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Abstract 
Few-shot learning is a crucial approach for macromolecule classification of the cryo-electron tomography (Cryo-ET) subvolumes, 
enabling rapid adaptation to novel tasks with a small support set of labeled data. However, existing few-shot classification methods 
for macromolecules in Cryo-ET consider only marginal distributions and overlook joint distributions, failing to capture feature 
dependencies fully. To address this issue, we propose a method for macromolecular few-shot classification using deep Brownian 
Distance Covariance (BDC). Our method models the joint distribution within a transfer learning framework, enhancing the modeling 
capabilities. We insert the BDC module after the feature extractor and only train the feature extractor during the training phase. Then, we 
enhance the model’s generalization capability with self-distillation techniques. In the adaptation phase, we fine-tune the classifier with 
minimal labeled data. We conduct experiments on publicly available SHREC datasets and a small-scale synthetic dataset to evaluate 
our method. Results show that our method improves the classification capabilities by introducing the joint distribution. 
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Introduction 
Cryo-electron tomography (Cryo-ET is an important visualization 
technique that can observe macromolecules in a native cellular 
environment [1, 2]. Through subsequent analysis of tomograms 
using subtomogram averaging (STA) technology, the structures of 
in situ macromolecules can be accurately determined, enabling 
the prediction of the 3D structure and function of cells [3]. Among 
the STA processing steps (detection, classification, alignment, 
and averaging), macromolecule classification is particularly 
important as it directly affects the performance of downstream 
tasks. Current macromolecule classification methods can be 
broadly categorized into two types: template matching methods 
[4, 5] and deep learning-based methods. Specifically, template-
matching methods classify macromolecules by computing a 
constrained cross-correlation between the data and known 
structures. However, template-matching methods suffer from 
reference-based biases and are sensitive to noise due to the 
dependency on templates. Deep learning-based methods [6, 7] 
improve classification accuracy by utilizing annotated data dur-
ing the training process of deep neural networks. However, when 
encountering unseen macromolecule categories, deep learning-
based methods need data re-annotation and model retraining, 
resulting in a time-consuming issue. In order to address this issue, 
few-shot learning recognizes new macromolecule categories by 
pre-training on a large dataset and quickly adapting to new tasks 
using a small support set of labeled examples. 

Most macromolecule few-shot classification methods are 
based on metric learning, which learns image representations 
via similarity measures. These methods struggle to model high-
dimensional feature distributions, as they rely on statistical 
moments. To address this, ProtoNet-CE [8] represents class 
prototypes in embedding space by mean vectors and predicts 
classes by calculating the Euclidean distance between query 
samples and prototypes. Few-Shot domain adaptation [9] focuses 
on reducing distribution differences by comparing covariance 
matrices of source and target domains. The few-shot learning 
method for the classification of novel macromolecules (named 
STA) [10] uses mean vectors for feature distribution representa-
tion during pre-training and approximate Gaussian distributions 
for distribution calibration during adaptation. However, these 
macromolecule few-shot classification methods only exploit 
marginal distributions while neglecting joint distributions, 
thereby limiting the performance of learned models. 

To address the above issue, we propose a macromolecular 
few-shot classification method with deep Brownian distance 
covariance. This method utilizes Brownian distance covariance 
for joint distribution modeling at a lower cost and performs 
classification within a transfer learning framework. First, we 
pre-train the model using abundant macromolecular structures, 
leveraging the Brownian distance covariance matrix to model 
the joint distribution of the embedding space. Self-distillation 
techniques enhance the model’s generalization capability. Finally,
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we fine-tune the classifier with one or a few labeled data. 
Experiments on SHREC19, SHREC21, and a small-scale synthetic 
dataset demonstrate our method’s superior modeling and gener-
alization capabilities for macromolecular subvolumes and novel 
macromolecules. Our contributions are summarized as follows: 

• We propose a macromolecule few-shot classification method 
based on deep Brownian distance covariance, incorporating 
joint distribution to address incomplete modeling of macro-
molecular structure embedding using only marginal distribu-
tions. 

• Experiments on SHREC datasets and small-scale synthetic 
datasets show improved classification accuracy, with embed-
ding space visualizations indicating better distinction of 
macromolecule data. 

Related works 
Macromolecule classification 
Deep learning has achieved great success in macromolecule clas-
sification in recent years [11], which benefits from the powerful 
representational capabilities of deep neural networks. Current 
deep learning-based macromolecule classification methods can 
be categorized into two types: supervised learning-based meth-
ods and unsupervised learning-based methods. In the supervised 
learning-based category, macromolecule classification methods 
make use of supervised learning to achieve the classification task. 
Specifically, Chen et al. [12] simplify the complexity of neural 
networks by operating on tomograms slice by slice. Li et al. [13] 
further reduce the computational cost by utilizing Faster R-CNN. 
Subsequent supervised learning-based methods [6, 7] change the 
input to 3D subtomograms to allow for efficient processing with-
out losing information. In the unsupervised learning-based cate-
gory, macromolecule classification methods adopt unsupervised 
learning in the classification task. Several works [14, 15] are based 
on either clustering or geometric matching. Another unsupervised 
learning-based work [16] uses an orthogonal kernel initializer 
and zero bias initializer to improve training stability and greatly 
enhance processing in the macromolecule classification task. 
Different from these methods, this paper focuses on few-shot 
macromolecule classification, which utilizes few-shot learning to 
achieve rapid adaptation in macromolecule classification. 

