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Abstract

Antimicrobial peptides (AMPs) have emerged as a promising substitution to antibiotics thanks to their boarder range of activities, less
likelihood of drug resistance, and low toxicity. Traditional biochemical methods for AMP discovery are costly and inefficient. Deep
generative models, including the long-short term memory model, variational autoencoder model, and generative adversarial model,
have been widely introduced to expedite AMP discovery. However, these models tend to suffer from the lack of diversity in generating
AMPs. The denoising diffusion probabilistic model serves as a good candidate for solving this issue. We proposed a three-stage Text-
Guided Conditional Denoising Diffusion Probabilistic Model (TG-CDDPM) to generate novel and homologous AMPs. In the first two
stages, contrastive learning and inferring models are crafted to create better conditions for guiding AMP generation, respectively. In
the last stage, a pre-trained conditional denoising diffusion probabilistic model is leveraged to enrich the peptide knowledge and fine-
tuned to learn feature representation in downstream. TG-CDDPM was compared to the state-of-the-art generative models for AMP
generation, and it demonstrated competitive or better performance with the assistance of text description as supervised information.
The membrane penetration capabilities of the identified candidate AMPs by TG-CDDPM were also validated through molecular weight
dynamics experiments.
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Introduction
The overuse of antibiotics has led humanity into a crisis of esca-
lating antimicrobial resistance. In 2019, drug-resistant infections
were linked to an alarming 4.95 million deaths globally, and this
number is expected to reach 10 million by 2050 [1, 2]. Antimi-
crobial peptides (AMPs), a type of short amino acid sequences
normally ranging in length from 5 to 50, are investigated as a
viable solution to combat antimicrobial-resistant disease treat-
ment due to their low propensity for inducing drug resistance
[3]. Traditional methods for discovering novel and potent AMPs
rely on biochemical strategies, which usually are costly and time-
consuming.

Deep generative models have been widely used to increase
the pace of AMP discovery by enhancing overall efficiency and
reducing resource consumption during the exploration process.
For example, the Long-Short Term Memory (LSTM) model [4]
has many applications within peptide generation. Porto et al. [5]
designed a unique model, namely Joker, to generate peptides
based on the principles of card games and sliding windows. Müller
et al. [6] trained an LSTM model with α-helix AMPs to facilitate
the design of new peptides via sampling in the feature space.

Nagarajan et al. [7] advanced the utilization of the LSTM model to
generate active AMPs and synthesized an array of 10 potent pep-
tides, their minimum inhibition concentration (MIC) predicted by
a trained bi-LSTM model. Grisoni et al. [8] refined the approach by
pre-training an LSTM model with a series positive α-helix cationic
amphipathic peptides and fine-tuning with 26 recognized active
anticancer peptides for de novo design. Wu et al. [9] utilized a
Transformer framework with an advanced attention mechanism
for signal peptide generation. Wang et al. [10] adopted two LSTM
models to sample AMPs with specified lengths of 15 and 20 respec-
tively. Schissel et al. [11] built a closed-loop framework, including
an LSTM generator, a predictor, and a genetic algorithm optimizer,
towards the generation of membrane-permeable peptides. Zhang
et al. [12] proposed LSTM_Pep, a model pre-trained on a large
number of peptides and fine-tuned to design de novo peptides
with specific therapeutic potential. Despite the advancements
represented by LSTM-based models in peptide generation, this
unparalleled generative autoregressive approach, which gener-
ates a current token based on the preceding one, results in lower
speed while encountering an issue known as gradient vanishing,
especially as the complexity of the model is scaled up with an
increase in the number of neurons.
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In light of these challenges, the non-autoregressive generative
models like variational autoencoder model (VAE) and generative
adversarial model (GAN) have emerged as powerful tools in the
field of peptide generation due to their ability to harness latent
spaces and to generate all the tokens in parallel. For example,
Das et al. [13] collected unlabeled peptides for training PepcVAE to
gain rich latent information and trained a classifier with labeled
peptide sequences. The output from the classifier was used as
a conditional input to guide the design of AMPs. Similarly, Dean
et al. [14] exploited the capability of VAE for reconstructing known
AMPs, enabling it to sample novel AMPs with targeted physico-
chemical properties. Das et al. [15] leveraged the guidance from
the classifier to train a VAE with an informative latent space of
molecules. This method facilitated the generation of novel AMPs
via rejection sampling, followed by a screening process using a
deep-learning classifier to ensure the retention of desired physic-
ochemical properties. Szymczak et al. [16] proposed HydrAMP,
a conditioning VAE designed to capture class priors and lower-
dimensional representation of peptides. This method disentan-
gles antimicrobial conditions from the representation of peptides
for diverse tasks in peptide generation, including unconstrained
and analogous generation. Tucs et al. [17] put forward PepGAN to
generate active AMPs, taking probability distribution between cov-
ering active peptides and dodging in-active peptides. PepGAN can
generate AMPs with specific physicochemical features. Rossetto
et al. [18] introduced GANDALF, a sophisticated framework that
employs two GAN models by integrating active atom information
to generate peptides and corresponding structures. This method
validated the effectiveness of the generated peptide sequences
through docking experiments. Ferrel et al. [19] proposed AMP-
GAN, a framework that combines a GAN with an encoder. This
innovative approach used conditional and latent vectors obtained
through the encoder to guide the GAN in generating correspond-
ing active peptides. Building on the success of AMP-GAN, Oort et al.
[20] updated their model structure and used bidirectional condi-
tional GAN to propose AMP-GAN v2 for AMP design. Li et al. [21]
extended the application of GAN and proposed the DeepImmuno-
GAN model to generate immune gene sequences. Surana et al.
[22] applied the Leak-GAN model for the task of antiviral peptide
generation and proposed PandoraGAN.

