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Abstract

Germline copy number variants (CNVs) play a significant role in hereditary diseases. However, the accurate detection of CNVs from
targeted next-generation sequencing (NGS) gene panel data remains a challenging task. Several tools for calling CNVs within this
context have been published to date, but the available benchmarks suffer from limitations, including testing on simulated data, testing
on small datasets, and testing a small subset of published tools. In this work, we conducted a comprehensive benchmarking of 12
tools (Atlas-CNV, ClearCNV, ClinCNV, CNVkit, Cobalt, CODEX2, CoNVaDING, DECoN, ExomeDepth, GATK-gCNV, panelcn.MOPS, VisCap)
on four validated gene panel datasets using their default parameters. We also assessed the impact of modifying 107 tool parameters
and identified 13 parameter values that we suggest using to improve the tool F1 score. A total of 66 tool pair combinations were also
evaluated to produce better meta-callers. Furthermore, we developed CNVbenchmarker2, a framework to help users perform their own
evaluations. Our results indicated that in terms of F1 score, ClinCNV and GATK-gCNV were the best CNV callers. Regarding sensitivity,
GATK-gCNV also exhibited particularly high performance. The results presented here provide an evaluation of the current state of the
art in germline CNV detection from gene panel data and can be used as a reference resource when using any of the tools.
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Introduction
Copy number variants (CNVs) are structural genomic alterations
that involve an abnormal number of copies of a DNA segment,
resulting in both deletions and duplications. They are a type of
structural variation caused by genomic rearrangements, vary-
ing in size from 50 bp to several megabases [1, 2]. CNVs are a
major source of genomic variation in humans [3]. They affect
various biological processes, including evolution, adaptation, and
the development and predisposition to diseases such as autism,
obesity, and cancer [4–6]. Once a CNV is identified, its clinical
significance can be determined, and medical management and
prevention measures can be implemented. Their detection is
therefore crucial in clinical diagnostics [7].

Several methods to detect CNVs have been developed in recent
decades. These methods include Polymerase chain reaction-based
methods such as multiplex ligation–dependent probe amplifi-
cation (MLPA), array-based technologies like microarray-based
comparative genomic hybridization (aCGH) or SNP microarrays,
massive parallel sequencing, fluorescence in situ hybridization
(FISH), or Southern blotting. From the above list, MLPA, aCGH,
and SNP microarrays are frequently used in diagnostic routines,
being MLPA the most common approach for testing one or a
few genes [8, 9]. However, these methods are still expensive,
time-consuming, and have gene-specific limitations. For example,
MLPA relies on single-gene approaches, while aCGH’s sensitivity is
restricted to sequences within the array’s design assembly [2].

The arrival of next-generation sequencing (NGS) has trans-
formed genetic testing by allowing millions of fragments to be
sequenced simultaneously [10]. Diagnostic laboratories are using
NGS methods to identify multiple types of variation, including
CNVs. In diagnostic settings, where laboratories handle a large
number of samples, targeted gene panels have emerged as a
common and cost-effective approach.

Many bioinformatic tools have been published to identify
germline CNVs from NGS data. While most of these tools are
reliable for detecting large CNVs, they often struggle to detect
small CNVs, especially those spanning a single exon. Furthermore,

most tools are not optimized for calling CNVs from targeted
gene panel data, as they were originally developed for use
with whole-genome or whole-exome data. Beyond addressing
these challenges, tools must demonstrate high sensitivity and
specificity in diagnostic settings [9]. Therefore, it is crucial to
accurately measure tool performance on gene panel data.

Previous studies have evaluated the performance of germline
CNV callers on gene panel data. However, these studies suffer
from some limitations. Most of them were performed by the tool
authors, covered a small subset of currently available tools, and
were evaluated on a single dataset [11–15]. To our knowledge,
three benchmarks have been published to date by authors who
did not evaluate their own tool [16–18]. However, two of them
have similar limitations: Roca et al. evaluated mainly on sim-
ulated data with only a small number of validated CNVs, and
Lepkes et al. benchmarked four tools on a single dataset where
MLPA tests were performed only for CNV calling confirmation.
The limitations were partially addressed in our previous work,
which evaluated five tools on four real datasets with MLPA results
available prior to tool execution [17]. However, our previous work
only covered a subset of the tools published until 2018. Moreover,
several new tools have been published since 2018, so our previous
benchmark provides an incomplete assessment of the current
state of the art. Here, we aim to provide a wider, comprehensive,
and up-to-date evaluation of germline CNV detection tools on
gene panel data by benchmarking 12 tools on four real and
publicly available datasets, evaluating the impact of modifying
107 tool parameters and combining tool pairs.