Few-shot classification 
The emergence of few-shot classification is inspired by the 
rapid learning ability of humans. After learning from a large 
amount of data in certain categories, models require only a few 
samples to quickly learn new categories. In the field of computer 
vision, few-shot learning has flourished and can be roughly 
categorized into three classes. In the first class, model-based 
methods aim to directly establish a mapping function between 
input and prediction values through the design of model structure 
[17, 18]. In the second class, optimization-based methods [19] 
adjust the methods of optimization to accomplish the task of 
few-shot classification instead of the ordinary gradient descent 
methods, such as the Model-Agnostic-Meta-Learning(MAML) [20, 
21] and the multidomain few-shot network [22]. In the third class, 
metric-based methods [23, 24] classify by measuring the distance 
between samples in the batch and samples in the support set 
with the nearest neighbor idea such as Siamese Netowrk [25], 
Bai et al.[26], and Liu et al. [27]. Our method follows the third 
class of few-shot learning but focuses on the macromolecule 
classification task instead of the traditional computer vision 
task. 

Macromolecule few-shot classification 
Macromolecule few-shot classification methods require only one 
or a few labeled large-molecule data to achieve rapid and accurate 
classification for new categories, making it highly suitable for the 
needs of large-molecule classification. Specifically, Li et al. [8] first  
apply few-shot learning to subtomogram classification, proposing 
a novel ProtoNet-CE model that integrates task-agnostic and task-
specific embedding spaces to achieve more accurate classifica-
tion. Then, Yu et al. [9] adopt a few-shot domain adaptation 
method, fully utilizing the distribution of abundant unlabeled 
target domain data and the correlation between the entire source 
domain dataset and a small number of labeled target domain 
data, enabling the model to adapt to the feature distribution 
of target domain. Recently, Gao et al. [10] proposed FSCC, which 
was based on the transfer learning method and utilizes distri-
bution calibration in the macromolecule few-shot classification 
task. Different from the above methods, our approach introduces 
joint distribution for the first time, fundamentally improving the 
construction of the embedding space. 

Distillation techniques 
Knowledge distillation is a popular technique for model com-
pression and knowledge transfer in deep learning, which has 
been widely applied in various fields, e.g. multi-task learning 
[28], generative adversarial problems [29], and medical image 
segmentation [30]. Current knowledge distillation methods can be 
divided into traditional distillation and self-distillation according 
to whether their student model and teacher model share the same 
network architecture. Traditional distillation methods transfer 
knowledge of the teacher model into a different student model to 
distill knowledge [31–35]. Self-distillation methods use the same 
network architecture for both the teacher model and student 
model and distill knowledge between them [36–38]. Different from 
existing distillation methods, we introduced self-distillation into 
the macromolecule few-shot classification tasks for the first time. 

Preliminaries and notations 
In this section, we introduce the joint distribution function, 
marginal distribution function, and the joint distribution based 
on the Brownian Distance Covariance (BDC) metric. To ensure 
clarity of notation, we provide a correspondence of notations in 
Appendix Table A.1. 

Let X ∈ Rp and Y ∈ R
q be random vectors of dimensions p and q, 

respectively, with joint probability density function (fXY(x, y)). The 
joint characteristic function [39] of  X and Y is defined as 

φXY(t, s) =
∫
Rp

∫
Rq 

exp
(
i(tT x + sT y)

)
fXY(x, y) dx dy, (1)  

where i is the imaginary unit, t ∈ Rp and s ∈ Rq are variables of 
the Fourier transform, the marginal distributions of X and Y are 
φX(t) = φXY(t, 0) and φY(s) = φXY(0, s), where  0 is a vector whose 
elements are all zero. According to probability theory, X and Y are 
independent if and only if φXY(t, s) = φX(t)φY(s). 

The BDC metric [40] can represent the Euclidean distance 
between joint characteristic functions of random variables and 
the product of their marginal distributions. Provided X and Y have 
finite first moments, the joint characteristic function in Equation 
(1) can be defined as BDC metric: 

ρ(X, Y) =
∫
Rp

∫
Rq 

|φXY(t, s) − φX(t)φY(s)|2 

cpcq‖t‖1+p 
2 ‖s‖1+q 

2 

dtds, (2)
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Figure 1. Flowchart of the macromolecular few-shot classification test: multiple N-way-K-shot tasks are randomly sampled from dataset D. Each task 
includes a labeled support set (Support) and an unlabeled query set (Query). The pre-trained classification model is adapted for predicting the query data 
using few support data. Both support data and query data belong to the novel class. 

where ‖·‖2 denotes the Euclidean norm, cp = π(1+p)/2

�((1+p)/2)
, and � is the 

complete gamma function. For discrete observed values, the joint 
distribution between X and Y in Equation (2) can be expressed as 
a closed-form: 

ρ(X, Y) = tr(ATB), (3)  

where tr(·) denotes the matrix trace, A and B are the BDC matrices 
[39] of  X and Y, respectively. The joint distribution function in 
Equation (3) can be reformulated by vectorizing the BDC matrices 
(A and B) into vectors (a and b): 

ρ(X, Y) = 〈a, b〉 =  aTb. (4)  

The joint distribution function ρ(X, Y) is invariant to translation 
and orthogonal transformations of inputs X and Y, and equivari-
ant to scaling operations. 

