×Recall)

Precision+Recall ). For each dataset, 20% of the
data were designated as a separate evaluation set to ensure an
unbiased assessment. A selected particle is classified as a true
positive if the Intersection over Union (IoU) between its bounding
box and the GT bounding box surpasses the threshold of 0.5.
Ideally, a good algorithm should have both high precision and
high recall, with the F1-score providing a balanced measure of
overall performance.

Additionally, we also report the reconstruction resolution of the
3D density maps, as it serves as a critical indicator of the method’s
effectiveness in accurately identifying particles. Higher resolution
values reflect better particle detection and reconstruction quality.
Detailed results can be found in Supplementary Section S4.

Comparison with existing methods
UPicker is compared with five particle-picking methods: widely
utilized RELION [32], CrYOLO [13], Topaz [14], and two recent
deep-learning methods, CryoSegNet [23] and CryoTransformer
[19]. While RELION also includes a template matching-based
particle-picking approach and an integrated Topaz algorithm, this
comparison focused on its LoG-based automatic particle-picking
algorithm. For a fair comparison, Topaz, CrYOLO, and UPicker
are trained using the same datasets. For CryoTransformer and
CryoSegNet, their publicly available trained generic models are
adopted. A series of hyperparameter experiments were performed
for each method, the best-performing configuration was selected
for the final comparison.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae636#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae636#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae636#supplementary-data
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Table 1. Datasets used in the experiments. The “#Avg. particles” indicates the average number of labeled particles per image, reflecting
the particle density

Dataset Protein type #Images #Avg. particles Image size(px) Diameter(px) Weight(kDa)

SIM-10028 Ribosome (80S) 100 143 4096×4096 160 4000
SIM-10025 T20S proteasome 110 135 3710×3838 140 700
10017 β-galactosidase 84 588 4096×4096 108 450
10075 Bacteriophage MS2 300 42 4096×4096 233 1000
10028 Ribosome (80S) 300 114 4096×4096 224 4000
10077 Ribosome (70S) 300 106 4096×4096 220 2199
10406 Ribosome (70S) 239 93 3838×3710 211 632
10081 Transport protein 300 131 3710×3838 154 298
10590 Transport protein 296 211 3710×3838 158 1000
10093 Membrane protein 295 191 3838×3710 170 779
10096 Viral protein 300 771 3710×3838 84 150
10532 Viral protein 300 293 4096×4096 90 192
10387 Viral protein (DNA) 300 339 3710×3838 213 186
10345 Signaling protein 295 54 3838×3710 149 244
10389 Metal binding protein 300 36 3838×3710 313 1042
10470 Fatty acid synthase 100 32 4096×4096 260 207
10075 Bacteriophage MS2 300 42 4096×4096 233 1000
10947 Viral protein 400 266 4096×4096 240 444
11183 Signaling protein 300 267 5760×4092 159 139

Figure 2. Three orthogonal views of the reconstructed 3D protein particle models for each dataset (obtained from the EMDB [37]), with representative
cryo-EM micrographs shown below for each corresponding dataset.

In Fig. 4, a visual comparison of particle-picking results of each
software against GT labels is provided. The results indicate that
UPicker identified the highest proportion of true particles across
these datasets. RELION is sensitive to high-contrast regions, lead-
ing to unstable results. Topaz tends to pick more false positives,
particularly in contaminated regions, while CrYOLO identifies
fewer positive particles. CryoTransformer often produces multi-
ple detections for the same particle and many false positives
in contaminated areas. CryoSegNet is difficult to detect smaller
particles as well as particles within high-noisy images. Notably,
UPicker demonstrates fewer false positives and false negatives
compared with other methods, highlighting its high accuracy in
detecting target particles. More experimental results are given
in Supplementary Section S3 and Figs S3–S5. Interestingly, in
cases where experimental data contained inaccurate labels (e.g.
dataset 10096), UPicker can identify missing particles and correct
erroneous labels.

