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Abstract

Small sample sizes in biomedical research often led to poor reproducibility and challenges in translating findings into clinical
applications. This problem stems from limited study resources, rare diseases, ethical considerations in animal studies, costly expert
diagnosis, and others. As a contribution to the problem, we propose a novel generative algorithm based on self-organizing maps
(SOMs) to computationally increase sample sizes. The proposed unsupervised generative algorithm uses neural networks to detect
inherent structure even in small multivariate datasets, distinguishing between sparse “void” and dense “cloud” regions. Using emergent
SOMs (ESOMs), the algorithm adapts to high-dimensional data structures and generates for each original data point k new points by
randomly selecting positions within an adapted hypersphere with distances based on valid neighborhood probabilities. Experiments on
artificial and biomedical (omics) datasets show that the generated data preserve the original structure without introducing artifacts.
Random forests and support vector machines cannot distinguish between generated and original data, and the variables of original
and generated data sets are not statistically different. The method successfully augments small group sizes, such as transcriptomics
data from a rare form of leukemia and lipidomics data from arthritis research. The novel ESOM-based generative algorithm presents
a promising solution for enhancing sample sizes in small or rare case datasets, even when limited training data are available. This
approach can address challenges associated with small sample sizes in biomedical research, offering a tool for improving the reliability
and robustness of scientific findings in this field. Availability: R library “Umatrix” (https://cran.r-project.org/package=Umatrix).

Keywords: machine learning; generative algorithms; data science; biomedical data; self-organizing maps; artificial neurons; data
generation

Introduction
Obtaining sufficient data to conduct valid biomedical research
is often challenging [1–3]. Reasons for small sample sizes in
research data include limited resources for data collection, the
rarity of a disease, or the intention to limit sample sizes in
preclinical research as a measure of animal welfare. For example,
acute promyelocytic leukemia (APL) accounts for less than 4%
of all leukemia cases in Germany [4], making comparative gene
expression studies with other types of leukemia difficult. Small
sample sizes are also common not only in several other rare
genetic disorders, such as cystic fibrosis, but also in early-stage
drug trials for diseases such as Alzheimer’s [5] and personalized
medicine approaches in oncology [6], where patient-specific fac-
tors limit the number of participants. Another reason for small
datasets may be that the classification of multivariate data is
often costly and time-consuming and requires experts in the field,
leading to sparse labeling (e.g. assignment of a clinical diagnosis)
of the data [7].

Sparse data in biomedical research can lead to poor repro-
ducibility and challenges in translating results from animal

models to clinical applications [8–12]. Recent approaches to
address this issue include multicenter study designs [13],
combining data from different sources [14], and meta-analyses.
Generative artificial intelligence (AI) has emerged as a potential
solution, with algorithms such as Gaussian mixture models
(GMMs) being explored [15], as well as more complex approaches
such as generative adversarial networks (GANs) [16], latent
Dirichlet allocation [17], Boltzmann machines, and others
[18–21]. These methods often use probabilistic approaches,
sampling from given distributions to generate synthetic data.
However, their effectiveness depends on the ability to accurately
formulate the underlying distribution of the sparse dataset.

We propose a novel generative algorithm based on the well-
known self-organizing maps (SOMs) of artificial neurons [22] to
increase the sample size in small data sets. The emergent SOM
(ESOM) approach captures intrinsic data structures through coop-
erative neuron interactions [23]. It allows us to visualize the
inherent structure in the data [23, 24] (Fig. 1). The ESOM-based
algorithm then generates additional data structurally equivalent
to the original dataset, without introducing artifacts or spurious
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Figure 1. “Structured” versus “unstructured” data sets and the suitability of ESOMs to capture structure. (A) The synthetic “Hepta” data set [25] comprising
n = 212 data points evenly distributed across k = 7 classes within well-defined and well-separated data-rich regions arranged as seven spheres in a cube
with edge coordinates [−4, 4]. This represents a “structured” data set. (B) In the same cube, n = 212 data points are located at random, representing an
“unstructured” data set. (C) The 3D U-matrix visualization of the distance-based structures of the “Hepta” data set following the projection of the data
points onto a toroid grid of 4000 neurons. The dots represent the BMUs, i.e. neurons on the grid that carried a data vector most similar to a data vector
for a sample in the data set. The U-matrix visualization is colored as a topographic map, with brown “heights” and green “valleys” with blue “lakes.”
Watersheds indicate borderlines between different clouds separated by white “mountain ridges.” BMUs belonging to different clouds are colored green
or bluish. (D) The projection of the unstructured data set onto the ESOM grid resulted in a structure-less U-matrix representation that provided no hints
at a class structure. The structured data set (A) is clearly reflected in the similar seven-class structure on the U-matrix (C), while the unstructured data
set (B) merely resulted in a structure-less U-matrix (D), demonstrating the suitability of ESOM to capture the underlying structure or lack thereof in
the data. The figure was created using Python version 3.11.5 for Linux (https://www.python.org) with the seaborn statistical data visualization package
(https://seaborn.pydata.org [88]).

structures. This generative AI method seems to be particularly
effective for small biomedical datasets and overcomes the limi-
tations of conventional generative techniques.

Methods
Basic considerations
Concept of structure in multivariate data sets
Multivariate data sets can be divided into two different types of
regions in (hyper-)space. There are regions of empty space (void),
where virtually no data points are located, and regions containing
densely arranged data points, referred to as data clouds (Fig. 2).
Figure 1A shows this in more detail, along with the ESOM-based
data structure detection method used here. Within these data
clouds, the distances between neighboring data points (topolog-
ical neighbors) are significantly smaller than the distances in
the regions of empty space. Consequently, the density, i.e. the
number of data points per unit volume, is low in the voids and
high within the data clouds. On the other hand, if the empirical
multivariate data are homogeneous or uniformly distributed

within the variable ranges, there is no discernible structure in
the data (Fig. 1B). However, measured experimental conditions,
such as treated versus untreated or healthy versus sick patients,
in a data set can alter the shape and/or location of the data clouds.

Importantly, the above-presented concept of structure in data
does not require that the structure of the data clouds or their
location need to be described by a specific statistical or mathe-
matical probabilistic model. However, if such a probabilistic model
is available, it can and should be used to analyze the data and gen-
erate additional data. In the following, we describe a method for
generating additional data for multivariate data sets that exhibit
the structural features described above. This approach ensures
that the generation of new data neither destroys the existing
structures nor introduces spurious structures into the data.

Probabilistic model-based versus model-free data
generation
Model-based approaches to data generation can be ideally based
on the knowledge of the data generation process. For example, the
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Figure 2. Visualization of the concepts of empty data space versus clouds of data. Assuming that the cubes drawn below represent the entire data space,
cube A represents a completely empty data space with no data points, i.e. the distance d between data points approaches infinity

(
d → ∞)

; cube B
represents a data space completely saturated with data points, where each point touches its neighbors, leaving no gaps

(
d → 0

)
; and cube C represents a

more typical scenario in which the data space consists of clusters or “clouds” of data points separated by empty regions, reflecting the natural grouping
and spacing commonly observed in real-world data sets

(
0 < d < ∞)

. The scenario in (C) is the main scenario addressed in this report on structure-
preserving data generation. The figure was created using Python version 3.11.5 for Linux (https://www.python.org) with the seaborn statistical data
visualization package (https://seaborn.pydata.org [88]).

data set shown in Figs 1 and 3 was originally generated using the
following recipe:

�i = U (0, 2π)

cos (θi) =
{

U (−0.1, 0.1) for Cls = 1
U (−1, 1) for Cls = [2, . . . , 7]

}

sin (θi) = √
(1 − cos (θi)) • (1 + cos (θi))

radius = r • U(0, 1)
1
3

Var1 : x = radius • sin (θi) • cos (�i) + x0,Clsk

Var2 : y = radius • sin (θi) • sin (�i) + y0,Clsk

Var3 : z = radius • cos (θi) + z0,Clsk

with the data cloud centers located at

Cls
1
2
3
4
5
6
7

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x0 y0 z0

0 0 0
3 0 0

− 3 0 0
0 3 0
0 −3 0
0 0 3
0 0 −3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

A total of n = 212 data points are drawn from these equally
from the k = 7classes, Cls. The data clouds are constructed
around seven centers on the main axes of a 3D coordinate system
(Fig. 1A). For all classes except the origin (x0, y0, z0 = [0, 0, 0]), n =
30 points are randomly drawn around each center within a sphere
of radius r = 1. For the data points centered at the origin, n = 32
points are randomly drawn within a sphere of radius r = 0.1, so
that this data cloud has 10 times the data density of the other
six data clouds. The data set is named “Hepta” and is part of a
collection of canonical datasets called “Fundamental Clustering
and Projection Suite” (FCPS [25]).