Proposed method 
Problem formulation of macromolecule few-shot 
classification 
The macromolecule few-shot classification aims to accurately 
classify new categories with minimal new macromolecule obser-
vations after learning from a certain number of annotated sam-
ples. The problem of macromolecule few-shot classification can 
be formulated as two stages: a pre-training stage and an adapta-
tion stage. 

In the pre-training stage, the macromolecule classification 
model is pre-trained according to the tomographic images in the 
training set, which contains base class macromolecules (Cbase). In 
the adaptation stage, as shown in Fig. 1, the classification model 
is adjusted according to the annotated macromolecules from a 
support set Support. The macromolecule few-shot classification 
task is called ’N-way K-shot task’ when Support contains N classes, 
each with K macromolecule samples. In the macromolecule few-
shot classification task, the query set Query consists of a certain 
number (usually set to 15) of unlabeled large molecules. Both 
Query and Support share the same label space of novel classes 

(Cnovel), which satisfies 

Cbase ∩ Cnovel = ∅. (5)  

Equation (5) means that the categories of macromolecules in the 
test set have never appeared in the training set. 

Current macromolecule few-shot classification methods only 
focus on utilizing the marginal distributions to represent features 
in embedding spaces without considering joint distributions. In 
the macromolecule few-shot classification methods, establishing 
a well-defined embedding space is crucial. The input features X 
are the original data mapped into this space, where the prototype1 

Y represents the mean of all features within a class, thus relating 
to class information. Modeling the joint distribution between X 
and Y is appealing, as it helps create an embedding space to 
better distinguish data with different classes, thereby improving 
classification accuracy. 

Our framework 
In order to introduce such joint distribution into the macro-
molecule few-shot classification, we propose a few-shot classifi-
cation method of Cryo-ET subvolumes with deep Brownian dis-
tance covariance. In the following, we first introduce the network 
architecture of our method in detail (see Fig. 2). We then introduce 
three critical stages of our method: the pre-training stage, the 
self-distillation stage, and the adapting and evaluation stage (see 
Fig. 3). 

Network architecture 
The network architecture (shown in Fig. 2) in our method consists 
of the feature extractor fξ , the BDC module (BDCϕ ), similarity 
calculation, and the classifier. In the following, we separately 
detail these components. 

Feature Extractor. Given the dataset D = {(zi, yi)}ND 
i=1 , where  

zi ∈ RH×W×L is the input with height H, width W and length L, 

1 The prototype in one class is obtained by mapping samples in this class 
into a nonlinear embedding feature space and then calculating their mean 
value. 
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Figure 2. The network architecture of our method, which consists of feature extractor and BDC module, similarity calculating process, and classifier. 

Figure 3. Our method’s framework has three stages: pre-training, distillation, and adaptation. In pre-training, the model learns from labeled Base class 
data. The distillation stage uses self-distillation to enhance generalization, where the teacher model (earlier epochs) and student model share the same  
architecture. In the adaptation stage, a meta-learning algorithm is used. The model distilled for G generations computes BDC vectors of support and 
query data. An LR classifier is trained using support data and their labels, then used to classify the query data. 

and yi ∈ R is the class label, we adopt 3D-ResNet12 as the feature 
extractor (see Fig. 2). This model consists of four residual blocks, 
each containing three convolutional layers. The convolutional 
layers use 3×3×3 kernels, followed by LeakyReLU activation and 
Batch Normalization. The number of channels in each block is 

64, 128, 256, and 640, respectively, and the number of channels 
for the convolutional kernels matches that of their corresponding 
blocks. Our model employs skip connections to capture residual 
information, where the input of a layer is directly added to the 
output of a later layer, bypassing a convolutional layer with a
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1×1×1 kernel. The feature extractor fξ takes z ∈ D as input and 
outputs the feature X ∈ RH×W×L×d: 

X = fξ (z), (6)  

where H, W, L, and  d represent the height, width, length, and 
number of channels, respectively. 

BDC module. The BDC  module (see  Fig. 2) consists of three 
layers: a 3D convolutional layer with a 1×1×1 kernel, a flattened 
layer, and a computation layer. Different from the 2D DeepBDC, 
we extend the BDC module to 3D subtomogram data with high 
dimensions and low signal-to-noise ratios and change the 2D 
convolution to 3D convolution in the convolutional layers. In our 
BDC module, taking input feature X ∈ RH×W×L×d as input, a 3D 
convolutional layer reduces its fourth dimension d to d′ and the 
flatten layer subsequently flattens the feature tensor channel-
wise to output feature matrix X′ ∈ R(H∗W∗L)×d′

: 

X ∈ RH×W×L×d → X′ ∈ R
(H∗W∗L)×d′

. (7)  

Following these above layers, the computation layer comprises 
three processes: calculation, triangulation, and vectorization. 
Based on feature matrix X′ in Equation (7), the computation layer 
in the calculation process firstly acquires an Euclidean distance 
matrix Â ∈ R

d′×d′
:

Âk,l = ‖X′
:,k − X′

:,l‖2, (8)  

where Âk,l is the value at the kth row and the lth column of Â, 
X′

:,k and X′
:,l are separately the kth column vector and lth column 

vector of X′, ‖·‖2 is Euclidean norm. With above Â, the BDC matrix 
A can be obtained by the computation layer: 

Ak,l = Âk,l − 
1 
d′

d′∑
k=1

Âk,l − 
1 
d′

d′∑
l=1

Âk,l − 
1 

d′2 

d′∑
k=1 

d′∑
l=1

Âk,l, (9)  

where Ak,l is the value at the kth row and the lth column of A, the  
last three terms indicate means of the lth column, kth row and 
all entries of Â. Finally, after triangularization and vectorization 
processes, the BDC module outputs the BDC vector a ∈ R d

′ ∗(d′+1) 
2 : 

A ∈ Rd′×d′ triang, vector −−−−−−−−→ a ∈ R 
d′ ∗(d′+1) 

2 , (10) 

where ‘triang’ and ‘vector’ denote the triangularization and vec-
torization processes, respectively. 