The aforementioned advancements highlight the adaptability
and potential of VAEs and GANs in contributing significantly to
the field of peptide design. However, the diversity of peptides
produced by these models encounters certain constraints due to
the sampling process derived from fixed probability distribution
or mode collapse [23–25]. Denoising Diffusion Probabilistic Model
(DDPM) [26] employs a neural network to simulate the nosing and
denoising processes within a Markov chain, serving as a good solu-
tion to this issue. DDPM reveals its potential by efficiently generat-
ing a diverse array of samples from the Gaussian distribution and
producing specific samples aligned with targeted requirements,
ranging from image generation [27] to protein design [28]. Inspired
by the success of text-guided image and short video genera-
tion, we propose a three-stage pre-trained framework based on
a text-guided conditional DDPM, namely TG-CDDPM, for AMP
generation. The first two stages introduce contrastive learning
and inferring models to enhance the conditions for guiding AMP
generation, respectively. In the third stage, a pre-trained DDPM
is used to enrich the peptide knowledge and fine-tuned to learn
feature representation in AMP generation. We utilize the textual
descriptions of the AMPs as supervised information to control the
sampling distribution and generation efficiency. The mode of pre-
training and fine-tuning has been acknowledged for its ability to

enrich the feature diversity in latent space, thereby elevating the
model’s overall performance. The effectiveness of TG-CDDPM was
demonstrated in the comparison studies with other state-of-the-
art AMP generative models and the molecular weight dynamics
experiment. The contributions of this study can be summarized
as follows:

• A peptide dataset for pre-training was collected from the
Uniprot database and subsequently preprocessed through
a sliding window technique. A fine-tuning dataset was col-
lected from a few public databases, including AMPs and
corresponding textual descriptions. The collected datasets
can serve as a valuable benchmark for future work in peptide
generation.

• A three-stage framework, known as TG-CDDPM, was pro-
posed to address the complexities in correlating texts with
peptides, enhancing the quality of condition vectors, and
generating novel and homologous AMPs, respectively. Unlike
LSTM, VAE, and GAN-based models, which focus on pep-
tide generation through sampling in latent space without
effective guidance, TG-CDDPM incorporates peptide attribute
information in a text-guidance manner. To our knowledge,
this is the first attempt in this field.

• The effectiveness of TG-CDDPM was rigorously assessed
through comparative experiments. Additionally, the appli-
cability of the generated peptides was further validated
via molecular dynamics simulation against both Gram-
negative and Gram-positive bacterial membranes. These
simulations demonstrated the membrane permeability of
the generated candidates, underlining the potential of TG-
CDDPM in contributing innovative solutions to the field.