When the analytical solution for a given data set is not
available, as is often the case for complex biomedical datasets,

a probabilistic approach is commonly used [7]. This means
that the given data are a finite example of a known and
mathematically defined probabilistic structure. In particular,
the structure of all the distributions used for the generation
can be mathematically formulated and an observed data set is
assumed to be a finite sample from a potentially infinite data
set that follows some parametric or nonparametric distribution
[26, 27]. The underlying distribution is then modeled, based on
implicit assumptions or prior knowledge about how the data
are expected to be distributed. This approach assumes that the
distribution of the data set is known and agrees with these implicit
assumptions. However, this assumption may not always hold,
especially for biomedical and other real-world datasets, where
the true underlying interrelations are often complex and not well
characterized [28, 29]. Studies have shown that many biological
datasets exhibit nonstandard distributional properties, such as
heavy tails, multimodality, or other deviations from common
probabilistic models like the normal distribution [30, 31]. This
lack of knowledge about the true data-generating distributions
is a key limitation of probabilistic model–based generative
approaches that rely on assumed parametric or nonparametric
distributions [7].

Leveraging emergent self-organizing maps for
data structure detection and generation
The emergent SOM (ESOM)–based method proposed here aims to
circumvent this issue by learning the intrinsic data structures
directly from the observed samples, without making probabilis-
tic assumptions about the underlying distribution. We propose
the use of unsupervised learned neural networks, specifically
SOMs, for a model-free representation, however, neighborhood
(topology) preserving of empirical data. These unsupervised neu-
ral networks can capture and represent the intrinsic structures of
multivariate data spaces through their learning process, without
relying on any a priori knowledge.

Brief overview of emergent self-organizing maps
ESOMs are an advanced class of topographic maps that pro-
vide a method for visualizing and exploring complex data struc-
tures. Developed from Kohonen’s SOMs [22], ESOMs create a
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Figure 3. Augmentation of a small data set using generative AI. The goal is to augment the small data set while maintaining the underlying data structure
and class boundaries, without introducing artifacts or new, unsupported classes. (A) The synthetic “Hepta” data set [25] comprising n = 212 data points
evenly distributed across k = 7 classes within well-defined and well-separated spherical data clouds. (B) The desired result is the generation of data
points that are not identical to the original points but well preserve the general structure of the data set. The generated data could have been acquired
in the experiments provided that the sample size was larger. (C) In contrast, the generated data should not destroy the original structure of the data set
by generating data points that break the original class limits or blur the initial class structure of the data. (D) Similarly, the generated data should not
introduce new classes for which no indication of their existence was available in the original data. The figure was created using Python version 3.11.5
for Linux (https://www.python.org) with the seaborn statistical data visualization package (https://seaborn.pydata.org [88]).

disentangling projection of high-dimensional data onto a 2D grid,
preserving the topology and neighborhood structure of the origi-
nal dataset [23]. This unsupervised machine learning technique
uses a network of neurons arranged on a 2D grid, where each
neuron’s weight vector represents a point in the high-dimensional
space. Through an iterative learning process inspired by biological
brain structures, ESOMs adapt these weight vectors based on
similarity to presented data points, gradually refining the pro-
jection. An atomic learning step of the SOM consists of drawing
the weight vector of the best match and, to a lesser extent, the
weight vectors of its neighbors toward the presented case. As the

learning neighborhood decreases over time, the resulting map
effectively preserves topological relationships and disentangles
intricate data structures, making ESOMs particularly valuable for
visualizing and analyzing complex, high-dimensional data sets
[25].

ESOMs facilitate the detection of neighborhood structures and
voids in the data space [22] using the U-matrix [32]. Constructed
on a 2D grid of neurons, the U-matrix assigns a height to each
neuron based on the average distances to its nine neighbor-
ing neurons, where large U-heights indicate distant data points
(voids) and low U-heights represent dense data regions. This
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topographic representation reveals the high-dimensional data
structure as hills or ridges separating valleys filled with similar
data clusters. Complementing the U-matrix, the P-matrix mea-
sures the data density at the location of each neuron, further
enhancing the visualization. Consequently, a structured dataset
will show valleys in the U-matrix corresponding to dense data
clusters, with high densities in the P-matrix separated by hills
in the U-matix and lows in P-matrix indicating voids in the data
space.

Emergent self-organizing map–based density estimation
for multivariate data
The ESOM has been demonstrated in many applications that such
neural networks can effectively capture and process the features
of high-dimensional data, such as in transcriptomic analyses
of normal human tissues and tumor samples [33]. After the
self-organizing learning process, the ESOM represents the high-
dimensional data space on a 2D grid of neurons. The U-matrix
and P-matrix add a third dimension to this representation. The
U-matrix heights above a neuron n within the 2D grid define
the average distances between the data represented in the Moore
neighborhoods of neuron n [34]. The P-matrix captures the density
of the data space at the location of the data point represented
by the weight vector of neuron n [23]. This 3D representation
visualizes the distance and density structure of the data. Regions
with dense data clouds and small average distances appear as
valleys, while empty spaces with large distances and low density
appear as hills on the U-matrix and ditches on the P-matrix. This
allows assessing whether the multivariate data are structured in
dense data clouds with small average distances or if there are
empty space regions with large distances and low density.

Probability density estimation for multivariate data sets is a
difficult task [35]. For big data, where performance issues are
critical, kernel density estimation using hyperspheres (spheres)
with a global radius is efficient and performant [36]. A suffi-
ciently trained ESOM projects the high-dimensional d data points{
xi, i = 1 . . . n

}
in X ⊆ Rd neighborhood preserving onto a 2D grid

[1 : l]× [1 : c] ⊂ N2 of m = l· c neurons, respectively, their associated
weight vectors {w1, . . . , wm} = W ⊂ Rd. The projections of the
points xi are the corresponding weight vectors [w (xi)]. If the size
of the output mesh is sufficiently large, it is called ESOM [34].
The weight vectors of the ESOM reside in the data space and
interpolate and extrapolate with neighborhood-preserving prop-
erties. Correctly constructed ESOM should preserve the topology
of the input data (Fig. 4).

The P-matrix displays local densities, estimated as the number
of data points in a hypersphere of radius r around each weight
vector (wi) of a neuron on the output grid of the ESOM.