Material and methods
Datasets
We defined the criteria for including datasets in the benchmark.
These requirements comprised being obtained from gene panel
sequencing, having MLPA results before in silico calling, including
germline single-exon CNVs, and being publicly available. To the
best of our knowledge, only four datasets met the requirements
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as of April 2024, namely, the ICR96 exon CNV validation series
(96 samples) [19], a subset of the data used in the panelcn.MOPS
publication referred to as panelcnDataset (161 samples) [13],
and two in-house datasets (130 and 108 samples sequenced in
Illumina MiSeq and HiSeq platforms, respectively) [17]. Table 1
provides further details of the datasets used in this work. All
datasets were obtained from hybridization-based capture panels
designed for hereditary cancer diagnostics: the TruSight Cancer
Panel (Illumina, San Diego, CA) and the ICO-IMPPC Hereditary
Cancer Panel (I2HCP) [20]. The bed file defining the regions of
interest (ROIs) for the ICR96 and panelcnDataset datasets can be
found in Supplementary Table 1, whereas the one for the in-house
datasets is in Supplementary Table 2. Datasets contain single and
multi-exon CNVs detected in diagnostic routine through MLPA
testing. Negative MLPA results, indicating unaffected genes, are
also available. MLPA results for each dataset can be found in
Supplementary Table 3.

Sample alignment was performed using Burrows-Wheeler
Aligner (BWA) mem v0.7.17 to the GRCh37 human genome
assembly [21, 22] We then used SAMtools v1.16.1 [21] to sort
and index Binary Alignment Map (BAM) files and Picard v2.27.4 to
include read group information. No further processing or filtering
was applied to the BAM files.

Copy number variant detection tools
The selection of detection tools was based on multiple criteria.
Specifically, they must be publicly available, capable of calling
germline CNVs at the exon level, designed to work with gene
panel data, and not purposely built only for amplicon-based
sequencing data. Following the completion of the literature review
in December 2023, 12 tools were selected according to these
criteria (Table 2): clearCNV v0.306 [23], GATK-gCNV v4.5.0 [24],
Atlas-CNV v.0 [15], Cobalt v0.8.0 [25], ClinCNV v1.18.3 [26], CNVkit
v0.9.10 [27], VisCap v0.8 [28], DeCoN v2.0.1 [29], panelcn.MOPS
v1.20.0 [13], ExomeDepth v1.1.16 [30], CoNVaDING v1.2.1 [11], and
CODEX2 v1.3.0 [31]. The latter five were evaluated in our previous
work, but we included them here to facilitate tool comparison
and to evaluate the most updated versions. Nine germline CNV
detection tools were considered for inclusion in this work but were
later discarded for multiple reasons: SeqCNV, CNVPanelizer, CNV-
Z, ifCNV, SavvyCNV, CCR-CNV, Hadoop-CNV-RF, PattRec, and the
pipeline used by Singh et al. [9] Supplementary Table 4 provides a
list of discarded callers and the reason for their exclusion.

Benchmark evaluation metrics
The performance of each tool was evaluated at two levels: per ROI
and per gene. Detailed definitions of both levels can be found in
Supplementary File 1.

For each tool, across all dataset and evaluation levels, a range
of performance metrics were computed, including sensitivity,
specificity, positive predictive value, negative predictive value,
false negative rate, false positive rate, F1 score, accuracy,
Matthews correlation coefficient, and Cohen’s kappa coefficient
(Supplementary File 1). We also measured tool run times on the
ICR96 dataset using a workstation with 24 GB random access
memory (RAM) and 1 central processing unit (CPU) per job.

Benchmark execution
We implemented CNVbenchmarkeR2, an R framework that
enables the automatic and flexible benchmarking of CNV callers.
Code and documentation are available at https://github.com/
jpuntomarcos/CNVbenchmarkeR2, so other users can benefit Ta
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from it to benchmark the tools against their own datasets. We
used CNVbenchmarkeR2 to run each tool on each dataset using
the default parameters specified in the tool documentation.