Materials and methods
Datasets
To train TG-CDDPM, we constructed a pre-training dataset with
simulated peptides based on UniProt(https://www.uniprot.org/)
(see Fig. 1(a)) and a fine-tuning dataset containing known AMPs
and inactive peptides with the corresponding descriptive texts
from several public databases. Among the fine-tuning dataset,
58 481 APMs were collected from DBAASP v3.0(https://dbaasp.
org/) (14169), dbAMP v2.0(https://awi.cuhk.edu.cn/dbAMP/)
(20147), CAMP(http://camp.bicnirrh.res.in/) (15512), APD3(https://
aps.unmc.edu/AP/) (4173), and Dramp v3.0(http://dramp.cpu-
bioinfor.org/) (4480). The 58 443 inactive peptides were collected
from AMPlify[29] with a length of 50, used as a control for
AMPs. The balance between inactive and active peptides can
prevent data biases from influencing the model’s learning process
and ensure the reliability and diversity of generated AMPs. The
processes of data collection are illustrated in Fig. 1.

For an objective and rigorous dataset, we filtered out peptides
containing non-natural amino acids, specifically ‘B’, ‘J’, ‘O’, ‘U’,
‘X’, and ‘Z’, and removed redundant peptides with sequence
similarity of 90% from the collected data to reduce homology
bias, using the CD-HIT program [30]. Considering that the full-text
description may contain noise that increases the complexity of
model reasoning, we deleted excessive words to retain the most
informative description, including source, activity, and taxonomy.

We set a maximum generation length of 50 for TG-CDDPM,
aligning with the normal active AMP length range from 5 to 50
[31]. Considering a large portion of pre-training data exceeded
length by 50, simply truncating peptides at a fixed length would
potentially lose crucial biochemical information within amino
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Figure 1. The process of pre-training and fine-tuning datasets collection.

acids. Thus, we leveraged the slide window technique to pre-
serve as much biochemical information as possible from peptides
exceeding the length limit. The sliding-window strategy is illus-
trated in Fig. 1(a). The window size is 50, and the sliding step
is 1. Only a few of the AMPs in the fine-tuning dataset exceed
the threshold of 50 in length, so we just removed them from the
dataset. Finally, we obtained a pre-training dataset with 86 818 283
peptides and a fine-tuning dataset with 116 924 pairs of antimi-
crobial and inactive peptides, along with their text description as
shown in Fig. 1(b). During pre-training and fine-tuning processes,
we pad the peptides shorter than 50 at the end with a special
symbol, allowing the model to handle variable-length peptides.
TG-CDDPM is a Transformer-based diffusion model that can use
the attention mechanism to concentrate on the peptide region in a
padded sequence. Therefore, the variable length processing steps
do not affect the model’s performance, especially the peptide
generation.

The statistical information of the datasets and existing bench-
marks are listed in Table S2 of the Supplementary Materials.
To our knowledge, the constructed pre-training dataset is the
largest known simulated peptide dataset, and the constructed
fine-tuning dataset is the first peptide-text pair dataset for text-
guided peptide generation. Compared with existing benchmark
datasets, the datasets used in this study extended the length
of peptides to 50. Peptides in other datasets are no longer than
32, and some peptides are simply cut during the data collection
process, which could lead to information loss. Therefore, the
datasets used in this study are more informative and well-suited
for potential peptide generation tasks, leveraging pre-training and
fine-tuning. Furthermore, the text descriptions could be enhanced
with other labels, such as structural information, to advance text-
guided peptide generation toward target structures.

Overview of TG-CDDPM
The framework of the proposed TG-CDDPM is depicted in Fig. 2(a).
It comprises three modules namely text description encoder, con-
ditional diffusion model, and peptide decoder. The text descrip-
tion encoder translates the peptide description into a latent
vector, which is used as a condition to control peptide generation.

The conditional diffusion model receives Gaussian noise and
the text condition vector to perform inference to yield latent
features of AMPs. The peptide decoder generates a peptide
sequence according to the latent features yielded by the diffusion
model.

The structure of the text description encoder is illustrated in
Fig. 2(b). The description text undergoes a transformation into an
embedding matrix through the Tokenizer and Embedding Layer.
Since the text descriptions of peptides used in this work are
mainly derived from scientific materials, we employed SciBert [32]
to extract the text features and obtain accurate text representa-
tion. SciBert is a sophisticated language model pre-trained with
rich online scientific textual materials. Note that other specific
language models, such as BioBERT [33] and BLURB [34], are also
applicable to this task. Nevertheless, considering the dataset text
labels might come from more general areas, SciBert is adopted
in this work. To avoid the anisotropy problem of the language
model and make the text representation more suitable for the
AMP design task, we introduce a trainable adapter subsequent
to the SciBERT model to transform the latent features further to
adapt peptide generation.

