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Abstract 
Short tandem repeats (STRs) represent one of the most polymorphic variations in the human genome, finding extensive applications 
in forensics, population genetics and medical genetics. In contrast to the traditional capillary electrophoresis (CE) method, genotyping 
STRs using massive parallel sequencing technology offers enhanced sensitivity and accuracy. However, current methods are mainly 
designed for target sequencing with higher coverage for a specific STR locus, thereby constraining the utility of STRs in low- and 
medium-coverage whole genome sequencing (WGS) data. Here, we introduce STRsensor, a method designed to type STR alleles in 
low-coverage WGS data and target sequencing data, achieving a significant high detection ratio and accuracy. STRsensor employs two 
methods for STR allele-typing: the Kmers-based method and the CIGAR-based method. Furthermore, by incorporating a model for PCR 
stutters, STRsensor greatly enhances the accuracy of STR allele typing. With simulation data, we demonstrate that STRsensor achieves 
a detection ratio of 100% and an accuracy of 99.37% for a 30× WGS data, outperforming the existing methods, such as STRait Razor, 
STRinNGS, and HipSTR. When applied to real target sequencing data from 687 individuals, STRsensor achieves a detection ratio of 
99.64% and an accuracy of 99.99%. Moreover, STRsensor is a computationally efficient method that runs 79 times faster than HipSTR 
and 10 000 times faster than STRinNGS. STRsensor is freely available on GitHub: https://github.com/ChenHuaLab/STRsensor. 
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Introduction 
Short tandem repeats (STRs), known as microsatellites, are DNA 
loci consisting of multiple repeat units with a length of 2-6 
nucleotides [1]. Unlike single nucleotide variations with only two 
allele types, STRs are highly polymorphic in the human genome. 
As a major category of biomarkers, STR has extensive applications 
in medical genetics, population genetics, conservation biology, 
and forensics [2–4]. STR has been shown to play a key role in 
more than 65 Mendelian disorders and has the potential to be 
involved in gene regulation and the development of complex 
traits [5]. About 17% of human genes contain STR in their open 
reading frames [6], and many have been reported to affect 
protein function [7]. In forensic science, STR is used for personal 
identification [8], paternity testing [9], surname inference [10], 
etc. The predominant method for STR genotyping is capillary 
electrophoresis (CE), which has been the ‘gold standard’ in 
forensic DNA laboratories for decades [11–13]. The CE-based STR 
allele typing method is straightforward, cost-effective, and court-
accredited. However, its limitation lies in its ability to type only a 
restricted number of STR loci due to current spectral resolution, 

making it inefficient for genotyping STRs in mixed and degraded 
DNA samples [14, 15]. 

With the development of massively parallel sequencing 
(MPS) technology, next-generation sequencing (NGS) data can be 
obtained at lower price and higher efficiency, which is expected 
to be an alternative to CE [9]. MPS can simultaneously amplify 
hundreds of thousands of STR loci, largely eliminating the 
limitation of CE technology on the number of STR loci [16]. 
Furthermore, the MPS method can detect STR alleles with 
genomic DNA mass greater than 62pg, which is particularly 
useful for trace and degraded DNA in forensics [13]. In addition 
to fully solving different STR alleles, MPS can also detect single 
nucleotide polymorphisms (SNPs), insertions, and deletions, 
greatly increasing the available genetic information on STR [17, 
18]. However, NGS-based STR typing also has some challenges in 
that its sensitivity and accuracy can be influenced by various 
factors, such as sequencing coverage, PCR stutters, flanking 
sequence homology, etc. Sequencing coverage directly influences 
STR genotyping methods based on spanning reads which 
necessitate complete coverage of the STR core region for accurate
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allele extraction and calculation [3, 19, 20]. Another critical factor 
is PCR stutter noise, which can constitute up to 20% of STR 
spanning reads (e.g. DYS481) [21], significantly impacting STR 
allele size determination. Consequently, it is a common goal to 
address among NGS-based STR genotyping methods [3, 5, 19, 
20, 22]. Flanking sequences adjacent to the STR region often 
mirror the STR allele sequences due to their inclusion of multiple 
STR repeat units, complicating accurate sequence alignment. 
Furthermore, homology between flanking sequences of different 
STR loci further complicates precise STR typing [19]. Some 
methods mitigate this issue by seeking nonrepetitive sequences 
adjacent to the STR core region as flanking sequences [5, 23], 
while others opt for globally unique sequences across all STR loci 
[1, 19]. However, these strategies can place flanking sequences 
distant from the STR core, reducing the number of spanning reads 
and compromising STR typing sensitivity. Therefore, in medical 
and forensic research, there is a growing demand for STR typing 
software capable of achieving high detection rates and accuracy, 
suitable for both low-coverage WGS data and high-coverage target 
sequencing data. 