Pheight
(
ni,j

) = ∣∣{x|d (
wi,i ≤ r

)}∣∣ (2)

where ni,j is the neuron of the U-matrix at row i and column j
with weight vector wi,i. Given these propositions of a correctly
constructed ESOM, the P-matrix provides a 2D representation
of the multivariate density function of the data space, which
is particularly good for density-based separation of different
classes (clouds) in the data, including the possibility of estimating
whether the radius r is suitable for density estimation. Figure 5B
shows the effects of a too-small radius r for density estimation:
many zero-valued P-heights and many small pumps in the
densities. Conversely, a too-large radius r inflates the intercloud
space since points from other classes are included. This can be

Figure 4. “Aggregation” dataset (http://cs.joensuu.fi/sipu/datasets/).
(A) 2D representation of the original dataset, with individual instances
color-coded by class on the background of a class-wise Voronoi
tessellation. (B) ESOM projection of the dataset. The classes are
separated by high “snow-covered” ridges. The figure has been created
using the R software package (version 4.3.3 for Linux; https://CRAN.R-
project.org/ [89]) and the R libraries “ggplot2” (https://cran.r-project.org/
package=ggplot2 [90]).

detected in comparison of the P-matrix to the U-matrix. If large
U-heights are located at large densities, the radius r is too large
(Fig. 5C). This is due to the inclusion of data points from different
data clouds in the hyperspheres (crosstalk phenomenon).

The optimal parameters for ESOM have been studied previ-
ously, leading to several key recommendations [37]. One of the
most important parameters is the grid size. As elaborated pre-
viously [38], SOMs have two prototypical uses for neurons: rep-
resenting clusters and projecting high-dimensional data. In the
first type, a small number of neurons correspond to data clusters,
which works similarly to k-means clustering [39]. The second type,
which is used in this report, uses a large number of neurons,
often thousands, to map and reveal intrinsic structural features
of high-dimensional data, a phenomenon known as ESOMs [23]
(Fig. 6). The number of neurons and the shape of the projection
grid are chosen to balance three important criteria: (i) it should
be large enough to avoid degenerating into a k-means clustering
algorithm [39], (ii) it should be small enough to prevent individual
data points from occupying separate neurons with surrounding
interpolation regions, and (iii) it should have edge ratios between
1.2 and 1.6 for optimal performance [37]. A starting point of 4000
neurons (80 × 50) has been effective in many applications, with
adjustments made for larger or smaller datasets; however, a rect-
angular grid of at least 600 neurons, typically arranged in a 23 × 30
configuration, seems to mark a minimum [32]. Increasing the grid
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Figure 5. Effect of the length of the radius r of a hypersphere around each weight vector of a neuron on the output grid of the ESOM for the estimation
of the local data density. (A) Appropriate radius. (B) Too-small radius. (C) Too-large radius. Compare Fig. 4. The figure has been created using the R
software package (version 4.3.3 for Linux; https://CRAN.R-project.org/ [89]) and the R libraries “ggplot2” (https://cran.r-project.org/package=ggplot2 [90])
and “ggforce” (https://cran.r-project.org/package=ggforce [91]).
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Figure 6. A schematic drawing of an SOM illustrates how input data are initially assigned randomly to neurons. During the training phase, data points
adjust their positions, allowing similar data points to cluster in distinct regions. This process continues until similar data points are projected in proximity
on the projection plane, occupying specific neurons on the grid, which are referred to as BMUs. The input layer is omitted in the lower two drawings.
The figure was created using the free and open-source vector graphics editor Inkscape (version 1.2.2 for Linux; http://www.inkscape.org/).

size increases the resolution of structural features of the data in
the resulting visualization. In contrast to the number of neurons,
the shape of the neighborhood and the cooling scheme, which
refers to the reduction of the neighborhood during learning, were
found to be less critical factors [32]. For practical applications, it
is often sufficient to use default settings from published packages
[40]. The effectiveness of the chosen parameters can be evaluated
by examining the resulting U- and P-matrix visualizations, which
provide insights into the structure and density distribution of
the data.

Emergent self-organizing map neural network–based
model-free data generation
In this report, a generative use of ESOM is proposed as a novel
addition to the established use of ESOM as a valid structure
recognition type of AI. As the result of an introductory experiment,
Fig. 3 shows two augmented data sets from the example above.

Both contain 10 times more data than the original data set,
where one variant was obtained using the true data generation
probabilistic model [Equation (1)], while the other variant was
generated using the ESOM-based structure detection with sub-
sequent generation of new data points (Fig. 7). Both new data
sets contained only cases that were not identical to any case in
the original data set. For trained random forests (RFs) [41, 42] or
support vector machine (SVM) [43] classifiers, it was not possible
to distinguish the data generated by the true probabilistic model
from the data generated by the ESOM-based generative algorithm
proposed here (Table 1). The details of this experiment are given
later in this report.

Definition of criteria for a valid generation of data

As a result of the above basic considerations, the main goals of
the ESOM-based data generation approach are (i) to preserve
existing data structures and (ii) to avoid the introduction of
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Figure 7. Augmentation of a small data set using either the true data-generating probabilistic model (A) or ESOM-based generative AI (B). The original
synthetic “Hepta” dataset consists of n = 212 data points evenly distributed across k = 7 classes within well-defined and well-separated spherical data
clouds (Fig. 1A). The data were generated with 10 times the sample size of the original. The variant shown in (B) was obtained using data generation
[Equation (1)]. In contrast, the variant shown in (B) was generated using the proposed ESOM structure detection–based generative AI. The figure was
generated using Python version 3.11.5 for Linux (https://www.python.org) with the seaborn statistical data visualization (https://seaborn.pydata.org
[88]).

spurious structures. To achieve these goals, the following steps are
crucial: first, the data structures must be identified. This includes
identifying the regions of empty space and the data clouds within
the original multivariate data set and analyzing the data clouds’
characteristics, such as their shape, size, and density. Second, the
structural, i.e. topological, properties of the data set should be
preserved, which can be achieved by ensuring that any newly
generated data are positioned within the existing data clouds
while preserving the observed structural properties of the original
data, such as the shape, size, and density of the data clouds. The
result can be validated by comparing the structural features of
the generated data with those of the original multivariate data
set, which ideally should be indistinguishable. By focusing on
these key steps, the ESOM-based approach aims to generate
additional data that are structurally equivalent to the original
dataset, without introducing false or misleading structures. This
is a critical aspect of the method, as preserving the intrinsic
data structures is essential to maintaining the validity and
representativeness of the augmented dataset. Generating new
data that match the observed characteristics of the original
data helps to avoid biasing any subsequent use of the extended
dataset.

The goals of data generation are illustrated in Fig. 3. The
desired valid data generation provides a data set with respect
to data clouds and empty space that follows the original data set
(Fig. 3A and B). It does not alter the original structure, such as
making the boundaries between data clouds indistinct (Fig. 3C),
nor does it introduce new structures, such as additional classes
that were not present in the original data set (Fig. 3D). It is worth
noting that the generation of additional data with the same
structure of a given data set can and should include points that
lie within the data clouds as well as in the voids. However, care
must be taken not to introduce spurious structures that were not
present in the empirical data. The ESOM method described here

uses distance (U-matrix) and density (P-matrix) measurements
within the empirical data to ensure this.

Emergent self-organizing map neural net–based
generative algorithm

Generating data points from given data seems like an easy task:
to generate new data for each data point (“seed”), simply add a
small amount in any direction (“jitter”). However, for multivariate
data, this leads to the “curse of dimensionality” [44]. For a single
data dimension, the distances of data drawn from a Gaussian
distribution follow a distribution with many small and few large
distances. However, if the dimensionality of the data is large,
the distances generated by such a random process are mainly
concentrated around a specific mean. More annoyingly, the differ-
ence between the maximum distance and the minimum distance
of the generated data (the range) goes to zero [45]. This means
that the naive generation of data in the multivariate case has
the unwanted effect that the generated data lies on the surface
layer of a hypersphere around the seed. As the dimension of the
data increases, the radius of the hypersphere increases and the
thickness of the layer decreases. For typical empirical data with
structure, a second problem arises: the generated data should not
blur the boundaries of the neighborhoods or generate data from
a seed in one neighborhood that resides in other neighborhoods
beyond the empty spaces.