Figure 2(c) depicts the conditional diffusion model, which
mainly involves two processes, i.e. adding noise and denoising.
In the process of adding noise, the embedding matrix undergoes
a forward diffusion transformation, resulting in a matrix of
Gaussian noise. We utilize a Transformer model for the denoising
process, which comprises multiple blocks with a multi-layer
perceptron neural network and multi-head attention mecha-
nisms. The Transformer’s excellent learning ability of correlations
between different positions enables the diffusion model to cap-
ture the complex features of noise in samples. To generate active
and novel peptide sequences, the textual condition obtained
in the text description encoder is concatenated with a noised
embedding matrix, serving as a guide throughout the process.

The peptide decoder consists of a feed-forward neural network
with the softmax activation function. It outputs the probability
distribution of amino acids at each position of the target peptide
based on the latent feature matrix generated by the diffusion
model.
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Figure 2. The illustration of the proposed method. (a) The overview of TG-CDDPM framework. (b) The process of the first and second stages in TG-CDDPM.
(c) The process of the third stage in TG-CDDPM. (d) The brief illustration of molecular dynamics simulation.

In this study, we designed a three-stage training strategy
to minimize potential biases within the computational model,
ensuring that the trained model consistently generates reliable
peptide candidates. The training of TG-CDDPM was conducted
using an NVIDIA RTX GeForce 3050 GPU with 8 GB of memory,
completing the process in 72 hours. The key components of TG-
CDDPM are detailed as follows.

Text and peptide alignment
The alignment of peptides and text is a key to text-guided pep-
tide generation. Contrastive learning provides an effective way
to achieve this goal. In this study, we use CLIP [35], a classical
contrastive learning framework, to perform the first-stage pre-
training to construct the association between text and peptides.
The CLIP framework has been successfully applied to image-text
alignment in the field of image generation. It can maximize the
similarity between the text and their corresponding peptide while
reducing that among mismatched pairs to learn the association
between text and peptides effectively. We use the language model
SciBERT to encode text and design a peptide encoder based on
Transformer neural networks. The amino acids can be regarded
as the ‘words’ of a peptide sequence, so we can define a peptide
vocabulary consisting of 20 natural amino acids. As such, natural

language processing techniques can be applied to process pep-
tide sequences. The pre-training process of stage one is shown
in Fig. 3(a). Let TO1 and PO1 denote the first pair of text and
peptide feature vectors, respectively, TO2 and PO2 correspond to
the second pair. The objective of the training loss function is
to narrow the distance between TO1 and PO1 while maximizing
the distance between TO1 and PO2. The training hyperparameters
of peptide encoder and SciBERT are provided in Table S1 of the
Supplementary Materials. The SciBERT remains fixed at this stage.
InfoNCE [36] function was used to calculate the loss, which is a
classical contrastive learning loss function. It can be formulated
by Equation (1):

Loss(x, K) = Ep(i|x,K)

[
−log

exp(S(x, k+))∑
kεK exp(S(x, k))

]
(1)

where S(·) indicates the softmax activation function, x and k+

represent the same pair of text and peptide features, respectively,
and K denotes the set of all peptide features. The contrastive
learning model was trained by the pairs of text and peptides in
the fine-tuning dataset. The peptide encoder’s weights and biases
were updated and transitioned from this stage to the subsequent
stages.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae644#supplementary-data
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Figure 3. Three training stages of TG-CDDPM. (a) The pre-training process of text and peptide alignment. (b) The training process of text to peptide
inference. (c) The pre-training and fine-tuning processes for AMP generation.

Text to peptide inference
Inferring the potential peptides from the text description is a
complex problem (many-to-many mapping). To avoid the lan-
guage model’s anisotropy problem and obtain a more accurate
condition vector, we introduced a DDPM-based adapter in the
text encoder. In the second stage, we pre-trained the adapter to
make the language model SciBERT more compatible with our
task. During the training phase, we fixed the parameters of the
language model SciBERT and the peptide encoder and only trained
the adapter using the fine-tuning dataset. The pre-training pro-
cess is illustrated in Fig. 3(b), where TO indicates a text feature
vector, PO denotes an amino acid feature vector, and PO′ represents
a condition vector. The training objective is to close the text
condition vector to the corresponding peptides in a certain latent
space. In this study, we used the Mean Square Error (MSE) as the
loss function to achieve this. It can be formulated by Equation (2):

LMSE =
∑N

i=1 ‖Oi − Ii‖2

N
(2)

where Oi and Ii represent the output and input for the ith sample,
respectively. N is the total number of samples in a training batch.
The hyperparameters used in this stage are listed in Table S1 of
the Supplementary Materials. The trained adapter ensures the
derivation of conditions from text features, facilitating text-to-
peptide transformation.