In recent years, several tools have been developed for STR 
genotyping from NGS data, including HipSTR [5], STRait Razor 
[1, 19], STRinNGS v2.0 [20], STRling [24], and ExpansionHunter 
[25]. STRling can call alleles at both known and novel STR loci by 
counting k-mers, however, it is not feasible for genotyping known 
STR loci from single-end NGS data, and erroneously obtains only 
one allele for the loci. ExpansionHunter is a STR typing method 
based on sequence graphs, it uses pair-end reads from sequencing 
data to genotype long STR alleles, which makes it unsuitable for 
typing STR alleles from single-end sequencing data too. HipSTR 
adopts a hidden Markov model to realign reads to candidate 
alleles, facilitating the inference of STR alleles for an individual. 
However, HipSTR encounters challenges in typing certain STR loci 
(i.e. DYS19, DYS557) due to repetitive sequences in the flanking 
regions of those loci. Moreover, for some specific STR loci, such 
as D2S1338, there will be some base differences between the 
HipSTR typed allele and the true CE allele. This phenomenon is 
mainly attributed to the high sequence similarity between the 
adjacent regions of the flanking region and the STR core region, 
leading to incorrect matches during HipSTR realignment of the 
reads to the candidate alleles. STRait Razor [19] is a length-based 
tool specifically designed to type forensic STR loci. STRait Razor 
takes a FASTQ file as input, which does not contain genomic posi-
tions on the reference genome. Since some STR loci have similar 
or identical flanking sequences (such as D7S820 and D6S1043), 
STRait Razor addresses the challenge by designing a genome-
wide unique flanking sequence for each target STR locus, making 
the flanking sequence obtained farther from the STR region. As 
a result, for short-read WGS data, numerous reads are directly 
discarded as they are unable to match the relatively far flanking 
sequence, leading to typing failure. Moreover, STRait Razor solely 
outputs a set of allele sizes extracted from the read sequence, 
requiring users to determine the alleles empirically. This manual 
operation is prone to errors, particularly in low-coverage WGS 
data. STRinNGS is designed to identify STR loci of the combined 
DNA index system (CODIS) [20]. It takes the FASTQ or BAM file 
as input and uses the regular expression-based algorithm ‘agrep 
(TRE agrep) 0.8.0’ to extract the flanking sequences adjacent 
to the STR loci. However, STRinNGS imposes stringent filtering 
criteria on sequence reads, so that only a few reads can be used for 
STR typing in low-coverage WGS data, resulting in a low detection 
ratio. Furthermore, for some STR loci with repetitive sequences 
in the flanking region, such as DYS456, STRinNGS may cause 

incorrect regular expression matching, resulting in STR typing 
errors. Additionally, although STRinNGS supports multi-threaded 
mode, its global sequence matching strategy makes it rather slow 
in practice. 

Here, we developed STRsensor, a novel method for STR typing 
applicable to both low-coverage WGS data and target sequencing 
data. STRsensor is specifically designed to type both the forensic 
CODIS STR loci and user-specified STR loci. We demonstrate 
that STRsensor can achieve high detection ratio and accuracy in 
both low-coverage WGS data and high-coverage target sequencing 
data. Moreover, the C implementation of the tool significantly 
enhances its running speed, especially when analyzing a sub-
stantial number of samples. Consequently, STRsensor can be 
considered a useful tool for forensic and medical researchers. 

Methods 
STRsensor is designed to type STR loci with well-defined genomic 
positions and flanking regions, including both forensic CODIS 
STR loci and user-specified STR loci. As mentioned above, the 
influence of repetitive sequences in the flanking regions poses 
a significant challenge for existing software in STR typing. To 
address this challenge, we introduce two STR typing methods: the 
Compact Idiosyncratic Gapped Alignment Report (CIGAR-based 
method and the Kmers-based method. The CIGAR-based method 
can directly obtain the exact location of the STR region by correct-
ing the CIGAR value. Meanwhile, the Kmers-based method can 
locate the STR region using locally unique Kmer. Our results show 
that the synergistic use of CIGAR- and Kmers-based methods can 
greatly improve the detection ratio in low-coverage sequencing 
data. 