To avoid these effects, a data point’s neighborhood is defined
in terms of the distance to the other points. The neighborhood of
datapoint xi is described as the probability that another datapoint
xj, with distance d

(
xi, xj

)
from xi, belongs to the neighborhood of

datapoint xi. Mathematically, the probability pij can be formulated
as

pij = 1 − 1

1 + e− 10•d(xi ,xj)
c−1

(3)

https://www.python.org
https://www.python.org
https://www.python.org
https://www.python.org
https://seaborn.pydata.org
https://seaborn.pydata.org
https://seaborn.pydata.org
https://seaborn.pydata.org
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where pij is the probability that data pointxj is in the neighborhood
of data point xi, d

(
xi, xj

)
is the distance between data points xi

and xj, and c is a scaling constant that determines the size of the
neighborhood. This equation represents a sigmoid-like function
that maps the distance between two data points to a neighbor-
hood probability. The key aspects are that the function first takes
the distance d

(
xi, xj

)
and scales it by the constant c to determine

the relative distance. The called distance is then qualified by the
logistic distribution function. This type of neighborhood probabil-
ity function is commonly used in SOMs and other unsupervised
learning algorithms to capture the local structure of the data.
By defining neighborhoods in this way, the ESOM approach can
effectively represent the intrinsic data structures, as described in
the previous text.

The factor c scales the data’s distances such that the decision
boundary is at, i.e. pij = 0.5 for

d(xi ,xj)
c = 1. This represents the point

where a Bayes decision changes from “xj is in the neighborhood
of xi” to “xj is not a neighbor of xi.” The algorithm generates k
points for each data point by first selecting k randomly distributed
points on a unit hyper ball around the seed. Then, the length
of the distances of these k points to the seed is extended to
lengths according to the neighborhood probabilities pij using three
different uniform distributions: a large portion containing 85% • k
of the generated data is uniformly drawn from distances with pij >

95%. Fifteen percent of the generated data are drawn uniformly
for distances with 10% < pij < 95% and the remaining 5% • k

having distances with
d(xi ,xj)

c ≤ 2. This algorithm captures the
“neighborhood and empty space” structures of the data set such
that most of the data are within the neighborhood and only a
few data are in the empty space regions. If the P-matrix shows
a good choice of r (see Fig. 6A–C), then this represents a distance
that can separate the neighborhoods in the data. Factor c is then
calculated so that a data point near the center between the two
neighborhoods measures “empty space.” This means that c = 0.4· r
is a good choice for the calculation of pij.

Thus, for multivariate density estimation, the above-mentioned
radius r is the critical parameter. Using ESOM, a suitable
radius r can be found as follows: the abstract U-matrix heights
(AU_heights) [46] are the subsets of data distances

{
AUheights

} ⊆ D = {
di|di = d

(
xj, xk

)
for all pairs

(
j, k

)
in G, j,

k ∈ [1, . . . , n]
}

(4)

corresponding to edges in the Gabriel graph G constructed from
the best-matching units (BMUs). The univariate distribution of
AU-heights is represented with a bimodal Gaussian mixture prob-
abilistic model (GMM) optimized for maximum likelihood [expec-
tation maximization (EM) algorithm; Fig. 8]. Using Bayes’ theo-
rem, posterior probabilities can be computed for small distances
p

(
small|d ∈ D

)
in data space, i.e. presumably inner-class distances,

and for large distances p
(
large|d ∈ D

)
. A value of r = 0.8· tAU,

where tAU is the Bayesian decision boundary between small and
large distances, was found to be appropriate for many practical
applications.

Evaluation
Code implementation
The R code shown in Textbox 1 generates new data with the
same structure as the input data. The displayed R function has
become part of the R package “Umatrix” since its version 4.0
is freely available at https://cran.r-project.org/package=Umatrix.
The generative process requires the training of the U and P

Figure 8. Selection of the radius of the hyperspheres for density estima-
tion based on a proposal obtained from the probability density distribu-
tion of the distances between data points. The figure has been created
using the R software package (version 4.3.3 for Linux; https://CRAN.R-
project.org/ [89]) and the R library “ggplot2” (https://cran.r-project.org/
package=ggplot2 [90]).

matrices as described previously for this R package [40]. The
generative process involves two additional steps. First, the radius
r [Equation (2)] critical for data generation is obtained via the
function “calculate_Delauny_radius(Data, BestMatches, Columns
= 80, Lines = 50, Toroid = TRUE),” which expects the data as used for
U- and P-matrix generation, the size of the grid in the number of
neurons in x- and y-direction, whether the grid is a toroid, which is
the default, and crucially, the best matches obtained as output of
the U-matrix generation in this R package. That is, the interactive
generation of the U-matrix can be invoked via “<UmatrixName>

<- iEsomTrain(Data, Toroid = TRUE, Cls = <priorClasses>”). The
best matches are then accessible in the output of the U-matrix
generation as <UmatrixName>$BestMatches. Second, the gener-
ative process is started by calling the function in Textbox 1, i.e.
“generate_data(Data, density_radius, Cls = NULL, gen_per_data
= 10)” that expected as input the matrix of data as submitted
to U-matrix generation, the above-mentioned density_radius, the
class information of the data as a (numerical) vector, and the
number of new instances per original instance to be generated
(gen_per_data). The data generation process employs a density
radius parameter, multiplied by a constant of 0.4 (line 16 in the
code in Textbox 1), to create new data points for neighboring
classes. This approach ensures that generated points for one
class do not encroach upon the data range of adjacent classes,
maintaining class structure integrity. Extensive testing has shown
that using a factor slightly below 0.5 (which would place new
points exactly halfway between classes) yields optimal results.
Setting the factor too low would unnecessarily limit the variance
of generated points, producing data too similar to the original set,
i.e. not making use of the variation allowed within the detected
data set structure. Conversely, a higher factor risks blurring class
boundaries. This method aims to fill the space around each data
cloud as much as possible without invading neighboring clouds,
effectively populating the empty spaces between dense data point
clusters in the initial data space partition.

https://cran.r-project.org/package=Umatrix
https://cran.r-project.org/package=Umatrix
https://cran.r-project.org/package=Umatrix
https://cran.r-project.org/package=Umatrix
https://cran.r-project.org/package=Umatrix
https://cran.r-project.org/package=Umatrix
https://cran.r-project.org/package=Umatrix
https://CRAN.R-project.org/
https://CRAN.R-project.org/
https://CRAN.R-project.org/
https://CRAN.R-project.org/
https://CRAN.R-project.org/
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggplot2
https://cran.r-project.org/package=ggplot2
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Textbox 1. R code to generate new data points, given the P-matrix-based radius of the hypersphere around each weight vector of a
neuron on the ESOM output grid, which provides an estimate of the local data density.

1. # Function to generate new data with the same structure as the input data

2. generate_data <− function(Data, density_radius, Cls=NULL, gen_per_data=10) {
3. ## Initialize parameters

4. # Maximum distance for data generation (relative to density_radius)

5. max_distance <− 2.0

6. # Limits for the sigmoid function

7. limit_ab <− 0.72

8. limit_bc< − 1.22

9. # Fraction of data in each set (A, B, C)

10. percent_a<− 0.80

11. percent_b<− 0.15

12. # Radius for data generation (shrink to below half of the intercloud distance)

13. r<− 0.4 * density_radius

14. # Number of data points and dimensionality

15. n<− nrow(Data)

16. d<− ncol(Data)

17. ## Assign class labels if not provided

18. if (is.null(Cls)) {
19. Cls<− rep(1, n)

20. } else if (length(Cls)!= n) {
21. stop("Unequal number of cases and class labels.")