Text-guided AMP generation
After the previous two stages, we can obtain a conditional vector
to guide the denoising process of the diffusion model and generate
specific peptides. To improve the stability and generalization
ability of the model, we initially pre-trained a DDPM with the
pre-training dataset from UniProt without guidance and then
applied the pre-trained model to AMP generation via the transfer
learning strategy, ensuring the model’s adaptation of text-guided
generation task.

The pre-training process is shown in the left panel of Fig. 3(c),
where noise is added to the embedding matrix on 500 time
steps to generate a Gaussian noise distribution. Then, the DDPM

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae644#supplementary-data
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simulates the Markov chain’s denoising process to capture the
feature distribution of pre-training peptides and reconstruct the
original embedding matrix. MSE serves as the loss function to
measure the quality of the reconstructed embedding matrix. The
detailed hyperparameters for pre-training are listed in Table S1 of
the Supplementary Materials.

The fine-tuning process is shown in the right panel of Fig. 3(c)
where the fine-tuning dataset is used to train the DDPM to make
it more applicable to APM generation. Unlike the pre-training pro-
cess, the text conditional vector and Gaussian noise jointly guide
the DDPM in reconstructing the peptide embedding matrix. There-
fore, the model can produce latent peptide embedding matching
the text description after fine-tuning. Like the pre-training pro-
cess, the MSE is used as the loss function to constrain DDPM
and minimize the discrepancies between the reconstructed and
original embedding matrices to simulate the denoising process.
Restoring the peptide sequence from the latent embedding matrix
is also essential in the entire process of peptide generation. In this
regard, we use the cross-entropy function to measure the quality
of the peptide decoder to restore the peptide sequence. The cross-
entropy loss function can be formulated as follows:

LCE = −1
N

N∑
i

[yi · log(qi) + (1 − yi) · log(1 − qi)] (3)

where yi represents the label of the ith amino acid, equivalent
to the Token value of the input sequence, and qi represents the
output probability distribution of amino acid at position i.

Therefore, the fine-tuning phase is a multi-objective optimiza-
tion process. The complete loss function is shown below:

L = LMSE + LCE (4)

where LMSE is the peptide embedding matrix reconstructing loss
and LCE is peptide sequence decoding loss. The hyperparameters
of fine-tuning are shown in Table S1 of the Supplementary Materi-
als. This detailed fine-tuning strategy substantially enhances the
model’s ability to recreate intricate peptide sequences, thereby
solidifying the decoding efficacy of our denoising diffusion gener-
ative model. Within the peptide generation phase, we do random
sampling with Gaussian noise and text guidance that describes
specific peptide properties, enabling the generation of a wide
variety of AMPs.

Evaluation metrics
To evaluate the proposed TG-CDDPM framework, we introduced
an evaluation metric named AMscore based on three AMP predic-
tors, including amPEP [37], CAMP [38], and IPPF-FE [39]. The metric
measures the proportion of generated peptides with predicted
antimicrobial activity as follows:

AMscore = Nam

N
(5)

where Nam is the number of peptides with predicted antimicrobial
activity and N represents the total number of generated peptides.
The predicted antimicrobial activity is calculated by amPEP, CAMP,
and IPPF-FE. For instance, after synthesizing a batch of peptide
sequences, we can use a predictor to calculate the likelihood of
a sequence being an AMP. If the predicted score of a peptide
meets the requirement of the threshold value (i.e. 0.5) [40, 41], the
peptide is considered to have antimicrobial activity. Additionally,

Table 1. The results of comparison TG-CDDPM with three
state-of-the-art methods

amPEP CAMP r3 IPPF-FE

PepcVAE 0.583±0.0028∗∗∗ 0.735±0.0027∗∗∗ 0.388±0.0011∗∗∗

- w/o guidance 0.580±0.0023∗∗∗ 0.533±0.0031∗∗∗ 0.414±0.0025∗∗∗

ampGAN v2 0.834±0.0022∗∗∗ 0.873±0.0009∗∗∗ 0.819±0.0014 -
HydrAMP 0.895±0.0006∗∗∗ 0.854±0.0023∗∗∗ 0.798±0.0021∗
- w/o guidance 0.835±0.0016∗∗∗ 0.751±0.0039∗∗∗ 0.767±0.0019∗∗∗

TG-CDDPM 0.964±0.0003 0.977±0.0002 0.833±0.0005
- w/o guidance 0.866±0.0013∗∗∗ 0.843±0.0019∗∗∗ 0.774±0.0007∗∗∗

molecular dynamics simulation was also used to evaluate the pro-
posed method. We used mass density [42] to measure molecular
dynamics simulation results.