Similarity calculation. With the above feature extractor and 
BDC module, we introduce how to build the joint distribution 
between input feature X and prototype Y and use their joint 
distribution function to measure their similarity. 

Given a dataset D = {(zi, yi)}ND 
i=1 , we can sample input and 

class label pairs (z, y) and extract the input feature X according to 
Equation (6). To distinguish X with different input z, we rewrite the 
feature X as Xξ (z) where ξ is the parameter of feature extractor. 
Based on Xξ (z), the prototype Y [24] of the class c can be calculated 
by 

Yc = 
1 
Nc

∑
(zi ,yi)∈Dc 

Xξ (zi), (11) 

where Yc ∈ RH×W×L×d, Dc denotes the dataset belonging to class 
c in D, Nc denotes the size of Dc, and  Yc contains the label 
information of class c. 

To capture the joint distribution between input feature Xξ (z) 
and prototype Yc, we use BDC module to produce their BDC 
vectors according to Equation (10): 

az = BDCϕ(Xξ (z)), (12)  

bc = BDCϕ(Yc). (13)  

We can then formulate BDC metric-based joint distribution 
between Xξ (z) and Yc according to Equation (4): 

ρ(Xξ (z), Yc) = 〈az, bc〉 = (az)
Tbc. (14)  

Because joint distribution in Equation ( 14) is a variant formulation 
of BDC metric in Equation (2), and the BDC metric as a distance 
metric [39] can measure the similarity, we use this joint distribu-
tion to measure the similarity between Xξ (z) and Yc. 

Classifier. We use the softmax as the classifier and the pre-
dicted probability for the jth class given a sample z is 

P(y = j|z) = exp((az)
Tbj)∑C 

k=1 exp((az)Tbc) 
, (15)  

where C denotes the number of classes in dataset D. 

Training and evaluation stages 
To train and evaluate our framework, we present three important 
stages: the pre-training stage, the self-distillation stage, and the 
adapting and evaluation stage. 

Pre-training stage. In this stage, we use the whole base-class 
data in the training dataset (Dtrain = {(zi, yi)}Ntrain 

i=1 ) to pre-train our 
model. Given input sample zi, we aim to make the predicted label 
to be closer to the ground truth yi and maximize the probability 
P(y = yi|zi) in Equation (15), i.e. 

max 
exp((azi )

Tbyi )∑C 
k=1 exp((azi )

Tbc) 
, (16)  

where C denotes the number of classes in dataset Dtrain. Then, we 
formulate the following loss function to optimize our network: 

L(Dtrain, θ)  

= arg min 
θ={ξ ,φ} 

⎡ 

⎣−
∑

(zi ,yi)∈Dtrain 

log 
exp(τ (azi )

Tbyi )∑
c exp(τ (azi )

Tbc) 

⎤ 

⎦ , (17)  

where θ = {ξ , φ} is the parameter set of our network, τ is a 
learnable scaling parameter. The parameters θ are then updated 
using gradient descent. 

Self-distillation stage. Based on the above pre-training stage, 
we train our model and use this trained model to perform sequen-
tial self-distillation process [38] in the following. Before detailing 
the self-distillation process, we reformulate our whole model 
mainly comprising feature extractor and BDC module (see Fig. 2) 
as Fθ , for simplicity: 

Fθ (z) = BDCϕ(fξ (z)), (18)
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where z is input data, θ = {ξ , φ} denote the parameter set of our 
model and has been optimized by loss in Equation (17). 

In the self-distillation process, we initialize a student model 
Fθ ′ with the same architecture as the pre-trained model Fθ by 
minimizing both the loss in Equation (17) and Kullback–Leibler 
(KL) divergence. 

θ
′ = arg min 

θ
′ (αL((zi, yi); θ

′
) + βKL(Fθ

′ (zi), Fθ (zi))), (19) 

where (zi, yi) is the sample in Dtrain, θ = {ξ , φ} is the parameter set 
of our network, θ ′

represents the parameters of student model, 
L((zi, yi); θ

′
) represents the loss function Equation (17) using data 

(zi, yi), and  α and β are balancing coefficients, typically set to α = 
β = 0.5. 

We applied distillation on the base-class data because we use 
the base-class data to pre-train our model, and as noted in [31], 
knowledge distillation using the same data as the pre-training 
stage positively impacts performance. Using the Born-again strat-
egy [38], knowledge distillation is sequentially applied to generate 
multiple generations, where the maximum generation number is 
G. In each distillation step, the model in gth generation is trained 
using the knowledge of the nested model in (g − 1)th generation: 

θg = arg min 
θ 

(αL((zi, yi); θg ) + βKL(Fθg (zi), Fθg−1 (zi))), (20) 

where g = 2, . . .  , G, θ1 is distilled from the pre-trained model 
according to Equation (19), θg and θg−1 separately represent the 
model parameters at g and g − 1 iterations. The necessity of dis-
tillation in Cryo-ET lies in, compared to directly utilizing the pre-
trained model, the distillation can enhance the model’s represen-
tation and generalization capabilities to better classify the tomo-
graph (with low signal-to-noise and complex noises in Cryo-ET). 
Distillation improves the capability of the network by leveraging 
the KL divergence as a regularization term to better distinguish 
different classes. 