The CNVbenchmarkeR2 code shows the steps performed
to run each tool. In the case of GATK-gCNV, we followed the
guide published by GATK (https://gatk.broadinstitute.org/hc/
en-us/articles/360035531152--How-to-Call-rare-germline-copy-
number-variants) to call rare germline variants, including the
AnnotateIntervals and FilterIntervals steps, both recommended
in the guide. However, since these steps are described as optional
in the guide and users may ignore their impact on performance,
we benchmarked two additional workflows to compare them with
the final one. Thus, we benchmarked: (i) the complete workflow
(GATK-gCNV) including both AnnotateIntervals and FilterIn-
tervals steps, (ii) a workflow excluding AnnotateIntervals and
FilterIntervals steps (GATK-gCNV_no_AI_FI), and (iii) a workflow
excluding the AnnotateIntervals step (GATK-gCNV_no_AI), which
is the default approach in the GATK germline cohort workflow
description language pipeline.

Parameter evaluation
All tools evaluated in this benchmark have adjustable param-
eters. However, in most cases, neither the tool documentation
nor any other source is clear about the impact on tool per-
formance when these parameters are changed. To address this
issue, we systematically evaluated tool parameters by testing
them over a wide range of values on all datasets. For numer-
ical parameters, we tested 15 parameter values, including the
default one. For categorical parameters, we tested all available
options in the tool. We computed the metrics described in the
Benchmark Evaluation Metrics section for all executions.

For numerical parameters, we also obtained the optimal range
as follows: (i) for each dataset, we identified the parameter value
that maximized the F1 score at the ROI level; (ii) The optimal
range is defined by the lowest and highest parameter values
obtained from the previous step. We used the optimal range to
identify parameters where the optimal range is completely below
or above the default parameter value. For these parameters, we
also determined the suggested parameter value to use, which we
defined as the value of the optimal range that is closest to the
default value.

Combination of tool pairs
We assessed the impact of tool pair unions and intersections on
performance and ascertained whether any pair was capable of
detecting all CNVs. All 66 possible tool pairs were evaluated by
combining the results obtained separately when using the default
parameters on the four datasets included in this work. Both per
ROI and per gene metrics were generated. The R package Genom-
icRanges v1.48.0 was used to calculate the union and intersection
of tool calls.

Results
Benchmark with default parameters
The tools were run on every dataset using default parameters.
Evaluation metrics were then calculated at two levels: per ROI and
per gene (see Material and Methods section for details).

Per ROI metrics allow us to assess tool performance at single-
exon resolution (Fig. 1, Supplementary Table 5). Regarding the
F1 score, a common measure of binary classifier accuracy,
tool performance varied widely across datasets, ranging from
0.42 (CNVkit in ICR96) to 0.98 (GATK-gCNV in panelcnDataset).

Interestingly, GATK-gCNV and ClinCNV were the only tools to
consistently score in the top five for each dataset, with values
between 0.78 and 0.98. On the other hand, all tools were highly
specific, achieving values over 0.94 in all tool–dataset runs. In
terms of sensitivity, we observed more variability, with tools
ranging from 0.43 to 0.99. For both the ICR96 and panelcnDataset
datasets, all tools except Atlas-CNV and VisCap achieved a
sensitivity >0.90. CNVkit exceeded this threshold as well, but
only for the ICR96 dataset. However, in the in-house datasets,
only ClinCNV, CODEX2, GATK-gCNV, and CoNVaDING achieved
sensitivity values >0.90. Supplementary Figure 1 shows per ROI
results sorted by sensitivity to facilitate the analysis.

Figure 2 and Supplementary Table 5 show benchmark results
at the gene level, which are particularly relevant in diagnostic set-
tings. Regarding sensitivity, a metric commonly used in diagnos-
tics to assess the classifier’s ability to detect positives, some tools
demonstrated high performance. In particular, GATK, CoNVaD-
ING, DECoN, and CODEX2 obtained values >0.93 for each dataset.
CoNVaDING showed very high performance in detecting positives:
it missed only 3 out of 231 positives across all datasets. GATK-
gCNV, DECoN, and CODEX2 missed more positives in total (7, 11,
and 12, respectively) but generated fewer false positives (FPs; 27,
62, and 93, respectively) compared to CoNVaDING (150 FPs). On
the other hand, ClearCNV and Cobalt were the callers that missed
most of the positives: 65 and 61, respectively. Supplementary Fig-
ure 2 shows the per gene results sorted by sensitivity. In terms of
F1 score, tools showed again large differences with values ranging
from 0.26 to 0.98. GATK-gCNV exhibited the highest performance
based on this metric: only DECoN surpassed it in the InHouse
HiSeq dataset.