The procedures of STRsensor are summarized in the flowchart 
(Fig. 1). Briefly, the method begins by taking the k-mers of the 
flanking sequence as the key and the corresponding position of 
the k-mers in the flanking sequence as the value to construct a 
‘hash table’ (Fig. 2). Subsequently, the STR alleles are extracted 
from the read sequence through two distinct approaches: the 
CIGAR-based method and the Kmers-based method [26]. The 
CIGAR-based method uses the CIGAR value in the BAM file [27] to  
determine the STR region; the Kmers-based method determines 
the STR region by remapping the up- and downstream flanking 
sequences to the reads. After allele extraction, a maximum likeli-
hood method is applied to extracted alleles to assess the impact 
of polymerase slippage-induced PCR stutter on STR typing [28]. 
This process allows for the inference of PCR stutter parameters 
and candidate allele frequencies (Fig. 1B). Finally, the maximum 
A posteriori (MAP) estimate is used to determine the most likely 
STR allele from the pool of candidate alleles (Fig. 1B). The details 
of these steps are shown below. 

Flanking sequence indexing 
STR alleles are composed of repeating units, and their sizes 
vary among alleles, so it is not feasible to directly match repeat 
sequences at the given STR locus. To obtain accurate STR typing 
results, the algorithm must accurately match the 5’ and 3’ 
flanking sequences of the STR locus. To this end, STRsensor 
introduces a Kmers-based method to match flanking sequences 
of STR locus. The Kmers-based method is an alignment-free 
strategy [29] with a lower time complexity and faster execution 
speed compared to traditional dynamic programming algorithms. 

STRsensor retrieves the start and end positions of STR loci 
from the input configuration file and then extracts the 5’ and 
3’ flanking sequences (25 bp) adjacent to the STR region. Next,
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Figure 1. The workflow of STRsensor. (A) The Kmers algorithm is used in flanking sequence indexing for each STR locus. The locally unique k-mers 
indicate the k-mers sequence that occurred only once on up- and downstream of STR region. (B) The core algorithm of STRsensor, which includes 
extracting alleles from spanning reads, estimating model parameters with filtered high-quality samples, and obtaining the most likely alleles for each 
sample with the estimated parameters. 

Figure 2. STR flanking sequence indexing based on Kmers method. Each k-mer subsequence differs by one base, and red indicates non-locally unique k-
mers, which need to be removed from the subsequent analysis. The locally unique k-mers and theirs corresponding position on the flanking sequences 
will be recorded into a ‘hash-table’. 

the algorithm dynamically adjusts the k-mer length (starting 
with k=8) to determine the minimum k that ensures obtaining 
locally unique k-mers for STR loci. Then, STRsensor generates all 
potential 1-base shift k-mers sequences for the extracted flanking 
sequences ( Fig. 2). Since most flanking sequences exhibit repeti-
tive structures, using original k-mers with multiple positions on 
the flanks may lead to incorrect allele types due to misalignment. 
To improve the precision of flanking sequence matching, origi-
nal k-mers with multiple matches within 200 bp upstream and 
downstream of the STR region are directly discarded (red k-mers 
in Fig. 2). The K-mers that are retained, termed locally unique k-
mers, along with their corresponding index, are then recorded in 
a ‘hash table’ to efficiently match their flanking sequences in 
subsequent processing. 

Extracting alleles from STR region 
STRsensor takes the BAM file rather than the FASTQ file as 
input, because the BAM file stores the aligned position and the 
CIGAR value of each sequencing read, enabling more efficient 
and accurate allele typing. STRsensor employs two approaches, 
namely the CIGAR- and Kmers-based algorithms, to extract alleles 
from sequences between the 5’ and 3’ flanking regions. STRsensor 
prefers to extract alleles from read sequences using the CIGAR-
based algorithm. However, if the CIGAR-based method fails to 
successfully extract alleles, the sequence will be processed again 
using the Kmer-based method for allele extraction. The CIGAR-
based algorithm utilizes the CIGAR value of the alignments to 
determine the location of the STR allele, while the Kmers-based 
algorithm, also known as k-mer mapping and extension [26], is



4 | Zhang et al.

Figure 3. Wrong CIGAR value induced by insertion and deletion. The gray and green rectangles represent STR flanking sequence and allele sequence, 
respectively. (A) and (B) show the wrong CIGAR value induced by insertion and deletion. The red indicates the wrong insertion or deletion position, while 
blue indicates the corrected insertion or deletion position. 

performed to realign the flanking sequence to the sequencing 
read to obtain the STR allele. 