Adapting and evaluation stage. In the adaptation phase, we 
adapt the model in an N-way-K-shot manner and adopt the 
logistic regression classifier as our classifier. 

Given test dataset (Dtest), we draw samples from Dtest and 
construct the support set (Support) and query set (Query). In the 
adapting stage, we feed the data in the support set (Support) into 
our model (feature extractor and BDC module) to produce the BDC 
vectors. We take these BDC vectors as input and use the logistic 
regression (LR) classifier to predict the probability for the jth class, 
given the BDC vector (a): 

P(y = j|a, w) = exp(hj)∑N 
k=1 exp(hk) 

, withh = wTa ∈ R
N , (21) 

where N denotes the number of classes in support set, w denotes 
the parameters of logistic regression classifier, and hj and hk 

denote the jth and kth elements of h. The predicted label is 
determined as the index of the maximum value of the probability 
in Equation (21): 

ŷ = arg maxj∈{1,2,...,N}P(y = j|a, w). (22) 

With the BDC vector (a), the ground truth label (y), and the 
probability in Equation (21), we optimize the logistic regression 

classifier using the following loss function: 

LLR(a, y) = −  
N∑

k=1 

I{y = k} log P(y = k|a, w) + λ||w||2, (23) 

where I{·} is the indicator function which returns 1 when the con-
dition is true, and 0 when the condition is false, λ is a parameter of 
the L2 regularization term (||w||2). In the evaluation stage, we take 
the data in the query set (Query) as input and use our whole model 
(feature extractor, BDC module, and logistic regression classifier) 
to predict their labels. With the predicted label and ground truth, 
we can evaluate the classification accuracy of our model in the 
query set. 

Algorithm 1 The algorithm of Our Method 

Require: Training set Dtrain = {(zi, yi)}Ntrain 
i=1 , learning rate η 

Pre-training Stage: 
Initial feature extractor fξ and BDC module BDCϕ 

for n = 1, 2, 3 ..., Nepochs do 
for i = 1, 2, 3, ..., Ntrain do 

Clear gradients of the SGD optimizer. 
azi = BDCϕ(fξ (zi)) according to Eq. (12) 
Calculate L((zi, yi), θ)  according to Eq. (17) 
θ = θ − η · ∇θL((zi, yi), θ)  

end for 
end for 

Self-Distillation Stage: 
Initialize student model F1 

θ by Equation (19) 
Initialize the SGD optimizer. 
for g = 2, 3, ..., G do 

for n = 1, 2, ..., Nepochs do 
for i = 1, 2, 3, ..., Ntrain do 

Clear gradients of the SGD optimizer 
Update θg according to Eq. (20) 

end for 
end for 

end for 

Adapting and Evaluation Stage: 
Splitting test dataset Dtest into support set (Support) and query 
set (Query) 
for n = 1, 2, . . .  , Nadapt_epoch do 

for i = 1, 2, 3, ..., NSupport do 
Obtain data (zi, yi) in support set (Support) 
Optimize the classifier by the loss in Equation (30) 

end for 
end for 
Predict data label in Query by Eq (22) 
Evaluate the classification accuracy using data in Query 

Pesudo-code of our method 
To clearly understand the algorithmic process of our method, we 
provide a pseudo-code in Algorithm 1. This pseudo-code outlines 
the three stages of our method: the pre-training stage, the self-
distillation stage, and the adapting and evaluation stage. In the 
pre-training stage, the feature extractor (fξ ) and BDC module 
(BDCϕ ) are initialized. For each epoch, we extract BDC vector a 
from the input data by Equation (12). We then calculate the loss 
by Equation (17), and update the model parameters θ . In  the  
self-distillation stage, we distill our model Fθ for G generations 
according to Equation (19) and (20). In the adapting and evaluation
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Figure 4. The density map of Escherichia coli 50S ribosome intermediates [41] from EMDB [42]. 

stage, a new classifier is trained on the support set ( Support) using 
the loss function from Equation (23). The data labels in the query 
set (Query) are predicted using Equation (22), and the classification 
accuracy is subsequently evaluated based on these predictions. 

Experimental results 
In this section, we perform experiments to validate the effective-
ness of our method. In the following, we first describe the datasets 
used in experiments, which include public datasets (SHREC19, 
SHREC21) and the synthetic dataset. We then introduce the exper-
imental setup in detail. We next compare our method with the 
state-of-the-art (SOTA) methods to evaluate our method. Then we 
perform ablation experiments from the following aspects: dimen-
sion reduction parameter d′, the number of training samples, 
and the effect of BDC module, self-distillation, and BatchNorm 
layers. Finally, we analyze the embedding space visualizations 
to validate the effectiveness of our method in introducing joint 
distribution. 

Datasets 
In this section, we introduce the SHREC19 and SHREC21 datasets, 
as well as a small-scale synthetic dataset simulating ribosomal 
intermediates. 

Public datasets. We validated our method using SHREC19 [6] 
and SHREC21 [7] datasets. These tomograms were segmented into 
32 × 32 × 32 voxels based on ground-truth information. SHREC19 
contains 12 macromolecule classes totaling 20 785, with 7 base 
and 5 novel classes. SHREC21 includes 13 classes totaling 16 291, 
with 8 base and 5 novel classes. 