Results
Comparison with state-of-the-art methods
TG-CDDPM was compared with three representative state-of-
the-art deep-learning-based AMP generation methods, namely
PepcVAE [13], ampGAN v2 [20], and HydrAMP [16]. It costs almost
8 days in batch size 20 for TG-CDDPM to generate millions of
peptides. In a single comparison experiment, each method was
configured to generate 100 peptides. We used the text: ’This
is a peptide: target antibacterial, anticancer antiviral’ in TG-
CDDPM to guide the generation of 100 peptides. PepcVAE employs
minimum inhibitory concentration (MIC) probabilities as guid-
ance to generate 100 peptides, and ampGAN v2 uses a series of
labels (including sequence length, MIC, target microbes, and tar-
get mechanisms) to instruct the model to generate 100 peptides.
HydrAMP requires existing peptides as templates for guidance.
The quality of selected reference peptides impacts HydrAMP’s
generations. For an objective comparison, we randomly sampled
100 collected test peptides as templates to guide HydrAMP for the
generation. To explore the role of guidance information, we also
evaluated the performance of different models without guidance,
except ampGAN v2, since it does not provide an unguided option.

The experiment was repeated 10 times, and the average
and standard deviation of the AMscores were calculated. A
Student’s t-test [43] was conducted to determine the significance
of the differences between TG-CDDPM and other models. The
significance levels of t-test are denoted as: -: p>0.05, ∗: p≤0.05,
∗∗: p≤0.01, and ∗∗∗: p≤0.001. The results of different methods
are listed in Table 1. TG-CDDPM outperforms the counterpart
competing methods w/o text guidance in terms of AMscore. It
is worth noting that the performance of all methods decreased
after the guidance module was removed. This indicates that the
guidance information is valuable for generating AMPs. In addition,
compared to the other two methods with guidance information,
i.e. PepcVAE and HydrAMP, TG-CDDPM showed more significant
improvement with text guidance, demonstrating better capability
of cooperating with diverse input features. The confidence
intervals for TG-CDDPM with guidance, in amPEP, CAMP r3,
and IPPF-FE are [0.950, 0.978], [0.966, 0.988], and [0.816, 0.849],
respectively.

To validate the antimicrobial properties of the generated
peptides, we analyzed three critical physicochemical properties
related to the antimicrobial activity of 100 generated peptides,
including charge, GRAVY hydrophobicity, and TM tend moment.
These properties were calculated by a Python package, Modlamp
[44]. To objectively compare with other methods, we also

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae644#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae644#supplementary-data
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Table 2. Top 10 generated candidate peptides

Candidates hits e-value Secondary
structure

IVASIKARLGKLI 1 9.0279 α-helix
FLGPALLVAHGLVKGRC 3 8.9362 α-helix
GIKPLLNKKLSGL 1 8.8821 α-helix
GLKILVLPFLKVIGTLIR 7 7.9600 hybrid-helix
WKGKLAARLALLKLL 1 7.5218 α-helix
GFLKLAVRRKKRVNALC 2 6.3437 α-helix
GWLKLLKKAKKVIIGVM 2 5.3093 α-helix
GWLKVLKPRLKLI 19 5.2798 3–10-helix
VVPLLFGGLGKKL 52 4.0595 coli and turn
KILGLFKLGKLVVAK 1 3.7602 α-helix
GVKKILVAAKKL 127 2.9669 α-helix

conducted a significance analysis by the Student’s t-test. The
results are shown in Fig. S1 of the Supplementary Materials.
TG-CDDPM generated peptides with an average positive charge
of +6, outperforming other methods. The same results were
observed in terms of the GRAVY hydrophobicity. While TG-CDDPM
achieved the third-best TM tend moment, it is comparable to
those produced by HydrAMP and ampGAN v2. These results
indicate that the AMPs generated by TG-CDDPM are reliable
compared with existing state-of-the-art computational methods.