The statistics of quantitative evaluation are listed in Table 2.
Results for several datasets are not included due to concerns
regarding the quality of the training labels. UPicker outperforms
other methods in terms of Precision, Recall, and F1-score. Even
when applied to the challenging EMPIAR-10093 dataset, where

particle shapes are difficult to distinguish, UPicker still achieved
notable accuracy. The PR curves for UPicker across some datasets
are shown in Fig. 3d. In the box plot shown in Fig. 3e, UPicker con-
sistently achieves higher average Precision and Recall compared
with other methods, with a more concentrated distribution and
fewer outliers. These results highlight UPicker’s robust and stable
performance across diverse datasets.

The computational efficiency of UPicker was compared with
other methods on EMPIAR-10081, including training time, infer-
ence time, number of training epochs, and GPU memory usage
(Table 3). In this evaluation, 100 images were used for training,
which is sufficient to achieve high accuracy. CryoSegNet and
CryoTransformer were excluded from the comparison due to their
reliance on large and diverse datasets for training. The proposed
UPicker model was implemented using the PyTorch [43] frame-
work (version 1.12.1). All experiments were executed on a local
machine equipped with an Intel Core i7-7820X CPU, 64GB of RAM,
and a single NVIDIA GeForce 3090 GPU.

As shown in Table 3, UPicker’s two-stage training process
required about 1 hour, which is longer than those of Topaz
and CrYOLO. However, UPicker’s FT stage with fewer images
converged more quickly while still achieving high accuracy. As

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae636#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae636#supplementary-data
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Table 2. Particle-picking results on different evaluation datasets. The Precision, Recall, and F1-score are reported in the corresponding
column of each method. Bold font denotes the best average score of each metric

Dataset Metrics RELION Topaz CrYOLO CryoTransformer CryoSegNet UPicker

SIM-10025 Precision 0.859 0.953 0.978 0.622 0.164 1.000
Recall 0.695 1.000 1.000 0.779 0.068 1.000
F1-score 0.769 0.976 0.989 0.692 0.095 1.000

SIM-10028 Precision 0.620 0.990 0.870 0.288 0.728 1.000
Recall 0.670 0.990 0.750 0.684 0.668 0.990
F1-score 0.644 0.990 0.805 0.407 0.698 0.995

10028 Precision 0.913 0.765 0.849 0.663 0.781 0.922
Recall 0.967 0.954 0.946 0.985 0.819 0.965
F1-score 0.939 0.849 0.895 0.793 0.799 0.943

10406 Precision 0.573 0.710 0.713 0.598 0.800 0.909
Recall 0.796 0.782 0.926 0.916 0.869 0.998
F1-score 0.665 0.744 0.805 0.723 0.833 0.951

10081 Precision 0.558 0.684 0.792 0.551 0.662 0.929
Recall 0.782 0.858 0.788 0.927 0.800 0.982
F1-score 0.659 0.761 0.790 0.691 0.724 0.955

10096 Precision 0.410 0.599 0.449 0.335 0.664 0.779
Recall 0.638 0.585 0.588 0.305 0.266 0.850
F1-score 0.502 0.592 0.509 0.319 0.380 0.813

10345 Precision 0.320 0.435 0.566 0.444 0.509 0.854
Recall 0.689 0.556 0.513 0.859 0.581 0.983
F1-score 0.437 0.488 0.538 0.586 0.543 0.912

10590 Precision 0.663 0.525 0.740 0.518 0.749 0.799
Recall 0.560 0.581 0.695 0.613 0.794 0.868
F1-score 0.607 0.552 0.717 0.561 0.771 0.832

10532 Precision 0.336 0.391 0.591 0.387 0.391 0.720
Recall 0.512 0.458 0.591 0.412 0.404 0.852
F1-score 0.408 0.422 0.591 0.399 0.397 0.781