Small-scale synthetic dataset. We created small-scale syn-
thetic datasets with high similarity under various imaging con-
ditions, as shown in Fig. 5. Using Escherichia coli 50S ribosome 
intermediates [41] from EMDB [42] (as shown in  Fig. 4), we recon-
structed 3D structures under different SNRs (0.1, 0.05, 0.02) and 
tilt angles (−60◦ to 60◦, -50◦ to 50◦ with 1◦ intervals). We extracted 
12 classes from assembly intermediates, each with 200 macro-
molecules, designating 7 as base and 5 as novel classes. 

Experimental setup 
We augmented the training set and sampled batches randomly. 
SHREC datasets input size was 32×32×32 with batch size 
64, using ResNet12 for feature extraction. Training used the 
Cross-Entropy loss (Equation (17)), the Softmax classifier, and 
a SGD optimizer with a 0.05 learning rate. For the synthetic 
dataset, the input size was 64x64x64, the batch size was 
reduced to 32, and the learning rate was adjusted to 0.03. The 
self-distillation process involved three 100-epoch distillations, 
consistent with the pre-trained model. During meta-testing, 
the distilled model parameters were fixed, and the classifier 
was PyTorch’s logistic regression with L2 regularization. We 
performed five rounds of 5-way-1-shot and 5-way-5-shot tests, 
each with 2000 episodes, and calculated the mean and variance 
of the classification accuracy to evaluate the performance of our 
method. 

Comparison with SOTA methods 
To validate our method’s effectiveness, we compared it against 
five baselines (Baseline [43], Baseline++ [43], Siamese [25], MAML 
[20], FSCC [10]) on SHREC19, SHREC21, and our synthetic datasets. 
’Baseline’ is a transfer learning method proposed in [43], and 
’Baseline++’ is the modified version of ’Baseline’. 

As shown in Table 1, our method achieved 72.05% and 
80.87% accuracy for 1-shot and 5-shot tasks on SHREC19, and 
75.48%/83.62% on SHREC21. Compared to FSCC, our approach 
improved by 1.49%/3.84% on SHREC19 and 7.24%/7.55% on 
SHREC21. On the synthetic dataset, our method achieved the 
best performance in most cases as shown in Tables 2, 3, and  
Fig. 6. MAML fails to perform on datasets with low SNR, likely 
due to its weak modeling ability [20]. Siamese Network achieved 
optimal results on the datasets ’50◦, 0.05’ and ’50◦, 0.02’. But this 
method is limited to 1-shot tasks due to its design of a pair-wise 
recognition approach. The classification accuracy decreased with 
lower SNR and narrower tilt angles, with tilt angles having a 
more pronounced effect. These improvements may be attributed 
to enhanced modeling capability through joint distribution and 
better generalization via self-distillation. In most cases, our
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Figure 5. The process of creating a synthetic dataset using EMD-24573 as an example involves several steps. First, the volume from EMDB is preprocessed 
by downsampling and low-pass filtering. Random 3D rotations generate copies with different orientations. Then we place these copies and the fiducial 
makers within a tomogram. Reprojection sequences are computed at different tilt angles, and noise is added to each projection. The SART algorithm 
iteratively computes the 3D reconstruction. Finally, we present the 3D view and central slice of the reconstruction, as well as segmented macromolecules 
under different imaging conditions. 

Table 1. The few-shot classification accuracy of our methods and SOTA methods on SHREC19 and SHREC21. Siamese is limited to 
1-shot tasks due to its design of a pair-wise recognition approach. The optimal values in the tables of this paper are all in bold 

SHREC19 SHREC21 

Methods 5-way-1-shot 5-way-5-shot 5-way-1-shot 5-way-5-shot 

Baseline 65.12% ± 0.74% 73.14% ± 0.47% 59.15% ± 1.70% 71.36% ± 1.19% 
Baseline++ 66.65% ± 0.67% 75.32% ± 0.37% 65.19% ± 1.02% 73.64% ± 1.04% 
Siamese 52.76% ± 1.15% None 50.97% ± 1.32% None 
MAML 68.90% ± 1.42% 76.32% ± 0.66% 64.74% ± 1.63% 73.19% ± 0.81% 
FSCC 70.56% ± 1.61% 77.03% ± 1.21% 68.24% ± 1.03% 76.07% ± 1.03% 
Ours 72.05% ± 0.34% 80.87% ± 0.23% 75.48% ± 0.32% 83.62% ± 0.20% 

method surpasses SOTA macromolecule few-shot classification 
methods by leveraging joint distribution. 

Ablation experiment 
We conducted ablation experiments on the dimension reduction 
parameter d′ (Table 4), the effect of the BDC module, the self-
distillation (Table 5), and the number of the training samples 
(Fig. 7) using the SHREC19 and SHREC21 datasets. 

Dimension Reduction Parameter d′. The BDC matrix size scales 
cubically with d′, so decreasing d′ reduces both model parameters 
and computational cost. With d′ = 128, we achieved the highest 
accuracy, with time costs of 238ms/313ms (5-way-1-shot/5-way-
5-shot, SHREC19) and 216ms/294ms (5-way-1-shot/5-way-5-shot, 
SHREC21). Higher d′ values did not improve accuracy, likely due to 
overfitting. These results show that joint distributions help reduce 
time and computational costs, enhancing practical applicability. 