Supplementary File 1 shows tool run times obtained in a work-
station with 24 GB RAM and 1 CPU per job. The benchmarked
tools required a median of 53 minutes to perform CNV calling on
the ICR96 dataset. ClinCNV and CODEX2 were the fastest tools,
completing the task in 13 and 14 minutes, respectively. In contrast,
Atlas-CNV, CNVkit and VisCap were the most time-consuming
tools, requiring 147, 148 and 192 minutes, respectively.

GATK-gCNV workflows
The GATK-gCNV results presented in this work were obtained
including the AnnotateIntervals and FilterIntervals steps. How-
ever, to better understand the effect of including these steps,
two additional workflows were benchmarked (see Methods).
Supplementary File 1 shows that certain metrics exhibited
considerable variability across workflows. With regard to per
ROI metrics, the workflows including the FilterIntervals step
demonstrated higher sensitivity across all datasets in comparison
to the GATK-gCNV_no_AI_FI workflow, with increases ranging
from 0.01 to 0.09. The enhancement was even more pronounced
in per gene metrics. In particular, the workflows including
the FilterIntervals step demonstrated superior performance
compared to GATK-gCNV_no_AI_FI, with gains ranging from 0.03
to 0.30. Furthermore, these two workflows exhibited notable
F1 score improvement at the gene level, with values increasing
between 0.01 and 0.22.

When comparing both workflows that include the FilterInter-
val step, GATK-gCNV and GATK-gCNV_no_AI, neither tool demon-
strated a clear advantage in terms of sensitivity, specificity, or F1
score across all datasets.

Parameter evaluation
We systematically varied each tool parameter over a broad
range of values to assess its impact on tool performance (see
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Figure 1. Benchmark results at the ROI level. The tools were run using default parameters and are listed in descending order based on their F1 score in
each dataset. (FN, false negative; FP, false positive; F1, F1 score).

Material and Methods). A total of 6110 executions were conducted
to evaluate 107 tool parameters across all datasets. All results are
presented in Supplementary Table 6. Additionally, 436 figures
containing sensitivity, specificity, and F1 score at the ROI and
gene level were also generated and are available at https://doi.
org/10.6084/m9.figshare.25930960. Tool users can utilize these
results as a guide to understand the expected effect when
modifying each parameter.

Modifying each parameter had a different effect on tool perfor-
mance. We identified four main patterns of performance change:
(i) no discernible effect on the tool performance, resulting in
flat curves (e.g. DECoN mincorr parameter); (ii) Increase in sen-
sitivity and decrease in specificity or vice versa (e.g. CODEX2
cn_del_threshold parameter); (iii) sensitivity or specificity exhibit-
ing a bell-shaped behavior (e.g. ClearCNV zscale parameter); (iv)
performance changes without a distinct pattern, often showing
successive increases and decreases in sensitivity (e.g. ClearCNV
sample_score_factor parameter).

At the ROI level, we also determined the optimal range for
each numerical parameter and identified 13 parameters where
the optimal range was completely below or above the default
parameter value (Table 3). In such cases, adjusting the default
parameter value in one direction, increasing or decreasing it,
results in a higher F1 score at the ROI level across all datasets.
We therefore identified the suggested parameter value to use as
the one within the optimal range closest to the default value.

Combination of tool pairs
We evaluated all 66 combinations of tool pairs using their
parameters set to default (Supplementary Table 7). The union

of calls from tool pairs resulted in better sensitivity albeit at the
expense of a lower specificity. From an ROI-level perspective,
no combination of tools achieved a sensitivity of 1. As per
gene level results, five tool pairs achieved the maximum
sensitivity across all datasets (Supplementary File 1): Atlas-
CNV/CoNVaDING, CODEX2/CoNVaDING, CNVkit/CoNVaDING,
panelcn.MOPS/CoNVaDING, and DECoN/CODEX2. Among these
pairs, the union of CNVkit and CoNVaDING yielded the lowest
specificity in most datasets, with values between 0.65 and
0.84. The other pairs did not show large differences between
them and achieved values ranging from 0.78 to 0.97 across
datasets.