22. }
23. ## Generate new data points

24. # Number of generated data points

25. n_generated <− n * gen_per_data

26. # Generate jitter (noise) for the data points

27. jitter <− matrix(rnorm(n_generated * d, mean=0, sd=1.5), n_generated, d) * r

28. jitter_lengths <− sqrt(rowSums(jitter∧2))
29. jitter_indices <− which(jitter_lengths >0)

30. jitter[jitter_indices,]< − jitter[jitter_indices,] / jitter_lengths[jitter_indices]

31. # Determine the number of data points in each set (A, B, C)

32. n_a<− round(n_generated * percent_a)

33. n_b<− round(n_generated * percent_b)

34. n_c<− n_generated—n_a—n_b

35. # Generate the sigmoid lengths for each set

36. sigmoid_lengths <− c(

37. runif(n_a, 0, limit_ab),

38. runif(n_b, limit_ab, limit_bc),

39. runif(n_c, limit_bc, max_distance)

40. ) * r

41. # Create the sigmoid matrix and generate the new data

42. sigmoid_matrix <− matrix(rep(sigmoid_lengths, d), ncol=d)

43. generated_data <− Data[rep(1:n, gen_per_data),]+jitter * sigmoid_matrix

44. generated_classes <− rep(Cls, times=gen_per_data)

45. # Return the original and generated data and classes

46. return(list(
47. original_data=Data,
48. original_classes=Cls,
49. generated_data=generated_data,
50. generated_classes=generated_classes
51. ))
52. }

The code has been incorporated as a new function in version 4.0 of the R library “Umatrix” (https://cran.r-project.org/package=Umatrix).

In the present experiments, the hyperparameter settings of the
U-matrix and P-matrix generation were left to the defaults of
the program. The choice of grid size has been described above.
For other hyperparameters, such as the tilt rate and the neigh-
borhood function, the choice of other settings and details about
their functions have been described in detail [47, 48]. Experiments
on data generation using the neural network were conducted on
artificial and molecular data sets as described below.

Data sets
Artificial data sets

A collection of datasets created for benchmarking of clustering
and data projection algorithms has been published as part
of the “Fundamental Clustering Problems Suite (FCPS)” [25].
It is freely available at https://www.mdpi.com/2306-5729/5/1/13/
s1 or in the similarly named R library “FCPS” (https://cran.
r-project.org/package=FCPS [49]). It has been found that the

https://cran.r-project.org/package=Umatrix
https://cran.r-project.org/package=Umatrix
https://cran.r-project.org/package=Umatrix
https://cran.r-project.org/package=Umatrix
https://cran.r-project.org/package=Umatrix
https://cran.r-project.org/package=Umatrix
https://cran.r-project.org/package=Umatrix
https://www.mdpi.com/2306-5729/5/1/13/s1
https://www.mdpi.com/2306-5729/5/1/13/s1
https://www.mdpi.com/2306-5729/5/1/13/s1
https://www.mdpi.com/2306-5729/5/1/13/s1
https://www.mdpi.com/2306-5729/5/1/13/s1
https://cran.r-project.org/package=FCPS
https://cran.r-project.org/package=FCPS
https://cran.r-project.org/package=FCPS
https://cran.r-project.org/package=FCPS
https://cran.r-project.org/package=FCPS
https://cran.r-project.org/package=FCPS
https://cran.r-project.org/package=FCPS
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structures in this dataset are comprehensively captured by the
ESOM/U-matrix method as the basis of the present generative
algorithms [38]. Details of the data subsets have been described
elsewhere [25]. In brief, the FCPS contains 10 data sets with
the names “Atom,” “Chainlink,” “EngyTime,” “Golfball,” "Hepta,”
“Lsun,” “Target,” “Tetra,” “TwoDiamonds,” and “WingNut.” The
data sets consist of n = 212–4096 data points. A further synthetic
data set was the “aggregation” data set (http://cs.joensuu.fi/sipu/
datasets/) that is designed to show how data aggregation can
be used to improve the quality and robustness of data cloud
detection algorithms.

Biomedical data sets

A 100-dimensional biomedical transcriptomics dataset was
selected for the inclusion of rare disease settings. The “Leukemia”
data set consists of n = 552 microarray data comprising
d = 100 differentially expressed genes from n = 108 healthy
subjects, n = 266 patients with acute myeloid leukemia (ALL)
and n = 163 patients with chronic lymphocytic leukemia (CLL)
[50]. A small subgroup of patients (n = 15, 3%) suffered from
APL, which has an incidence of <4% of all leukemia cases in
Germany [4].

Another biomedical dataset was available from an ongoing
clinical study on the lipidomics background of psoriatic arthritis
(“PsA” data set). In a cross-sectional clinical study setting, n = 81
patients presenting with possible arthritic complications of
psoriasis were enrolled consecutively. Lipid markers (d = 293) of
several classes (e.g. acylcarnitines, ceramides, cholesterol esters,
diacylglycerols, endocannabinoids, sphingoid bases, triacylglyc-
erols, and others) were analyzed in the patients’ plasma using
locally developed liquid chromatography–mass spectrometry
assays. Healthy control samples were obtained from a local blood
bank, but the donors from whom the samples had been obtained
turned out to be younger than the patients. Since many lipid
variables showed a significant correlation with age, matching was
considered necessary. However, after age matching, only n = 16
controls were available in the analyzed data set. The study from
which these data were used was conducted in accordance with
the Declaration of Helsinki on Biomedical Research Involving
Human Subjects and was approved by the Ethics Committee
of the Medical Faculty of the Goethe University, Frankfurt
am Main, Germany (approval number 19-492_5). Informed
written consent was obtained from each participant, including
for anonymized use of data for assessments such as those
reported here.

Detecting artificial intelligence–generated content in mixed
datasets
In a supervised discriminator experiment, 20% of the data were
first separated from the pooled original and generated data set in
a class-proportional manner. The 20%-validation subsample was
not touched during subsequent classifier training. This approach
allows for a robust evaluation of the performance of the machine
learning models by testing them on unseen data, which helps
to prevent overfitting. Separation of the validation sample was
done using the R library “opdisDownsampling” (https://cran.r-
project.org/package=opdisDownsampling [51]), which repeats
the sampling 106 times and compares the distribution of the
drawn sample with the distribution of the original data, obtaining
subsets of data that better reflect the entire data set than a first
randomly selected subsample [51].

Subsequently, machine learning algorithms were trained with
the task of detecting which data point was generated and which

was original. Specifically, a 100-fold cross-validation scenario was
implemented. This setup involved training of classifiers of two
different types, i.e. RF [41, 42] as a robust tree-based bagging clas-
sifier and SVM [43] as a hyperplane separation–based method, on
two-thirds of the aforementioned 80% training/test data subset,
followed by validation on 80% of the cases randomly selected
from the 20% validation sample not seen by the classifiers during
training. Random sampling during each of the 100 runs was done
using class-proportional Monte Carlo sampling [52]. The primary
measure of success was the balanced accuracy [53] calculated
using the R package “caret” (https://cran.r-project.org/package=
caret [54]). The classifier training process included initial hyper-
parameter tuning for each new task and data set, including
optimization of the number of trees in the forest and other
RF hyperparameters as described in Lötsch and Mayer [55], or
selecting the kernel form for SVM from “linear,” “polynomial,”
“radial,” or “sigmoid,” and other SVM hyperparameters such as
the values for cost or γ . Random forests were implemented using
the R library “randomForest” (https://cran.r-project.org/package=
randomForest [56]), while the SVM was used in the implementa-
tion of the R package “e1071” (https://cran.r-project.org/package=
e1071 [57]). The training process was repeated with the new task of
detecting the original classes to ensure that the algorithms were
able to classify the datasets; otherwise, a failure to detect the
generated data could not be uniquely attributed to the similarity
of the generated and original data but could merely indicate that
the algorithm did not work at all due to implementation errors.
In addition, to control for possible overfitting, the training was
replicated with permuted variables (i.e. nonsense information),
with the expectation that classifiers trained with them would
perform no better than guessing the class assignment, i.e. achieve
a balanced accuracy of ∼50% with a 95% confidence interval
defined by the 2.5th and 97.5th percentiles of the 100 cross-
validation runs, spacing the 50% chance level. In addition, all
variables of all data sets were compared between their original
and generated versions using Wilcoxon–Mann–Whitney U-tests
[58, 59].