Effect of BDC module. We conduct experiments comparing 
our method with the BDC module against the version without the 
BDC module. The comparison results (Table 5) show that using 
BDC improved accuracy on the SHREC19 dataset by 11.2%/7.31% 
(5-way-1-shot/5-way-5-shot) and on the SHREC21 dataset by 
4.04%/2.95%. This demonstrates the effectiveness of the BDC 
module in enhancing feature representation. 

Effect of self-distillation. To validate the effectiveness of 
self-distillation, we compared our method with self-distillation 
against the version without self-distillation (Table 5). Self-
distillation technique achieved an improvement of 3.59%/2.24% 
(5-way-1-shot/5-way-5-shot) on the SHREC19 dataset. On the 
SHREC21 dataset, self-distillation on the SHREC21 dataset 

improved the 5-way 5-shot accuracy by 1.07%, while it slightly 
decreased in the 5-way 1-shot case. Overall, self-distillation 
generally enhances classification accuracy, proving to be effective 
in most scenarios. 

Effect of BatchNorm layers. To validate the effect of layers 
and BatchNorm layers, we compared our method using Batch-
Norm layers against the version using layers. The results with 
BatchNorm layers showed improvements of 4.32%/5.03% (5-way-
5-shot/5-way-1-shot) on the SHREC19 dataset and 5.30%/7.33% 
on the SHREC21 dataset. Batch normalization has a significant 
impact on the performance of few-shot classification models. 

Number of training samples. To explore the effect of the 
training sample number, we conduct an ablation experiment 
using various training sample numbers (100, 200, 500, and 1000) 
per class from the training sets of SHREC19 and SHREC21. The 
results are shown in Fig. 7. It was observed that as the number of 
training samples increased, the classification accuracy exhibited 
an upward trend in most cases. The sampling number used in our 
method is the size of the dataset (‘maximum’ in Fig. 7 denotes this 
size), which helps achieve the best performance. 

Ablation study for varying ways. To investigate the impact of 
the number of training classes and ways, we conducted ablation 
experiments on the SHREC19 and SHREC21 datasets using various 
numbers of training classes and ways. The results are shown 
in Fig. 8. Due to the limited number of classes, we set the way 
to match the number of test classes. The findings indicate that 
accuracy is generally higher when the way is smaller. Building 
on the above experimental results and considering that training 
classes are typically slightly more than test classes (ways), we
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Table 2. The 5-way-1-shot classification accuracy on our small-scale synthetic dataset 

Tilt angles ± 60◦ Tilt angles ± 50◦ 

SNR 0.1 0.05 0.02 0.1 0.05 0.02 

Baseline 46.28%±0.51% 44.93%±0.52% 41.85%±0.48% 41.13%±0.53% 33.54%±0.48% 32.70%±0.52% 
Baseline++ 47.65%±0.40% 46.47%±0.41% 45.63%±0.42% 43.28%±0.41% 44.13%s±0.43% 38.23%±0.42% 
Siamese 64.17%±0.67% 59.69%±0.72% 54.16%±0.66% 61.93%±0.73% 61.19%±0.66% 56.64%±0.69% 
MAML 47.41%±1.75% 22.34%±1.72% 21.87%±1.76% 22.62%±1.79% 22.55%±1.75% 21.61%±1.74% 
FSCC 63.44%±1.82% 61.57%±1.77% 55.84%±1.83% 53.77%±1.81% 48.21%±1.78% 46.37%±1.87% 
Ours 72.03%±0.20% 70.12%±0.21% 65.39%±0.21% 62.25%±0.20% 57.68%±0.21% 54.05%±0.22% 

Table 3. The 5-way-5-shot classification accuracy on our small-scale synthetic dataset 

Tilt angle ± 60◦ Tilt angle ± 50◦ 

SNR 0.1 0.05 0.02 0.1 0.05 0.02 

Baseline 50.96%±0.85% 49.88%±0.88% 47.38%±0.86% 45.89%±0.85% 38.49%±0.85% 35.93%±0.86% 
Baseline++ 54.79%±0.76% 53.65%±0.75% 52.69%±0.74% 52.50%±0.76% 51.06%±0.74% 41.94%±0.74% 
MAML 56.98%±0.67% 54.10%±0.72% 22.37%±0.66% 22.52%±0.73% 22.13%±0.66% 21.90%±0.69% 
FSCC 75.75%±1.13% 72.84%±1.21% 66.31%±1.16% 64.11%±1.18% 57.17%±1.10% 54.04%±1.13% 
Ours 87.18%±0.32% 84.86%±0.31% 82.23%±0.32% 78.86%±0.32% 74.57%±0.32% 68.76%±0.33% 

Table 4. Ablation analysis of our method with the backbone of ResNet-12. We conducted ablation experiments on the dimensionality 
reduction parameter d′ using an NVIDIA A100 on the SHREC19 dataset, comparing the latency (ms), accuracy (%), and parameter count 
(Megabyte) for different values of d′

5-way-1-shot 5-way-5-shot 

Dataset d′ Acc Latency Acc Latency Params 

SHREC19 512 67.83%±0.33% 1848 77.19%±0.22% 2734 37.04 
256 67.47%±0.34% 495 76.82%±0.22% 690 36.88 
196 68.99%±0.33% 364 77.94%±0.23% 485 36.84 
128 72.05%±0.34% 238 80.87%±0.23% 313 36.80 
64 67.17%±0.33% 141 75.93%±0.22% 179 36.76 