The CIGAR-based method commences by fetching the reads 
covering the given STR region. For each read, the CIGAR value 
and genomic position of the alignment are extracted to calculate 
the position of the STR region in the read sequence. The 5’ and 3’ 
flanks of the read adjacent to the STR region are then compared to 
the flanking sequences of STR locus defined in the configuration 
file to obtain the STR allele. Differences in allele size between the 
individual and reference genomes represent insertions and dele-
tions introduced by alignment tools. Since the STR alleles consist 
of repeat sequences, an erroneous CIGAR value for insertions and 
deletions may be introduced when part of the flanking sequence 
is similar to the repeat unit sequence (Fig. 3). Therefore, prior to 
allele extraction, the CIGAR value needs to be corrected through 
the CIGAR-based method to ensure accurate allele-typing. 

However, when the size of the allele is much larger than the 
corresponding size of the allele in the reference genome, the 
alignment tool will mark part of the allele sequence as a Softclip 
to attain a higher alignment score, leading to a entirely incorrect 
CIGAR value (Fig. 4). This phenomenon becomes more severe 
in STR loci with higher allelic polymorphisms, such as PentaE, 
D6S1043, DYS385ab, etc. To increase the detection ratio, the 
Kmers-based algorithm is adopted as a complementary method 
to CIGAR-based approach. Initially, the entire read sequence is 
sliced to acquire all 1-base shift k-mers, which are subsequently 
assigned to a ‘hash table’ for matching their flanks. Then, the 
Hamming distance is calculated to ensure an exact match 
between the read sequence and the flanking sequence. Ultimately, 
the STR allele is determined by dividing the STR sequence length 
by the repeat unit length of the STR locus. 

Constructing PCR stutter model 
PCR stutter artifacts arise from polymerase slippage during DNA 
replication [28], introducing a discrepancy between the observed 
and underlying alleles. PCR stutter has a significant impact on 
low-coverage sequencing data, as only a few available reads 
span the entire STR locus, making it difficult to distinguish the 
real allele from PCR stutter. To address this issue, STRsensor 

introduces a PCR stutter model for each STR locus to mitigate 
the effects of PCR stutter on STR typing. Since the vast majority 
of PCR stutters differ from the real allele by a single repeat unit, 
the STRsensor adopts a simplified PCR stutter model [5]. The 
PCR stutter model of STRsensor includes two parameters u and d, 
corresponding to the probability of stutter of adding and removing 
one repeat unit, respectively. Therefore, for a given STR locus l, x 
represents the number of repeat units that differ between the 
observed allele and the real allele, which can be divided into 
three cases, namely, the same as the real allele (x = 0), one more 
repeat unit than the real allele (x = 1) and one less repeat unit 
than the real allele (x = −1). 

P(x|u, d) = 

⎧⎪⎨ 

⎪⎩ 

1 − u − d, x = 0, 
u, x = 1, 
d, x = −1. 

(1) 

For a given individual i that has ni reads spanning the STR locus 
l, we denote the state of the set of alleles as Xi = {xi 

1, xi 
2, · · ·  , xi 

ni }. 
Then the likelihood function for the N individuals is 

L(X1 , X2 , ..., XN|u, d) = 
N∏

i=1 

ni∏
j=1 

P(xi 
j|u, d). (2)  

Based on equation (1), the maximum likelihood function is 

L(X1 , X2 , ..., XN|u, d) = um1 dm2 (1 − u − d )T−m1−m2 , (3)  

where 

T = 
N∑

i=1 

ni , (4)  

with m1 being the number of alleles that have one more repeat 
unit than the real allele, and m2 being the number of alleles that 
have one less repeat unit than the real allele. The estimates of u 
and d are simple: 

⎧⎨ 

⎩ 
û = m1 

T 

d̂ = m2 
T 

(5) 
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Figure 4. Wrong CIGAR value induced by error alignment. Part of the allele sequence is marked as softclip by the alignment tool, resulting in an incorrect 
CIGAR value. The green and gray rectangles represent STR repeat units and flanking sequences, respectively. 

STRsensor sets many stringent criteria to accurately estimate 
model parameters for user-specified STR loci. These parameters 
include rate of stutter being added ( u), stutter being removed (d) 
and the distribution of STR allele frequency (f ) in the population. 
The estimate of parameters u and d must follow the following 
rules: (1) The number of reads that fully span the STR locus must 
exceed the given minimum threshold (default: 10). (2) The allele 
with the highest number of spanning reads must exceed 70% of all 
spanning reads at the STR locus. To estimate the allele frequency 
of the user-specified STR locus, STRsensor obtains an initial set 
of candidate alleles from the input data. The criteria to obtain 
candidate alleles for the user-specific STR locus are as follows: 
(1) at least 20 samples are available. (2) Alleles should appear in 
two or more samples. 