10093 Precision 0.397 0.367 0.417 0.244 0.273 0.670
Recall 0.481 0.368 0.372 0.427 0.324 0.676
F1-score 0.434 0.368 0.393 0.311 0.297 0.673

10075 Precision 0.824 0.892 0.910 0.867 0.887 0.915
Recall 0.913 0.926 0.945 0.870 0.924 0.980
F1-score 0.866 0.909 0.927 0.868 0.905 0.946

10077 Precision 0.657 0.785 0.720 0.587 0.698 0.768
Recall 0.850 0.936 0.879 0.757 0.845 0.994
F1-score 0.741 0.854 0.792 0.661 0.764 0.867

10289 Precision 0.324 0.586 0.513 0.425 0.386 0.594
Recall 0.572 0.689 0.723 0.562 0.672 0.769
F1-score 0.414 0.633 0.600 0.484 0.490 0.670

10017 Precision 0.738 0.848 0.820 0.756 0.813 0.855
Recall 0.593 0.932 0.602 0.569 0.604 0.950
F1-score 0.658 0.888 0.694 0.649 0.693 0.900

10947 Precision 0.532 0.635 0.619 0.561 0.528 0.681
Recall 0.613 0.738 0.662 0.623 0.547 0.771
F1-score 0.570 0.683 0.640 0.590 0.537 0.723

10389 Precision 0.506 0.868 0.880 0.810 0.880 0.916
Recall 0.762 0.912 0.930 0.912 0.927 0.999
F1-score 0.608 0.889 0.904 0.858 0.903 0.956

Average Precision 0.611 0.694 0.686 0.577 0.659 0.853
Recall 0.682 0.781 0.735 0.706 0.588 0.927
F1-score 0.605 0.740 0.759 0.605 0.653 0.895

shown in Fig. 3a and Table 2, UPicker, trained with 50 labeled
images, demonstrates superior accuracy compared with other
methods trained with 300 images. In terms of inference speed,
both UPicker and CrYOLO achieve near real-time performance.
Regarding GPU memory usage during training, UPicker, due
to its transformer-based architecture, consumes more GPU
memory than Topaz but less than CrYOLO, which is based on
the TensorFlow framework. To provide a deeper understanding
of UPicker’s computational behavior, a detailed analysis of its

time and space complexity is included in the Supplementary
Section S2.

Overall, UPicker demonstrates superior particle-picking per-
formance compared to existing methods, combining high detec-
tion accuracy with robust generalization across diverse datasets.
While UPicker requires a slightly longer training time, its abil-
ity to achieve high accuracy with fewer labeled images and its
effective handling of challenging datasets underscore its practical
applicability and efficiency. Additionally, UPicker is capable of

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae636#supplementary-data
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Figure 3. (a) Variation in UPicker’s performance on EMPIAR-10081 across different PT and FT image counts. (b) Loss trajectory comparison of UPicker
on EMPIAR-10081 across varying training set sizes. (c) Comparison of UPicker’s performance under two training modalities across different training
set sizes. The bar graphs represent the number of labeled training images and the label ratios, while the line graphs depict the precision and recall
results. The left and right sections of the subfigures for SIM-10028 and EMPIAR-10081 illustrate the results of training from scratch and two-stage
training, respectively. (d) PR curve comparison of UPicker’s performance using all images for two-stage training on ten datasets. (e) Boxplot comparison
of precision and recall distributions across six methods on eight datasets.

Table 3. Comparison of computational efficiency on the EMPIAR-10081 dataset (100 images)

Metrics CrYOLO Topaz CryoSegNet CryoTransformer UPicker

Batch Size 4 256 6 8 4
Epoch 22 30 200 300 50+50
Training Time 28min 33min – – 31+20 min
Training GPU Mem. 17.8G 4.87G – – 13.0G
Inference Time 0.31s 2.34s 8.14s 3.13s 0.28s
Inference GPU Mem. 5.32G 4.64G 12.3G 2.16G 3.89G
Model Size 202.7M 1.3M 914.1M 525.8M 561.0M

achieving near real-time inference speed when tested on a single
GPU. The implementation also supports multi-GPU setups and
the use of larger GPUs with increased batch sizes, allowing for
further acceleration of both the training and inference processes
when additional hardware resources are available. This flexibility
making it a promising tool for high-throughput cryo-EM particle-
picking tasks.