In contrast, intersecting tool calls increased specificity at the
expense of a lower sensitivity. No tool pair achieved perfect
specificity across all datasets. However, the intersection of
CODEX2/GATK-gCNV and CODEX2/DECoN identified all true
CNVs in the panelcnDataset dataset at the gene level, without
generating FPs.

Discussion
The published benchmarks of germline CNV callers for gene panel
data suffer from certain limitations. These limitations include
evaluating mainly simulated data, evaluating small datasets, or
testing only a small subset of published tools [16–18]. Here, we
conducted a comprehensive benchmark of 12 tools on four pub-
licly available datasets, using tool default parameters, assess-
ing the impact of changing tool parameter values, and eval-
uating the combination of tool pairs to produce better meta-
callers.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae645#supplementary-data
https://doi.org/10.6084/m9.figshare.25930960
https://doi.org/10.6084/m9.figshare.25930960
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https://doi.org/10.6084/m9.figshare.25930960
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae645#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae645#supplementary-data
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Figure 2. Benchmark results at the gene level. The tools were run using default parameters and are listed in descending order based on their F1 score in
each dataset. The F1 scores for CNVkit on ICR96 and panelcnDataset, which were not included in the presented figure, are 0.26 and 0.35, respectively.
(FN, false negative; FP, false positive; F1, F1 score).

Table 3. Suggested parameter values. Suggested parameter values to be used for improving the F1 score at the ROI level. The suggested
value is the value within the optimal range closest to the default value. The mean F1 increase is calculated as the difference between
the mean of the F1 scores obtained across datasets using the default value and the mean of the F1 scores obtained across datasets
using the suggested value.

Tool Parameter Default value Optimal range Suggested value Mean F1 increase

Atlas-CNV threshold_dup 0.4 [0.44–0.6] 0.44 0.0040 (+0.76%)
ClearCNV trans_prob 0.001 [0.0015–0.02] 0.0015 0.0006 (+0.07%)
ClinCNV scoreG 20 [25–50] 25 0.0126 (+1.43%)
CNVkit alpha (segmetrics) 0.05 [0.0001–0.04] 0.04 0.0006 (+0.09%)
CNVkit drop-outliers 10 [1–4] 4 0.0080 (+1.26%)
Cobalt high-depth-trim-frac 0.01 [0.025–0.1] 0.025 0.0033 (+0.50%)
Cobalt var-cutoff 0.9 [0.91–0.99] 0.91 0.0053 (+0.81%)
CODEX2 cn_del_threshold 1.7 [1.3–1.67] 1.67 0.0172 (+2.14%)
CODEX2 cn_dup_threshold 2.3 [2.5–2.8] 2.5 0.0352 (+4.38%)
CODEX2 gc_thresh_down 20 [30–40] 30 0.0018 (+0.22%)
CoNVaDING ratioCutOffLow 0.65 [0.5–0.6] 0.6 0.0168 (+2.28%)
panelcn.MOPS CN3 1.46 [1.6–1.7] 1.6 0.0173 (+2,41%)
panelcn.MOPS corrThresh 0.99 [0.5–0.985] 0.985 0.0017 (+0,24%)

Benchmark with default parameters
Several approaches can be used to measure tool performance. We
have benchmarked tools using two levels of resolution, ROI and
gene level, and several metrics such as F1 score, sensitivity, or
specificity. These approaches facilitate the analysis of which tools
are more suitable in each context. If we focus on the overall perfor-
mance of the tool, the F1 score is a common metric used to evalu-
ate the performance of binary classifiers. Based on this metric, we

highlight GATK-gCNV and ClinCNV, which showed outstanding
performance at the ROI level, with GATK-gCNV demonstrating
superior performance at the gene level. Therefore, we suggest
using ClinCNV and GATK-gCNV when the priority is to maximize
the overall performance according to the F1 score and especially
the latter when the focus is on the gene level. It is noteworthy
that ClinCNV was also the fastest tool, requiring only 13 min to
call CNVs. While run time is not typically the primary factor in
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selecting a calling tool, it may be advantageous in settings where
computational resources are limited or results must be delivered
as quickly as possible.