Infer the most likely allele 
Determining alleles for a given STR locus by simply counting 
the number of supporting reads for each observed allele can be 
prone to errors, especially in low-coverage sequencing data. To 
address this, STRsensor takes into account all potential allele 
combinations to obtain the most likely allele. With the stutter 
parameters and candidate allele frequency estimated from the 
samples, STRsensor generates all possible combinations of alleles 
from the candidate alleles. Then, for each individual, the method 
calculates the posterior probability of each allele combination 
by MAP. The allele with the highest posterior probability will be 
considered the final typing result. Users also have the option to 
set a minimum posterior probability threshold, such as 0.99, to 
improve the accuracy of STR typing. The posterior probability is 
estimated as follows: 

For an individual with n reads spanning the locus l, the  cor-
responding observed allele set is A = {a1, a2, . . .  , an}, then the 
posterior probability of each possible allele a(a ∈ Al, the STR allele 
candidates on locus l) can be calculated by MAP: 

P(allelel = a|A, u, d) ∝ 

f l 
a 

n∏
i=1 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

1 − u − d, ai = a, 
u, ai = a + 1, 
d, ai = a − 1, 
0, ai = others. 

(6) 

Here, the variable f l 
a represents the frequency of allele a at locus 

l. ai denotes the ith observed allele, while a + 1 and a − 1 denote 

addition and deletion of one repeat unit for the given allele a, 
respectively. And ′others′ denotes addition and deletion of two or 
more repeat units for the given allele a. There are two alleles for 
autosomal STR loci, therefore, we assume that the two alleles are 
j(j ∈ Al) and k(k ∈ Al). Then the joint probability of two alleles can 
also be calculated using MAP as follows: 

P(allelel = (j, k)|A, u, d) ∝ 

f l 
j f

l 
k 

n∏
i=1

∑
a∈{j,k} 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

1 − u − d, ai = a, 
u, ai = a + 1, 
d, ai = a − 1, 
0, ai = others. 

(7) 

Results 
To evaluate the performance of STRsensor, we compare it with 
three commonly used tools, namely HipSTR, STRaitRazor and 
STRinNGS. The datasets used in the benchmarks include simu-
lated WGS data generated by in-house Python script STRSimula-
torV4.1.py (details in Supplementary File) and target sequencing 
data from Fudan University. The performance is measured based 
on two key criteria: detection ratio (DR) and accuracy (AC) of STR 
allele typing. For a given STR locus, DR is defined as the ratio 
of successfully typed samples to the total number of samples, 
while AC is the ratio of the number of samples with consistent 
typing alleles with CE to the total number of successfully typed 
samples. Further details regarding the datasets, benchmarks, and 
a comprehensive breakdown of detection ratio and accuracy for 
each STR locus are available in the Supplementary File. 

Performance on simulated datasets 
We simulated a total of 3000 WGS samples, 10× (1000) and 30× 
(1000) and 50× (1000), with single-end 150 bp. The simulated 
data sets consist of 43 STR loci, including 17 autosomal STR loci 
and 26 Y-STR loci. Then we conducted a benchmark analysis, 
evaluating the detection ratio and accuracy of the four tools using 
the simulated WGS datasets. The results (Table 1) demonstrate 
that STRsensor consistently achieves the highest detection ratio 
and accuracy across all the simulated datasets. Even in the 30× 
WGS dataset, STRsensor still able to achieve 100% detection ratio 
and 99.37% accuracy. In contrast, the accuracy of other three 
tools such as HipSTR, STRaitRazor and STRinNGS reaches 94.85%,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae637#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae637#supplementary-data


6 | Zhang et al.

Table 1. Comparison of average detection ratio (DR) and accuracy (AC) of STRsensor, HipSTR, STRaitRazor, and STRinNGS in three 
simulated WGS datasets with varying coverage (10 ×, 30× and 50×). 

SimWGS (10×) SimWGS (30×) SimWGS (50×) 

DR (%) AC (%) DR (%) AC (%) DR (%) AC (%) 

STRsensor 99.55 93.71 100.00 99.37 100.00 99.85 
HipSTR 95.17 90.60 95.34 94.85 95.35 95.16 
STRaitRazor 85.99 75.55 93.40 86.90 94.69 89.50 
STRinNGS 91.01 69.11 92.80 77.28 92.65 80.81 

Table 2. Comparison of average detection ratio (DR) and accuracy (AC) of STRsensor, HipSTR, STRaitRazor, and STRinNGS in four 
different proportions of reads, 1 % (16.27×), 5% (78.73×), 10% (157.02×), and 100% (1,570×), randomly extracted from Fudan687 dataset. 