Results
Emergent self-organizing map neural net–based
generative algorithm
The working of the proposed generative algorithm is shown at the
“aggregation” data set (http://cs.joensuu.fi/sipu/datasets/). First,
a valid ESOM projection of the data set was obtained, i.e. a
correctly constructed ESOM should preserve the topology of the
input data. Consequently, the projected points of a data cloud are
arranged in such a way that data sets located within a data cloud
are projected within the representation area of that cloud, and
data points that have, possibly, distant neighbors from other data
clouds are projected to the edges of these areas (Fig. 4). Within a
data cloud, the average distance to neighboring data points on
an ESOM is small. This can be seen as low heights on the U-
matrix, which shows valleys for the data cloud. Figure 4B shows
the U-matrix showing that the seven classes are well separated
by high walls, i.e. large local distances. Details of the workflow
of data generation including selection of the density radius r are
depicted in Fig. 5, showing the impact of selecting a too-small or
too-large radius, and in Fig. 8 showing the EM-based selection of
the most suitable value of r. The result is shown in Fig. 9 depicting
a generation of k = 10 data points for each seed. The “neigh-
borhood and empty space” structures of the original data set are
preserved.
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Figure 9. “Aggregation” data set (see Fig. 4) with k = 10 newly generated
data per original data point. The figure has been created using the R soft-
ware package (version 4.3.3 for Linux; https://CRAN.R-project.org/ [89])
and the R libraries “ggplot2” (https://cran.r-project.org/package=ggplot2
[90]) and “ggforce” (https://cran.r-project.org/package=ggforce [91]).

Data sets from the “Fundamental Clustering Problems Suite
(FCPS)” [25] collection were submitted to the generative algorithm.
The full results of structure detection and data generation are
shown in Fig. 10, including plots of the original data, the added
generated data, and the (similar) distributions of both as 3d
density plots. For example, the “Chainlink” dataset contains two
distinct classes arranged as interlinked rings. Each class is sam-
pled uniformly from within a torus with minor radius r = 0.1 and
major radius R = 1. The two tori are orthogonally intertwined with
maximum distances between them. This data set was correctly
projected by ESOM on the 2D R2 plane as two clearly separated
classes with a high wall depicted as a “snow-covered mountain
range” as a visualization of their separation on the U-matrix
(Fig. 11). The ESOM neural net–based generative algorithm added
new data points at locations consistent with the original high-
dimensional data structure. A new U-matrix created with the
generated “Chainlink” data indicated the same class separation
as the U-matrix created with the original data set.

Generated versus original data
In a supervised discriminator experiment, 20% of the data were
first separated from the pooled original and generated data set
in a class-proportional manner. Using a 100-fold cross-validation
design, from the 80% training/test subsample, two-thirds were
randomly drawn and used to train an RF classifier. The trained
algorithm was then used to solve the task of distinguishing
generated from original data in also randomly drawn 80%
of the 20% validation sample not used for classifier training.
Hyperparameter tuning was performed for each scenario. In
all datasets, both RF and SVM classifiers failed to reliably and
correctly identify a data instance as either original or generated.
In most cases, the median balanced accuracy was close to 50%,
marking the guessing level, and, in all cases, the 95% confidence
interval of the 100 balanced accuracy values included the 50%
guessing level (Table 1). This indicates that, at least for these two
well-established classifiers, despite careful hyperparameter

tuning, the task of distinguishing generated from original data
points was not successfully completed. In fact, the performance
of the classifiers was no better than when they were trained
with permuted variables, i.e. with nonsense information about
class membership. In contrast, the classifiers were very good at
learning the classes contained in the datasets for all datasets
except the golf ball dataset from the FCPS, which contains
no class structures. Balanced accuracy for class assignments
often exceeded 90% or better, with the SVM achieving a median
balanced accuracy of 100% more often than RFs, which also came
close to this ideal. This indicates that the experiments were
implemented correctly and that the failure of the classifiers to
detect the original data was not due to a general implementation
error. Again, training with permuted information resulted in
nonfunctional classifiers for the original classes, indicating that
the good performance in the above experiment was not an
overfitting effect. Furthermore, the statistical comparison of all
variables of all datasets between their original and generated
versions revealed no significant differences, with the P-values
of all 419 tests (the total count of all variables in all data sets)
ranging from P = .86 to P = 1. The P-value ranges for the individual
data sets are shown in the last column of Table 1.

Augmentation of small data (sub)sets using
generative artificial intelligence
Synthetic data
The “Target” data set from the FCPS addresses the problem of
outliers (Fig. 4). It consists of two large classes with n = 395 and
n = 363 points on a plane that lie in a circle inside a ring (linearly
inseparable). Furthermore, there are four sets of only three points
(outliers) that are outside the ring. This data set was correctly
projected onto the R2 plane, including two clearly separated large
classes in the gallop and four small classes at the corners of the
projection area, all separated by a high wall represented as a
“snow-covered mountain range” (Fig. 11). The SOM neurons that
emerged as BMUs during training were colored according to the
class labels, indicating that the class separation on the ESOM/U-
matrix was perfect. A generative ESOM added new data points
at locations consistent with the original high-dimensional data
structure. A new U-matrix created with the generated Target data
showed the same perfect class separation as the U-matrix created
with the original data set. This time, the “outliers” were increased
in number and placed on the U-matrix as “volcanic craters” on the
physical map analogy as the standard representation of this type
of SOM.

Biomedical data
The ESOM works on all dimensions of a data set. A 100-
dimensional biomedical dataset was selected for the inclusion
of rare disease settings. It consists of n = 552 microarray data
comprising d = 100 differentially expressed genes from n = 108
healthy subjects, n = 266 patients with ALL, and n = 163 patients
with CLL [50]. A small subgroup of patients (n = 15, 3%) suffered
from APL, which has an incidence of <4% of all leukemia cases
in Germany [4]. The classes are well separated by walls (ridges
in the U-heights; Fig. 12). Using generative ESOM, an arbitrary
number of high-dimensional vector data (gene expressions) can
be generated. These vectors consist of the regions of Rn where
the measured APL data are located plus the surrounding space.
They will have the APL-specific dependency structure between
genes. With this larger data set, a fine analysis of the genetic
mechanisms of this disease seems more feasible than with only
15 cases. An example is shown in Fig. 12B where all groups have
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Figure 10. Generation of additional data points in a set of artificial data sets assembled in the so-called FCPS [92]. The FCPS contains a collection of 10
datasets, including “atom,” “Chainlink,” “EngyTime,” “Golfball,” “hepta,” “Lsun,” “target,” “tetra,” “TwoDiamonds,” and “WingNut.” In this figure, each line
displays two data sets in three subpanels each. The original data shown on the first panels of a triplet, the added generated data in the middle panels,
and the probability of data points in the respective set on the right panels. The figure was generated using Python version 3.8.13 for Linux (https://www.
python.org), with the seaborn statistical data visualization package (https://seaborn.pydata.org) used for visualization purposes.

been enlarged to the n = 266, which was the size of the largest
subgroup. All five data set regions were enhanced to this size,
meaning that n = 266 − 15 = 251 generated data were added to
the APL subgroup, with an analogous addition of n = 158, 0, 103
generated cases the other subgroups in the above succession.