On the other hand, sensitivity is a key metric in diagnostic
settings, where the aim is usually to minimize the number of
FNs. Also, in genetic diagnostics it is frequently useful to focus
on the gene level because, if at least one exon from the CNV is
detected, a subsequent MLPA test could be performed to confirm
the CNV [17]. Focusing on the sensitivity and the per gene metrics,
CoNVaDING, GATK-gCNV, CODEX2, and DECoN were among the
best five in all datasets. Although we highlight the power of
CoNVaDING to detect positives, with only three FNs across all
datasets, it also produced a high number of FPs. In contrast, GATK-
gCNV demonstrated high sensitivity and high specificity at the
same time, which makes it a valuable candidate for use in genetic
diagnostics. In any case, the aforementioned tools produced a
relevant number of FPs. Since most diagnostic units validate
CNV calls using orthogonal methods, the number of FPs should
be taken into consideration to ensure the cost-effectiveness of
diagnostic routines. On the opposite side, the highest rates of
FNs were obtained by ClearCNV and Cobalt. This suggests that,
when their default parameters are used, these tools may not
be appropriate solutions for calling CNVs in genetic diagnostic
settings from NGS panel data.

No previous work has evaluated the sensitivity and specificity
of the two most highlighted tools discussed here, GATK-gCNV
and ClinCNV, on gene panel data. Demidov et al. evaluated the
performance of ClinCNV on WGS and WES data in their ClinCNV
publication and only compared it with ExomeDepth and DELLY
[26]. In the GATK-gCNV publication, the authors demonstrated
that GATK-gCNV was capable of achieving 95% sensitivity in
detecting CNVs of two or more exons [24]. However, GATK-gCNV
was run on WES data, and the methodology differed from that
used in the work presented here. Lepkes et al. included GATK-
gCNV in their benchmark on gene panel data, but MLPA tests
were performed after the benchmark execution, preventing the
calculation of sensitivity and specificity [16].

GATK-gCNV workflows
The GATK guide to call rare germline CNVs includes two
optional steps: AnnotateIntervals and FilterIntervals. To gain
a deeper understanding of the effect of including them, we
evaluated alternative GATK-gCNV workflows as detailed in
Materials and Methods. Interestingly, the inclusion of the Fil-
terIntervals step had a relevant impact on the performance:
the workflows incorporating the FilterIntervals step clearly
outperformed the one that excluded it. We consequently
recommend including this step for the detection of rare germline
CNVs from gene panel data. The GATK guide describes this
step as optional but recommended, which may lead some users
to overlook this step despite its impact on performance. We
believe that the results observed here will encourage users to
include the FilterIntervals step in their workflows. On the other
hand, the inclusion of the AnnotateIntervals step, which entails
explicit guanine and cytosine (GC)-content-based filtering, did
not result in a discernible improvement in performance across all
datasets. The GATK guide also described this step as optional but
recommended, so we suggest users to further validate its effect
on their own datasets.

Parameter evaluation
The available documentation on the effect of each parameter on
tool performance is often scarce or nonexistent. Deciding which

parameter to modify and how to tune it may be particularly
challenging when a tool provides dozens of parameters, as is
the case with GATK-gCNV. To address these issues, we repeated
benchmark executions, modifying each parameter individually
over a range of values. We generated 436 figures that can be used
as reference guidance for research and diagnostic laboratories
that are currently using or planning to use any of the tools in
their settings. These results should help users to better under-
stand the contribution of each parameter on tool performance,
prevent them from inadvertently overlooking the most relevant
parameters, and facilitate fine-tuning of tool parameters.

Parameters affected performance in multiple ways, and we
grouped these changes into four main patterns. Some parameters
had no effect on performance and should not be considered when
trying to enhance tool performance. Other parameters resulted in
the typical trade-off of binary classifiers: an increase in sensitivity
leads to a decrease in specificity or vice versa. We recommend
modifying this type of parameters to adjust the balance between
sensitivity and specificity. Other parameters showed a bell-shaped
behavior in sensitivity or specificity, suggesting that the tool per-
formance could be optimized around a certain value. Finally, other
parameters affected tool performance without a clear pattern,
often with successive increases and decreases in sensitivity. We
suggest modifying these parameters with caution as the observed
variability makes it difficult to predict their impact on perfor-
mance.