Fudan687 (1%) Fudan687 (5%) Fudan687 (10%) Fudan687 (100%) 

DR (%) AC (%) DR (%) AC (%) DR (%) AC (%) DR (%) AC (%) 

STRsensor 72.89 97.87 97.59 99.46 99.24 99.65 99.64 99.90 
HipSTR 73.66 72.96 73.33 73.29 75.92 78.87 80.26 85.31 
STRaitRazor 62.85 95.57 94.28 99.38 96.67 99.63 98.51 99.65 
STRinNGS 60.47 83.44 81.34 86.57 88.45 93.44 97.32 96.98 

86.90 %, and 77.28%, respectively. Compared with STRsensor, Hip-
STR achieves performance in terms of detection ratio and accu-
racy, however, some of the STR Loci (i.e. DYS19 and DYS557) cannot 
be typed due to the repetitive sequence in the flanking region. 
Furthermore, the output of HipSTR requires additional parsing 
to obtain the final allele size, making it less user-friendly for 
researchers without bioinformatics experience. Since STRaitRazor 
and STRinNGS are specially designed for target sequencing data, 
their detection ratio is poor in simulated low-coverage WGS data. 
The main reason is that, unlike target sequencing data, the reads 
in WGS data are organized in a ‘ladder’ pattern on the reference 
genome, leading to a sharp reduction in the number of reads fully 
span the STR region. This phenomenon is more severe in STR loci 
with longer allelic repeats, such as DYS390, DYS627, DYS557, etc. 

Performance in 687 target sequencing datasets 
In recent years, target sequencing technology has been widely 
used in the field of forensics owing to its ultra-high sensitivity [13, 
14]. To further evaluate the performance of the four software in 
the target sequencing data, we obtained 687 samples (Fudan687) 
from Fudan University. The sequencing type of Fudan687 is single-
end 400 bp, with an average depth of at least 1570×. The  53  STR  
loci used in the benchmark include both NGS data and capillary 
electrophoresis typing results, of which 19 are autosomal STR loci 
and the rest are Y-STR loci. 

The same benchmarking framework is performed here to com-
pare the detection ratio and accuracy of the four software. The 
results (Table 2) show that the detection ratio and accuracy of 
STRsensor reaches 99.64% and 99.9%, respectively. Compared 
with STRsensor, STRaitRazor obtains a very close detection ratio 
of 98.51%, which is attributed to the fact that all the reads from 
target sequencing can fully span the target STR locus. Further-
more, owing to the high sequencing depth and low proportion 
of PCR stutter (approximately 8%), it is generally accurate to 
rely on the allele with the highest reads count. Among the four 
tools, HipSTR has the worst performance in accuracy (85.31%), 
as up to eight Y-STR loci failed to type, while the detection 
ratio of other three Y-STR loci are less than 50% (details in 
Supplementary File). 

In real-case applications, there are many factors that con-
tribute to low sequencing depth, such as highly degraded 
DNA, traced DNA, and low efficiency of STR amplification. To 
explore the performance of the four software under extreme 
conditions, we randomly extracted 1% (16.27×), 5% (78.73×), and 
10% (157.02×) reads from each sample in Fudan687 dataset. 
Considering the low coverage, the minimum number of reads 
for the four software is set to 10, and the locus of DYS447 
is set to 0 due to its ultra-low coverage. The performance of 
the four tools on these three datasets is evaluated using the 
same benchmarking method described above. When using only 
1% (16.27×) reads from the dataset, STRsensor can achieve 
an accuracy of 97.87% (Table 2). In comparison, the accuracy 
of HipSTR, STRaitRazor and STRinNGS is 72.96%, 95.57%, and  
83.44%, respectively. Compared to the other three software, 
HipSTR exhibits the poorest performance in both detection ratio 
and accuracy. Although the accuracy (95.57%) of STRaitRazor is 
comparable to that of STRsensor (97.87%) within a coverage of 
16.27×, its detection ratio is only 62.85%, which is 10.04% lower 
than that of STRsensor. With the sequencing depth increases 
to 157.02×, STRsensor still able to outperform the other three 
software, achieving a detection ratio of 97.59% and an accuracy 
of 99.46%. STRinNGS demonstrates a significant improvement 
in both detection ratio (88.45%) and accuracy (93.44%). This 
improvement can be attributed to the fact that, even with its 
strict filtering rules, a sufficient number of reads can still be 
obtained for STR allele-typing. 