SHREC21 512 74.61%±0.32% 1667 82.41%±0.21% 3058 37.04 
256 73.44%±0.33% 532 81.78%±0.21% 795 36.88 
196 73.66%±0.32% 404 82.06%±0.22% 576 36.84 
128 75.48%±0.32% 216 83.62%±0.20% 294 36.80 
64 72.63%±0.31% 140 81.42%±0.21% 184 36.76 

Table 5. The results of the ablation experiments of our method on the SHREC19 and SHREC21 datasets 

Method SHREC19 SHREC21 

BDC BN Distillation 5-way-1-shot 5-way-5-shot 5-way-1-shot 5-way-5-shot

� � 68.46% ± 0.32% 78.63% ± 0.22% 75.78% ± 0.32% 82.55% ± 0.22%
� � 60.85% ± 0.33% 73.56% ± 0.22% 71.44% ± 0.32% 80.67% ± 0.22%

� � 67.02% ± 0.32% 76.55% ± 0.22% 68.15% ± 0.32% 78.32% ± 0.22%
� � � 72.05% ± 0.34% 80.87% ± 0.23% 75.48% ± 0.32% 83.62% ± 0.20% 

adopt the standard configuration of 7 training classes and 5-way 
testing in this paper. 

Embedding space visualization analysis 
Introducing joint distribution, our method exhibits enhanced 
capability in constructing embedding spaces. Leveraging t-SNE, 
we visualize the feature distributions in the embedding space. 
We load the optimal models of each transfer learning method, 

truncate them before the classifier, and input the features along 
with corresponding labels into the t-SNE model. Subsequently, 
we visualize the embedding spaces for five novel classes in the 
representative dataset (SHREC21), each containing approximately 
2000 data points, as shown in Fig. 9. The models are trained using 
the Base class dataset, and truncating them before the classifier 
implies no adaptation to the novel classes, thus enabling a fair 
demonstration of the generalization ability of each method and
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Figure 6. (a) and (b), respectively, show the 5-way-1-shot and 5-way-5-shot 
classification accuracy of our method and three baseline methods on the 
synthetic dataset. The x-axis represents data with varying SNRs at tilt 
angles of ± 60◦ and ± 50◦. The height of each colored segment, starting 
from zero, represents the absolute accuracy of each method. Siamese 
is limited to 1-shot tasks due to its design of a pair-wise recognition 
approach. 

its suitability for few-shot classification tasks. Specifically, two 
classes 1U6G and 3CF3 exhibit marginal overlap in other methods, 
and class 4V94 also overlaps with other classes. Conversely, our 
method demonstrates non-overlapping margins for classes 1U6G 
and 3CF3, with greater separation, while class 4V94 not only lacks 
overlap with other classes but also exhibits a smaller area. This 
indicates that our method achieves larger inter-class distances 
and more compact intra-class distributions, showcasing superior 
modeling capabilities. 

Conclusion 
Macromolecule classification is essential in Cryo-ET analysis, and 
few-shot learning is well-suited due to its ability to quickly adapt 
to novel macromolecules. Previous few-shot classification meth-
ods, however, relied on marginal distributions for embedding, 
which limits performance. In this work, we propose a few-shot 
classification method based on joint distributions. It employs a 
transfer learning framework and enhances model generalization 
through self-distillation. Experiments with synthetic datasets 
show that our method significantly enhances classification 
accuracy over SOTA methods. Visual comparisons of feature 
spaces reveal improved feature modeling, highlighting the 
effectiveness of joint distribution integration. Although we use a 
reasonable configuration of training class numbers (7) and N-way 
(5) in this paper, further exploration of different configurations in 
future work would be valuable. 

Figure 7. The ablation results of the training samples number in the 
pre-training stage on the SHREC19 and SHREC21 datasets. ‘maximum’ 
denotes the size of the dataset. 

Figure 8. The ablation results of varying ways on the SHREC19 and 
SHREC21 datasets. 
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Figure 9. SHREC21 t-SNE embedding on Novel Class. We performed t-SNE visualization of the embedding space using four transfer learning methods, 
comprehensively covering five novel classes in SHREC21, with approximately 2000 data points per class. 

Key Points 
• We proposed a few-shot classification method of Cryo-

ET subvolumes with deep Brownian Distance Covari-
ance, introducing joint distribution for the first time to 
improve model capability and classification accuracy. 

• We conducted experimental validation on two SHREC 
public datasets and a synthetic dataset. The visualiza-
tion results demonstrated improved modeling capabili-
ties. 

• Our method meets the needs for rapid and accurate 
classification of novel macromolecules, avoiding the 
cost associated with extensive labeled data and model 
retraining. 
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Table A1. Notation table. 

Notation Meaning 

X, Y random vectors 
φXY the joint characteristic function of X and Y 
φX, φY the marginal distributions functions of X and Y 
ρ the BDC metric
Â the Euclidean distance matrix 
a, b the BDC vectors 
T matrix transpose process 
tr( · ) matrix trace process
‖ · ‖2 Euclidean norm process 
fξ the feature extractor 
BDCϕ the BDC module 
Fθ our whole model comprising feature extractor fξ and BDC 

module BDCϕ 
H, W, L, d the height, width, length, and the channel of the feature 

output by the feature extractor 
d′ the channel to which the features are reduced by the 

BDC module 
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