Similarly, the psoriatic arthritis lipidomics data set (“PsA” data)
with a smaller subgroup of n = 16 healthy controls was augmented
to equal group sizes. The small group of healthy controls was
initially separated in a circular region in the middle of the pro-
jection area (Fig. 13A). The primary structural feature recognized
by the ESOM consists of placing the 16 controls within a “caldera”
(valley) surrounded by high “volcano flanks” (green line in

Fig. 13A). This indicates that the controls have common properties
which are well separated from the 81 PsA patients (green points
in in Fig. 13A). After the addition of the generated data, providing
n = 81 subjects per group, both groups were correctly projected
in different regions with no overlap and a main separation ridge
along the center of the projection area (Fig. 13B), indicating that
the original structure of the data set consisting of two distinct
classes (PSA arthritis patients and controls) was preserved with
the generative augmentation procedure. The generated data still
reside within a large surrounding “caldera” (see the green line in
Fig. 13B) indicating that the separation between controls and PsA
patients is preserved in the ESOM generated data.
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Figure 11. Generation of data in the FCPS “Chainlink” (left column) and “L-sun” (right column) datasets [92]. The top panels (A, F) show the original data.
The U-matrix of the data sets (B, G) and the P-matrix (C and H) follow. Generated data are shown in (D) and (I), which when projected onto the SOM
result in U-matrix representations (E, J) that show the same subgroup structure as the original data sets (B, G). The figure was created using Python
version 3.11.5 for Linux (https://www.python.org) with the seaborn statistical data visualization package (https://seaborn.pydata.org [88]).
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Figure 12. Augmentation of rare cases in biomedical data using generative AI (“Leukemia” data set): (A) 3D representation of the ESOM projection of
the leukemia dataset. The subgroups are separated by “snowy mountain ranges.” A small subgroup (green colored best matches at the top/back of the
projection surface) contained only 3% of the cases) (marked with a green rectangle). (B) 3D representation of the ESOM projection of the leukemia dataset
in which all subgroups have been enlarged by data generation to the size of the original largest subgroup (n = 266). The previously small subgroup of
APL still appears as a separate subgroup (green best matches) but with a correspondingly larger group size. The figure has been created using the R
software package (version 4.1.2 for Linux; https://CRAN.R-project.org/ [89]) and our library “Umatrix” (https://cran.r-project.org/package=Umatrix [40]).

Discussion
Using the ESOM/U-matrix approach, it is possible to assess
whether there is structure in the data or not [38, 40, 60–64]. Thus,
the method can correctly detect structures and is also able to
correctly detect the absence of a data structure in structureless
data [38]. Given this ability of the U-matrix to correctly detect data
structures, as discussed above, the method proves highly suitable
for basing a data-generating algorithm on. One significant
advantage of the ESOM neural net–based generative algorithm is
its intuitive visualization of structure, which presents nonlinear
representations of high-dimensional distributions and densities
in a user-friendly manner. By utilizing the U- and P-matrix, it
becomes easy to detect significant structures in the data and
to ensure that the data generation parameters are correctly

established. Furthermore, identifying outliers and misrepresented
data is a simple task. Overall, ESOM-based data generation is a
highly desirable option that provides increased ease of use and
improved accuracy. Outliers as well as small, underrepresented
subgroups of cases of a rare disease, such as APL, can be easily
addressed with the present method. Similarly, outliers in clinical
data sets, such as patients with rare symptom patterns that
can only be mentioned as anecdotal outliers in the raw data
set, can easily be included in the systematic analysis up to
machine learning–based feature selection, as recently shown
for rheumatic diseases using the same method as presented
here in full detail [65]. The ESOM U-Matrix method has been
applied, in addition to the present leukemia dataset, to various
types of omics datasets, including genomics of analgesic drug
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Figure 13. Augmentation of rare cases in biomedical data using generative AI (“PsA” data set): (A) 3D representation of the ESOM projection of the PsA
(psoriatic arthritis) dataset. The controls (n = 16, red colored best matches) are included in a circular area separated from the PsA patients (n = 81) by
“snowy mountain range.” (B) 3D representation of the ESOM projection of the PsA dataset in which the two subgroups have been enlarged by data
generation to the size of the original largest subgroup (n = 81). The previously small subgroup of healthy controls still appears as a separate subgroup
(red best matches). The figure has been created using the R software package (version 4.1.2 for Linux; https://CRAN.R-project.org/ [89]) and our library
“Umatrix” (https://cran.r-project.org/package=Umatrix [40]).

targets [62], lipidomics data [61, 63], psychophysiological data
[66], and many more. The versatility of ESOMs extends far beyond
biomedical applications, finding use in diverse fields such as
architecture, meteorology, stock market analysis, aeronautics,
and even music data clustering [67–69]. This efficient tool for
structure recognition is not constrained by data dimensionality
or dataset size, though it does require rationally scaled data.

The present use of unsupervised neural networks in this report,
such as ESOMs, bears similarity to supervised autoencoders in
their ability to detect inherent structures within data sets. Akin to
how deep learning autoencoders learn to encode and reconstruct
input data, our approach utilizes neural networks to identify the
underlying structures present in multivariate data. This learned
representation then enables the generation of new data points

that preserve the detected structural properties of the original
data set. With respect to autoencoder, despite the early reports
of alleged success in representing structure data, it has become
clear that even deep learning methods do not provide a reliable
representation of the data space [70]. This can also be seen in the
“Hepta” example data set (Fig. 14C). The figure shows the original
data set along with a similar sized data set generated using the
ESOM-based model proposed here. The two data sets look alike
(Fig. 14A and B). Autoencoders use supervised learning multilayer
feedforward artificial neuronal networks (ANNs) to extract the
essential features of the structure of a data set, which reduces
its dimensions and can therefore be used for data projection.
Autoencoders then learn to reconstruct the original data with the
reduced representation. If the data set has a certain structure,
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Figure 14. Visualization of reconstruction of the “Hepta” data set [25] comprising n = 212 data points evenly distributed across k = 7 classes within well-
defined and well-separated spherical data clouds (top row) and of the “Chainlink” dataset [25], which consists of n = 1000 data points evenly distributed
over k = 2 classes and arranged in the form of two intertwined rings (bottom row). (A, F) Original data set. (B, G) Similarly sized data set but all data points
have been generated using the ESOM neural network–based algorithm. (C, H) Similarly sized data set but all data points have been generated using an
autoencoding neuronal network with three hidden layers sized [3, 5]. (D, I) Similarly sized data set but all data points have been generated using a
multivariate GMM fit on the original data. (E, J) Similarly sized data set but all data points have been generated using a tabular data synthesizer (TGAN;
https://sdv.dev/TGAN/) on the original data. The figure has been created using the R libraries “ANN2” (https://cran.r-project.org/package=ANN2) and
“MGMM” (https://cran.r-project.org/package=MGMM [93]), with the final plotting using Python version 3.11.5 for Linux (https://www.python.org) with
the seaborn statistical data visualization package (https://seaborn.pydata.org [88]).

this would be learned and emphasized in the reconstructed data.
The training of an ANN was done with the goal of “identity,” i.e.
all case vectors used as input to the autoencoder are reproduced
identically as its output [71]. The neurons compute the logistic
sigmoid function applied to the scalar product of the preceding
neurons and the intermediate synoptic weights. The learning
method used was backpropagation, a common implementation
in autoencoders [72]. The network consisted of n = 3 input and
n = 3 output neurons to represent the original “Hepta” data, which
is 3D. Three hidden layers of five, three, and five neurons were
used. After training the ANN, the central two neurons represent
a 2D projection of the n-dimensional input data space, which is
then used to reconstruct the data into the 3D output data space.
Figure 14C shows the results, which are quite different from the
original or the structure reconstructed using the ESOM generative
algorithm.