Effectiveness of STRsensor core algorithms 
To assess the effectiveness of the STRsensor core algorithms, 
specifically Kmer, CIGAR, CIGAR correction, and MAP, on the 
sensitivity and precision of STR typing, we conducted a system-
atic evaluation using the Fudan687 dataset and simulated low-
coverage WGS data (10×). This study aims to elucidate the impact 
of these algorithmic components on STR typing performance. The 
testing was divided into five groups: complete (including all algo-
rithm components), without MAP, without CIGAR, without Kmer, 
and without CIGAR correction (using the CIGAR algorithm with-
out correction). The findings indicate that the CIGAR correction

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae637#supplementary-data
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Table 3. The average detection ratio (DR) and accuracy (AC) of 
STRsensor core algorithms when applied to the Fudan687 
(1570 ×) and simulated low-coverage WGS (10×) datasets. 

Fudan687 (1,570×) SimWGS (10×) 

DR (%) AC (%) DR (%) AC (%) 

Complete 99.64 99.90 99.55 93.71 
Without MAP 95.45 99.70 99.37 86.42 
Without CIGAR 97.61 96.00 99.25 92.85 
Without Kmer 98.64 97.74 99.05 91.23 
Without CIGAR 
Correction 

87.21 76.45 74.33 71.64 

has the most significant impact on the sensitivity and accuracy 
of STRsensor ( Table 3). In the Fudan687 dataset, compared to the 
original CIGAR method (without Kmer), the mean sensitivity and 
accuracy decreased by 11.43% and 21.29%, respectively (Table 3). 
Converesely, the removal of other algorithms has minimal impact 
on STR typing due to sufficient spanning reads in the high-
coverage Fudan687 dataset, mitigating allele typing challenges 
(details in Supplementary File). 

Evaluation of short-read (150 bp), low-coverage WGS (10×) data  
revealed a substantial impact of the CIGAR correction compo-
nent on STRsensor performance, resulting in a total reduction 
in STR typing sensitivity and accuracy by 25.22% and 22.07%, 
respectively (Table 3). Furthermore, removing the MAP algorithm 
decreased STR typing accuracy from 93.71% to 86.42% (Table 3). 
This decline is primarily due to the reduced number of spanning 
reads, making it challenging to reliably determine the STR allele 
with the highest supporting reads. In contrast, the MAP algorithm 
utilizes the Stutter model to infer the most likely STR allele, 
thereby enhancing the accuracy of STR typing. 

Time efficiency of the methods 
Time efficiency is a crucial performance metric, especially in 
multi-sample scenarios and ultra-high coverage sequencing data. 
Given that STRaitRazor operates on FASTQ files rather than BAM 
files, it was excluded from the time consumption assessments. To 
evauate the efficiency of the remaining three software, we con-
ducted tests using 10 samples from the high-coverage Fudan687 
dataset, with an average depth of 3216.02×. Due to the slow 
running speed of STRinNGS, it was allocated 20 threads, while 
the other two software operated with a single thread. The results 
reveal that STRsensor completes typing for all 10 high-coverage 
samples in just 136 seconds, which is 79 times faster than HipSTR 
(179 minutes). Moreover, STRsensor outpaces STRinNGS by over 
10 000 times, as the latter took 1145 minutes with 20 threads. 
Memory consumption is not a significant concern in this bench-
mark since STRsensor only stores the typed alleles in memory, 
resulting in a minimal memory footprint that ensures its com-
patibility with most computing devices. 

Discussion 
We present STRsensor, a computationally efficient software for 
STR typing from next-generation sequencing data. STRsensor 
exhibits higher detection ratio and accuracy for NGS data from 
different sequencing strategies (WGS and target sequencing) 
as well as different sequencing depths (low-coverage and high-
coverage). 

STRsensor is a user-friendly software capable of analyzing both 
commonly-used STR loci and user-specified STR loci. With the 
BAM file of samples as input, STRsensor directly provides alleles 
and their associated probabilities at each STR locus, eliminating 
the need for additional user-driven extraction and analysis. In 
contrast, STRaitRazor outputs a series of allele sizes derived from 
spanning reads, without final allele determination. STRling and 
ExpansionHunter are specifically designed for typing disease-
related STR loci. However, they have poor support for single-end 
sequencing data. Although HipSTR offers precise STR positons, 
may yield inconsistent typing results for certain STR loci com-
pared to CE results, requiring manual correction to improve the 
accuracy. For example, to obtain an allele consistent with CE, 
HipSTR requires a reduction of three bases when determining 
the allele size of D2S1338. A major limitation of STRinNGS is its 
poor accuracy in allele-typing for WGS data. Additionally, it runs 
much slower than other software, significantly constraining its 
application to large sample datasets. 