Performance evaluation with varying pretraining
and fine-tuning data
The performance of UPicker is assessed by varying the number of
images used for PT and the amount of labeled data used for FT.

Figure 3a illustrates the impact of PT with different numbers
of images from the EMPIAR-10081 dataset, followed by FT on
varying numbers of labeled images. The results demonstrate
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Figure 4. Comparison of particle picking on cryo-EM micrographs from different datasets using six methods (RELION, CrYOLO, Topaz, CryoTransformer,
CryoSegNet, and UPicker) with GT labeled particles. The red circles represent the true positive particles (TP) identified by each method, while in the GT
column, they represent the actual particle locations. Yellow circles signify missed particles (FN), and cyan circles indicate falsely detected particles (FP).
Below each image, a corresponding bar chart illustrates the proportions of TP, FP, and FN, with colors consistent with those of the circles in the figure.
The black box area offers an enlarged view of the region outlined by the white dotted box, facilitating detailed comparisons among the various particle
picking methods.

that PT generally enhances model performance, especially when
labeled data are limited. For larger amounts of labeled training
data (e.g. more than 50 images), the model achieves comparable
performance even when trained from scratch. Therefore, when
labeled data are limited, unsupervised PT significantly improves
detection accuracy. Typically, 200 PT images are sufficient to
balance training efficiency and accuracy.

To assess how different amounts of labeled data affect per-
formance, two experimental groups were established: two-stage
training and training from scratch (TFS). Both groups utilized
subsets of SIM-10028 (100 images) and EMPIAR-10081 (114 images)
datasets, with variations in image numbers and labeling ratios
(Fig. 3c). Identical training configurations were applied to both
groups, and the resulting models were evaluated on the same
validation datasets. In the two-stage training group, an initial
unsupervised PT stage of 50 epochs was performed, followed by
FT on the entire set of fully labeled training images. To further
assess model robustness, additional experiments were conducted
using progressively smaller training datasets, reducing either the
number of images or label ratios. Furthermore, combinations of
reduced image counts and label ratios were tested to examine
model performance under minimal training conditions. In the TFS

group, the model was trained entirely from scratch, with param-
eters initialized randomly. The labeled data for each dataset were
used following the same data configurations as those used in
the two-stage training group. This experimental setup allows for
a direct and comprehensive comparison of the two approaches
and evaluates their effectiveness in scenarios with limited train-
ing data.

The results consistently show that performance improves
with more training data (Fig. 3c). Notably, the two-stage training
approach consistently outperforms TFS, regardless of the amount
of labeling. TFS with highly limited labeled data (e.g. 10% labels
or 10 images) did not yield successful results, whereas the
two-stage approach maintained relatively high precision and
recall even with reduced data. For example, on EMPIAR-10081,
when trained on only 10 images with a 10% labeled ratio, the
two-stage approach achieved a precision of 0.761 and recall
of 0.802, compared to 0.370 precision and 0.555 recall for TFS.
Figure 3b shows the loss trajectories of UPicker on EMPIAR-10081
for different training set sizes. The two-stage training method
demonstrates faster and more significant loss reduction than
TFS, with larger training sets yielding faster convergence and
lower final loss values.
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Figure 5. Region proposals obtained by different methods. The last column shows the masks used in the A-LoG region proposal generator.

These experiments highlight the impact of varying data
amounts on both PT and FT stages. Overall, these findings
underscore the efficiency of UPicker’s two-stage training strategy
in maximizing data utilization and enhancing model robustness,
especially when labeled data are limited.