Molecular dynamics simulation
To estimate the activeness of the generated peptides by TG-
CDDPM, we validated the propensity for cell membranes of the
generated peptides via a molecular dynamics simulation exper-
iment targeting the interaction of the peptides with both Gram-
negative and Gram-positive bacterial membranes. We used TG-
CDDPM to generate 100 peptide sequences for evaluation. The
generated peptides could be homologous with known AMPs in the
fine-tuning dataset, the activeness of which has been verified.
Our interest is in novel peptides that are distinguished from
the known ones. New peptides might better serve as innovative
drug candidates. In this regard, we utilized the BLAST tool [45]
to filter the generated peptides against the known AMPs in the
fine-tuning dataset, ensuring the generated peptides cover diverse
antimicrobial properties of active peptides in terms of homology.
The e-value of BLAST measures the homogeneity between the
generated and the known AMPs. A larger e-value indicates better
singularity of the corresponding generated peptide. The number
of hits indicates the number of known AMPs matched to a candi-
date peptide by BLAST. The top 10 generated peptides in terms of
e-value are tabulated in Table 2.

We used GROMACS [46] to perform 100ns molecular dynamics
simulations between the generated peptides and the Gram-
negative and Gram-positive bacterial membranes. Online utility
CHARMM-GUI [47] was used for constructing Gram-negative
and Gram-positive bacterial membranes and the corresponding
force fields. We set the ratio of the molecules forming the
Gram-negative bacterial membrane as POPE/POPG/TOCL to
7:2:1, and the ratio of the Gram-positive bacterial membrane
as POPG/POPE/DOTAP/TOCL to 6:1.5:1.5:1 [48]. The conditions
for molecular dynamics simulation, including force fields,
temperature, and pressure, were automatically generated without
manual setting, and the corresponding files and codes are
available in the GitHub repository. The mass density [42] metric
was then applied in evaluating the actual interaction between

the peptides and membranes and identifying which confor-
mations most significantly influence membrane penetration
tendency.

Based on the three-dimensional conformation prediction of
AlphaFold 2 [49], a predictor available on the online platform, the
pTMscore was calculated to validate the accuracy of structures.
The peptides with the highest score can be mainly classified
into three types, i.e. α-helix structure, 3–10 helix structure, and
hybrid structures comprising both. The mass density distributions
of three representative peptides, each for a secondary structure
(highlighted in Table 2), over Gram-negative bacterial membranes
are shown in Fig. 4. Among the representative peptides, the pep-
tide ‘GIKPLLNKKLSGL’ bears an exclusive α-helix structure, and
‘GLKILVLPFLKVIGTLIR’ bears a hybrid helix structure of both α-
helix and 3–10 helix, while ‘GWLKVLKPRLKLI’ has a concise 3–
10 helix. In Fig. 4, the horizontal and vertical axes symbolize the
membrane’s center position and the mass density, respectively,
with the red and blue curves denoting the positions of membrane
and peptide. From time 0 to 100 ns, all three peptides manifested
progressive interaction with the membrane. ‘GIKPLLNKKLSGL’
and ‘GLKILVLPFLKVIGTLIR’ show stronger membrane penetra-
tion capability and are embedded deeper into the membrane, as
shown in Figs 4(a) and 4(b). ‘GWLKVLKPRLKLI’ exhibited a rela-
tively weaker interaction, as shown in Fig. 4(c). The visualization
of the simulation results by VMD fool [50] is shown in Fig. 5, which
provides a more intuitive view of the candidate peptides with
secondary structure on the membrane permeability of the Gram-
negative bacterial membranes. Similar results were observed in
simulations involving Gram-positive bacterial membranes, with
mass density and visualization results illustrated in Figs S2 and S3
of the Supplementary Materials, respectively. The results demon-
strated the membrane permeability tendency of the generated
peptides in Gram-negative and Gram-positive bacterial mem-
branes and the secondary structure can impact AMP membrane
permeability reaction [51], i.e. the α-helix structure may be a
vital element that affects the degree of membrane permeability
in AMPs.

Minimum inhibition concentration analysis
MIC is a classical indicator used to measure the antibacterial
activity of antibiotics. However, conventional laboratory exper-
iments of MIC are time-consuming. Computation-based meth-
ods [52, 53] have served as an important supplement to exper-
imental techniques for analyzing antimicrobial activity. To fur-
ther validate the performance of the generated AMPs, we used
AMPActiPred [53], a computational model designed to predict
the antibacterial activity of AMPs against various microbes, to
estimate the MIC of the generated candidate AMPs. We first
validated the reliability of AMPActiPred on known natural AMPs
and inactive peptides, as shown in Fig. S4(a) of the Supplementary
Materials. AMPActiPred was then used to predict the MIC values
of the top 10 generated AMP candidates as shown in Table 3.
The results show that the generated peptides demonstrate activ-
ity against various bacteria. Notably, nearly all tested peptides
were predicted to be active against S.aureus.. More details of the
predictions are also available in Fig. S4(b) of the Supplementary
Materials.