On the other hand, a GMM gave satisfactory results for the
“Hepta” data set (Fig. 14D). Specifically, GMMs are probabilistic
models that assume that all data points are generated from a
mixture of a finite number of Gaussian distributions with initially
unknown parameters. The EM algorithm [73] can be used in
GMMs to optimize the maximum likelihood; however, implemen-
tations of alternatives such as Markov chain Monte Carlo are
available (summarized in Lötsch et al. [74]). Multivariate Gaus-
sian uses a given multivariate normal distribution representing a
d-dimensional mean vector. Fitting such a model to the “Hepta”
data set provided the means and associated covariance matrix.
This model was then successfully used to generate new data that
fit the original data well (Fig. 14D). The results changed when
the data set did not follow a Gaussian distribution, such as the
three variables of the “Chainlink” dataset of the FCPS (Fig. 14F).
Here, a GMM failed and its generative use produced data that
bore little resemblance to the original data structure of the data
set (Fig. 14I), while an autoencoder was quite successful in pro-
ducing data that fit the original data well (Fig. 14H) and the new

ESOM-based method provided again the expected satisfactory
result (Fig. 14G).

The AI model generates data by exploiting multivariate struc-
tures identified by an ESOM of artificial neurons, inheriting lim-
itations such as sensitivity to initialization parameters and con-
straints from the underlying generative model. The performance
of the model depends on the ability of the ESOM to represent
the data topology and generate realistic patterns. Data structures
such as clusters can be defined by distance or density using
methods such as k-means [75, 76] and density-based spatial clus-
tering of applications with noise [77], respectively. In ESOM, the
U-matrix captures distance-based structures, while the P-matrix
addresses density-based structures. Although ESOM performed
well on the mixed projection and clustering problems used in
this report, it may struggle with datasets that combine distance-
and density-based structures, which requires visual control of the
projection results on the trained ESOM, as discussed in Lötsch
and Ultsch [46]. In addition, the current AI paradigm is limited
in generating data classes that are not present in the original
sample. For example, if blue cells are very rare and yellow cells
are absent in authentic data, AI cannot generate blue or yellow
cells if they are not observed in a limited sample. This generative
AI thus extrapolates from salient observations within a limited
dataset while maintaining a low probability of hallucinating data,
a phenomenon associated with large language models using other
generative AI techniques than the present implementation [78].
Limitations on applicability are not the dimensionality of the data,
which is handled by projection, nor the size of the data set, which
results in fewer learning epochs. The ESOM requires rationally
scaled data and is less suitable for nominal or ordinal scaled data,
although, with the standard recording, such data are possible to
process.

In this paper, we describe how generative learning can be
achieved using ESOMs. Irrespective of the specific architecture,
however, generative models share key features. That is, they all
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address the complex challenge of generating valid data from
complex, often high-dimensional distributions that are either
unknown or difficult to describe analytically. These models pro-
vide solutions to critical problems such as the paucity of rare
cases, the reduction of extensive empirical testing (including ani-
mal testing), and the generation of data for meta-analysis. Several
statistical approaches have been proposed for generative mod-
els, with rejection sampling, the Metropolis–Hastings algorithm,
and the inverse transformation method being among the most
prominent. When dealing with multivariate measures and their
associated disease classifications (class labels), a fundamental
question arises: does the class structure manifest itself in the
numerical data in a way that allows meaningful disease-relevant
analysis? In data science, this means determining whether the
distance metric defined for the multivariate vectors is suitable
for classification, clustering, and inference tasks. Moreover, the
process of class labeling can be resource intensive [7], often
resulting in only a small subset of data being labeled. To address
these challenges, neural networks capable of data generation
have gained popularity [21, 27]. These models differ from tra-
ditional classification learning approaches that aim to find the
conditional distribution p (c|x) and build classifiers with strong
generalization performance, such as deep learning models [79].
Instead, generative learning focuses on finding the joint distribu-
tion p (x, c). This joint distribution can then be used to generate
previously unseen values of x and make class predictions c for
these new data points [20, 27]. The power of generative models
extends beyond the mere classification of existing data; they are
distinguished by their ability to synthesize novel, authentic infor-
mation that adheres to the patterns learned from the training
data. This dual function - analysis and creation - distinguishes
generative models as versatile tools in AI and machine learning.
This capability is particularly valuable in scenarios where data
are scarce, skewed, or difficult to obtain. In addition, generative
models can provide insight into the data’s underlying structure,
potentially revealing patterns and relationships that may not be
apparent using other analytical methods. The present generative
AI is embedded in the larger variety of generative AI models
including recent advances in GANs, which have demonstrated
their ability to generate data from minimal input [80–84]. While
this report does not focus on GANs, their usefulness compared
to the above methods (ESOM, GMM, autoencoder) was evalu-
ated on an architecture called “generative adversarial training
for synthesizing tabular data” (TGAN) [85]. The Python code was
downloaded from https://github.com/sdv-dev/TGAN and run in
a Python 3.7.16 environment on the two example datasets used
above. The results support that GANs provide a suitable way
to augment data sets from the current perspective of structure
preservation. Specifically, both the FCPS “Hepta” and “Chainlink”
datasets could be augmented with GAN-generated data in such a
way that the augmented datasets preserved the original 3D struc-
ture well (Fig. 14E and J). The newer version of the tabular GAN-
based data generator, called “CTGAN” [86] (https://github.com/
sdv-dev/CTGAN), produced similar results in less time, especially
when running on an NVIDIA GeForce RTX 4070. As the results
did not differ from the TGAN version, they are not discussed
further here. A comparison of all generated data shows that
TGAN sticks (except for a few outliers) to the original structure
of the “Chainlink” data set (see Fig. 14J). Structure detection and
extrapolation based on ESOM allow for a sensible expansion of the
variance for the data set, without intermixing of the group/cluster
structures of the data. This can also be seen in the “PsA” data
shown in Fig. 13, as discussed above.

All the method development efforts reported here reflect the
need to augment small datasets when additional data are not
available and highlight the importance of developing generative
AI for numerical tabular research data as an active research area.
Among the advantages of the present method is the accumulated
evidence of its structure detection capabilities in small datasets,
along with a publication record of applications to biomedical
datasets [38, 40, 61, 64, 87] of the kind often encountered in labora-
tory research where data are limited and where these generative
methods are therefore particularly needed.

Conclusions
We propose a model-free generative algorithm based on unsuper-
vised learning neural networks, specifically SOMs. It uses struc-
ture detection in multivariate data sets and identifies two distinct
regions in (hyper)space: voids containing virtually no data points
and dense data clouds. Within data clouds, the distances between
neighboring data points (topological neighbors) are significantly
smaller than in void regions. Through unsupervised learning, the
neural network captures and represents the intrinsic structures
of multivariate data spaces by detecting the cloud/void struc-
tures, without relying on a priori knowledge. We demonstrate the
operation of this generative algorithm on several synthetic and
biomedical datasets, including cases with small subgroups that
exemplify rare disease settings or otherwise limited research data.
After detecting the distance and density structures of the datasets
using the U-matrix and P-matrix methods, respectively, a radius
is obtained that defines the boundary of valid class structure
and neighborhood-preserving generation of new data points. The
generated data follow the distribution of the original data and
cannot be discriminated from the original data by trained classi-
fication algorithms. The novel ESOM-based generative algorithm
represents a promising solution for increasing sample sizes in
small or rare case datasets, even when limited training data are
available. This approach can address the challenges associated
with small sample sizes in biomedical research, providing a tool
to improve the reliability and robustness of scientific findings in
this field.

Key Points

• Small sample sizes and rare cases hinder clinical trans-
lation and analysis in medical research.

• A novel unsupervised generative algorithm uses emer-
gent self-organizing maps to detect structure in small
multivariate datasets.

• The algorithm divides data into dense “cloud” and empty
“void” regions and generates new points based on neigh-
borhood relations.

• It successfully increases small group sizes while preserv-
ing original data structures without artifacts.

• It outperforms autoencoders and Gaussian mixture
models on some datasets, providing an alternative to
generative adversarial networks.
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