Comparison of different region proposal methods
The effectiveness of the proposed A-LoG region proposal method
was evaluated against three alternative approaches: selective
search [29], EdgeBox [30], and a random region proposal strategy.
Moreover, the A-LoG method without the mask filtering step,
referred to as the LoG method, was also tested. These methods
were applied to pretrain a model on EMPIAR-10028, EMPIAR-
10406, and EMPIAR-10389.

For the random region proposal method, 50 square boxes were
randomly cropped per image, with sizes corresponding to the esti-
mated range of particle diameters. The selective search method
used the “fast” preset from the OpenCV implementation, while the
EdgeBox method used the “createEdgeBoxes” function in OpenCV,
selecting the top 50 results with the highest confidence scores per
image. After PT, the model was fine-tuned using 20 images from
each dataset.

Figure 5 visualizes the region proposals generated by each
method. The random method generates arbitrary bounding boxes
as expected, which, despite lacking precision, still provide shape
and size information. The EdgeBox method tends to produce
larger candidate boxes that frequently do not correspond to par-
ticle positions due to the challenge of identifying particle edges
in cryo-EM images, which limits its utility for PT. Similarly, the
selective search method is difficult to generate valid candidate
regions for particles, as both selective search and EdgeBox rely
on features such as color continuity and edge detection that are
often absent in cryo-EM images. Consequently, these methods fail
to provide precise bounding boxes or effectively localize small
objects, which is crucial for particle-picking. In contrast, the LoG
region proposal method more effectively generates region pro-
posals corresponding to particle positions, owing to its ability to
enhance the SNR and detect particles of varying sizes. Compared
with LoG, A-LoG further refines the process by eliminating most
proposals in areas affected by carbon film and ice contamination,
significantly improving the accuracy of pseudo-labels. The “Mask”
in the last column of Fig. 5 refers to the prediction mask employed
to filter out unsuitable region proposals.

Quantitative results confirm that the A-LoG region proposal
method outperforms the other methods (Table 4). The table also
illustrates the impact of each step within the A-LoG method. The

choice of K, the number of top proposals, depends on the dataset
being processed. For the 10389 dataset with fewer particles, there
are only 36 particles per image on average, and a too-large top-
K value actually does not provide additional filtering effects. For
images containing a larger number of particles, a larger K value
provides more supervision information to the model during PT.
However, an excessively large K may introduce false positives and
extend PT time. In practice, UPicker sets K to 50 by default.

Ablation studies on UPicker components
To assess the contribution of each component in UPicker, abla-
tion studies were conducted (Table 5). The experiments utilized
three benchmark datasets: EMPIAR-10028, EMPIAR-10081, and
EMPIAR-10532. Two baselines with distinct data configurations
were designed to illustrate UPicker’s effectiveness and flexibil-
ity across varying data conditions. UPicker (Baseline 1) utilizes
300 unlabeled images and 100 labeled (L) images, incorporating
all components except hybrid data augmentation (AUG). This
baseline serves as the reference for optimal performance, rep-
resenting a scenario with sufficient labeled data to establish a
strong benchmark. UPicker (Baseline 2) uses 300 unlabeled and
only 20 labeled images, again including all components except
hybrid data augmentation. This configuration simulates a low-
data environment, allowing us to assess the model’s performance
when labeled data are limited and to examine the contribution of
each component under such constraints.

Baseline 1 achieved the highest performance across all
datasets, with F1-scores of 0.941, 0.987, and 0.950 for EMPIAR-
10081, EMPIAR-10028, and EMPIAR-10532, respectively. Despite a
significant reduction in labeled data to just 20 images, Baseline
2 still attained an average F1-score of 0.872 across the respective
datasets. This demonstrates UPicker’s ability to deliver robust and
accurate performance even in scenarios with limited labeled data.

Removing PP caused a significant performance drop, with F1-
scores falling to 0.084, 0.033, and 0.135. This shows that PP is
crucial for enhancing image quality and preparing the data for
subsequent stages.