It is noteworthy that for certain parameters, the highest F1
scores across all datasets were observed on one side of the
default parameter, either below or above it. Thus, we were able to
identify the optimal range for 13 parameters, wherein the tools
demonstrated superior performance compared to the default
parameters. One possible explanation for this finding is that the
tools were developed for specific datasets, which may restrict
their applicability to other datasets, such as those used in this
manuscript. Also, the authors may have optimized their tools
based on performance metrics other than the F1 score. Anyway,
while any value within this range could potentially improve the
F1 score, the parameter value we suggested was the closest to the
default value. Since it is the closest to the value set by the authors,
we understand that this is the most conservative approach.

Using the suggested parameter values resulted in different F1
score increases. Although some yielded modest F1 score incre-
ments, such as the trans_prob and alpha parameters, others pro-
duced notable F1 score changes. Modifying the cn_dup_threshold,
CN3, ratioCutOffLow, and cn_del_threshold parameters resulted
in an average F1 increase of >2%. In any case, all suggested
parameter values represent an opportunity to enhance the overall
performance of the tools, and we recommend tool users to try
them on their own datasets for further validation.

Combination of tool pairs
A common approach in bioinformatics is to join or intersect the
results obtained by variant callers separately to produce new
meta-callers [32–34]. In this work, no tool was capable of detecting
all CNVs at the ROI or gene level with their default parameters. We
therefore assessed the effect of tool unions and intersections on
performance to determine if any meta-caller could achieve 100%
sensitivity.

Although no union of tools detected all true positive ROIs in
the per ROI results, five tool pairs did so at the gene level. These
pairs may be employed in diagnostic scenarios where no true CNV
should be overlooked. Indeed, if a CNV caller or meta-caller is
capable of detecting all CNVs, it can be used as a screening step
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prior to an orthogonal method validation, such as MLPA [35]. This
approach has the potential to enhance the mutation detection
yield and reduce costs in genetic testing for hereditary cancer
[17]. In any case, we observed that the five tool pairs obtained
largely different specificity values across the datasets. We hence
encourage diagnostic units to conduct a thorough evaluation of
their performance on their own in-house datasets.

Limitations
The results presented in this work have some limitations to note.
First, the datasets used have an unusually high frequency of rare
CNVs compared to the general population, where CNV frequency
is expected to be considerably lower [36]. It would be of interest
to assess the performance of the tools on datasets that would
more accurately reflect the incidence of CNVs in the general
population. Anyway, the datasets used in this benchmark provide
a challenging scenario for the evaluation of the tools. Second,
regarding the combination of tool pairs and the identification
of suggested parameter values, we did not divide the datasets
into training and validation subsets to assess whether the tool
performance observed in a training subset was confirmed in a
validation dataset. Hence, we recommend users to evaluate how
tool pairs and suggested parameter values behave on their own
datasets. Finally, we only evaluated combinations of tool pairs,
leaving open the question of whether a combination of three or
more tools could lead to a better meta-caller.

Conclusion
Here, we conducted a comprehensive evaluation of the current
state of the art in germline CNV detection from gene panel data.
Although the identification of CNVs remains challenging, our
results indicate that certain tools can achieve very high perfor-
mance. In terms of F1 score, ClinCNV and GATK-gCNV demon-
strated superior calling performance compared to the other tools,
with GATK-gCNV exhibiting high effectiveness in identifying true
positives. The benchmark results, parameter evaluation, combi-
nation of tool pairs, and the CNVbenchmarkeR2 framework that
we developed can serve as a valuable guide to research and
diagnostic teams facing the task of detecting germline CNVs from
gene panel data.

Key Points

• Comprehensive evaluation of 12 copy number variation
callers on four real-validated datasets.

• ClinCNV and GATK-gCNV excelled, with GATK-gCNV
achieving superior sensitivity.

• Assessment of the effect of modifying 107 tool parame-
ters: 436 figures are publicly available.

• CNVbenchmarker2 enables users to conduct their own
tool evaluations.
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