The accuracy of STRsensor typing is influenced by several 
factors, including the repeatability of STR flanking sequences, 
allele length, sequencing read length, PCR stutter distribution, 
and allele frequency distribution in the population. STRsensor 
relies on spanning reads for allele typing, limiting its capability 
with STR loci whose allele length exceeds the sequencing read 
length. While STRsensor enhances matching accuracy of STR 
flanking sequences by leveraging locally unique Kmers in flank-
ing sequences, higher sequence repeatability reduces the num-
ber of such Kmers, thereby lowering STR typing sensitivity. This 
challenge can usually be addressed through targeted sequencing 
designs or increased read length. 

Although allele frequency and PCR stutter distribution can 
affect the MAP algorithm of STRsensor, STRsensor can gradually 
correct these distributions during the processing of input samples, 
minimizing the impact of the initial distribution on STR typing 
accuracy. We used a uniform distribution instead of the original 
STR allele frequency and tested it in Fudan687 and low-coverage 
WGS (10×) datasets. The results showed that STR typing accuracy 
only dropped by about 1%. For STR loci with unknown allele 
frequencies, we recommend training the STRsensor stutter model 
on a batch of samples (e.g. 100) to refine model parameters and 
enhance typing accuracy tailored to the population. 

The typing accuracy of STRsensor can be further improved by 
modeling the heterozygote balance of STR allele. This adjustment 
is particularly important in WGS data, where the number of span-
ning reads for an allele is dramatically influenced by its length. 
The longer the allele length, the fewer corresponding spanning 
reads will be obtained, in which case the heterozygous allele may 
be determined as a homozygous allele. However, this scenario 
is infrequent in practical use and typically occurs at locus with 
large variation in allele length, such as PentaE, where allele size 
range from 5 to 28. Implementing a model for heterozygote bal-
ance represents a promising avenue for future enhancements to 
STRsensor. 

Conclusion 
In this study, we developed STRsensor, a method that could 
achieve high detection ratio and accuracy for both low-coverage 
WGS data and target sequencing data. Through the integration 
of Kmers- and CIGAR-based methods, STRsensor surpasses the 
existing tools, including STRait Razor, HipSTR and STRinNGS, 
demonstrating a higher detection ratio. Furthermore, STRsensor 
models the PCR stutter to infer the most likely alleles, greatly

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae637#supplementary-data
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improving the accuracy of allele typing, particularly in the context 
of low-coverage WGS data. Notably, STRsensor is easy to use 
and computationally efficient, making it a valuable tool for the 
application of NGS-based STR analyses across various domains, 
including medical genetics, population genetics and forensics. 

Key Points 
• We have developed a new method called STRsensor for 

inferring genotypes of STR loci from NGS sequencing 
data. STRsensor utilizes two methods for genotyping 
STR loci, namely Kmers-based method and CIGAR-based 
method, and achieve base-pair level accuracy in geno-
typing. 

• STRsensor constructs a PCR stutter model, which can 
estimate the model parameters using user-provided 
datasets, and provide the maximum A posteriori (MAP) 
estimate of the genotypes of target STR loci. 

• Through benchmarks on simulated and real datasets, 
STRsensor demonstrates high performance in terms 
of detection ratio and accuracy. STRsensor achieves a 
detection ratio of 100% and an accuracy of 99.37% for 
a 30× WGS simulated data, outperforming the existing 
methods, such as STRait Razor, STRinNGS, and Hip-
STR. When applied to real target sequencing data from 
687 individuals, STRsensor achieves a detection ratio 
of 99.64% and an accuracy of 99.99%. Moreover, it is 
computationally efficient, surpassing existing software 
by orders of magnitude. 
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Supplementary data 
Supplementary data is available at Briefings in Bioinformatics 
online. 

Data availability 
The script ‘STRsimulator.py’ that used to generate the simu-
lated WGS data is available at GitHub. The 687 raw sequencing 
data (Fudan687) generated during the current study are avail-
able from the corresponding author upon requests. Addition-
ally, The source code of STRsensor is also available at GitHub 
(https://github.com/ChenHuaLab/STRsensor). 
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