Omitting the PT stage also resulted in a noticeable performance
drop, particularly in the low-data scenario. When using only 20
labeled images without PT, the F1-scores decreased to 0.699, 0.907,
and 0.901, compared to 0.763, 0.915, and 0.937 when PT was
included. More detailed comparative experiments were carried
out in the section on varying data regimes. This highlights the
advantage of PT in reducing the need for labeled data.

The absence of FT similarly impacted performance, with F1-
scores dropping to 0.421, 0.285, and 0.568, underscoring the
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importance of this stage for model refinement. This demonstrated
that FT is crucial for refining the model to specific datasets.

Additionally, removing the CDN led to a moderate decline in
performance, with F1-scores of 0.922, 0.964, and 0.949 for 100
labeled images, and 0.745, 0.885, and 0.933 for 20 labeled images,
illustrating its role in enhancing the model’s robustness.

Eliminating the classification loss (Lc) had a severe impact,
reducing F1-scores to 0.030, 0.095, and 0.109 with even 100 labeled
images, emphasizing its critical contribution to the model’s dis-
criminative power. This indicates that the classification loss is
vital for the model’s discriminative power, allowing it to differen-
tiate between particle and non-particle regions effectively.

Finally, to evaluate the effectiveness of hybrid augmentation
strategy (HybridAUG), an extreme low-data scenario with only five
labeled images were used. Incorporating HybridAUG significantly
improves the F1-scores from 0.586, 0.931, and 0.852 to 0.767,
0.959, and 0.926, underscoring the substantial benefit of advanced
augmentation strategy in low-data scenarios.

Overall, these ablation studies confirm that each component
of UPicker plays an important role in achieving optimal perfor-
mance.

Conclusion
This study presents UPicker, a novel cryo-EM particle-picking
method that combines an unsupervised PT stage with a subse-
quent supervised FT stage, utilizing a transformer-based detector.
The proposed A-LoG region proposal method effectively generates
high-recall pseudo-labels during PT, while the CDN strategy accel-
erates convergence and reduces redundant detections. Addition-
ally, the hybrid data augmentation strategy further enhances the
model’s precision and recall in low-data regimes.

Experimental results demonstrate that UPicker achieves supe-
rior accuracy compared with state-of-the-art methods, requiring
fewer labeled data than transformer-based models and a compa-
rable amount to CNN-based approaches. While its training time is
slightly longer than CNN-based methods, it is significantly shorter
than other transformer models and offers rapid inference speeds
suitable for large-scale applications. UPicker also shows robust
performance across diverse datasets, including those with high
noise levels and contamination, consistently outperforming exist-
ing methods under such challenging conditions. Despite these
advancements, UPicker still involves considerable computational
demands during training due to its transformer-based architec-
ture. Future research will explore fully unsupervised particle-
picking methods that maintain high accuracy. This work provides
a new and effective approach for particle-picking in cryo-EM,
paving the way for more accurate and efficient structural biology
studies.

Key Points

• A semi-supervised transformer-based method (UPicker)
is proposed for automatic particle picking in cryo-
EM micrographs, utilizing a two-stage training process:
unsupervised PT followed by small-scale supervised FT.

• An Adaptive-LoG region proposal generator is designed
specifically for cryo-EM micrographs to generate high-
recall region proposals, which serve as pseudo-labels
during the PT stage.

• UPicker adopts the CDN strategy to accelerate conver-
gence and reduce duplicate detections during the two-
stage training. For the FT stage, UPicker utilizes the
hybrid data augmentation strategy to improve accuracy
with limited labeled data.

• UPicker outperforms state-of-the-art particle-picking
methods in both accuracy and robustness, achieving
high detection performance even with limited labeled
data, thereby facilitating the analysis of high-resolution
structures in cryo-EM.
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Supplementary data are available at Briefings in Bioinformatics
online.
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