Ablation experiment
To investigate the roles of different modules in the proposed
method, we conducted an ablation experiment on TG-CDDPM.
For this purpose, we set up three control variants, i.e. a model

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae644#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae644#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae644#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae644#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae644#supplementary-data
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Figure 4. Mass density for generated candidate peptides targeting Gram-negative bacterial membrane, across three-time intervals: 0–25, 25–75, and
75–100 ns, from left to right.

TG-CDDPM1 without pre-training, a model TG-CDDPM2 without
the second-stage training, and a model TG-CDDPM3 without
second-stage training or pre-training. Each model used the text
’This is a peptide: target antibacterial, anticancer antiviral’ to
guide TG-CDDPM to generate 100 peptides. We repeated the
evaluation experiment 10 times and calculated the average and
standard deviation of the results. The AMscores of different
models were calculated by three AMP predictors. We also
conducted the statistical tests via a Student’s t-test to determine
the significance of the differences between TG-CDDPM and other
models. The results are reported in Table 4. As can be seen in
the results, skipping both the pretraining and the second stage of
training, TG-CDDPM3 suffered from a significant performance
deterioration. With either one of them, TG-CDDPM1 or TG-
CDDPM2 can attain improvement from TG-CDDPM3, which

indicates the effectiveness of these two modules. TG-CDDPM1

is better than TG-CDDPM2, suggesting that the second-stage
training might contribute more to the performance of TG-CDDPM.
It is evident that the complete TG-CDDPM achieves the best
overall performance in terms of the three metrics by conducting
both the second-stage training and pre-training together.

We also investigated the influence of different fine-tuning
strategies and input text guidance on the method. We compared
the quality of generated peptides using supervised and unsuper-
vised fine-tuning, respectively. The results are reported in Table
S3 of the Supplementary Materials. TG-CDDPM achieved higher
success rates for active AMP generation with text guidance when
fine-tuned with supervised information, enhancing the specificity
of generated peptides. Results of the ablation experiment on input
text are summarized in Table S4 of the Supplementary Materials,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae644#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae644#supplementary-data
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Table 3. Minimum inhibitory concentration of the top 10 generated candidate peptides against Gram-positive and Gram-negative
bacteria based on AMPActiPred. The ‘−’ indicates that the peptide was predicted as inactive against the corresponding microbe

Candidate Gram-positive Activity (log MIC, unit: uM) Gram-negative Activity (log MIC, unit: uM)

B.subtilis E.faecalis S.aureus K.pneumoniae P.aeruginosa A.baumannii

IVASIKARLGKLI − 1.4926 1.3951 − 1.4812 −
FLGPALLVAHGLVKGRC − − 1.2483 1.5175 − 1.0574
GIKPLLNKKLSGL − − 1.5385 1.4203 − −
GLKILVLPFLKVIGTLIR − − 0.8400 − − −
WKGKLAARLALLKLL − − 0.7632 − − −
GFLKLAVRRKKRVNALC − − 1.1731 − 1.0484 1.0628
GWLKLLKKAKKVIIGVM − − 0.8482 − 1.0372 −
GWLKVLKPRLKLI 0.8651 − − 1.2133 1.2810 −
VVPLLFGGLGKKL − − 1.1196 − − −
KILGLFKLGKLVVAK − − 1.0844 − − −
GVKKILVAAKKL − − 1.3518 1.1165 1.5516 −

Figure 5. VMD visualization for generated candidate peptides targeting
Gram-negative bacterial membrane, across time intervals: 0–50 and 50–
100 ns, from left to right.

Table 4. The results of ablation study for TG-CDDPM

amPEP CAMP r3 IPPF-FE

TG-CDDPM 0.964±0.0003 0.977±0.0002 0.833±0.0005
TG-CDDPM1 0.916±0.0006∗∗∗ 0.960±0.0001∗ 0.869±0.0011∗

TG-CDDPM2 0.901±0.0007∗∗∗ 0.949±0.0003∗∗ 0.783±0.0021∗∗

TG-CDDPM3 0.757±0.0023∗∗∗ 0.875±0.0035∗∗∗ 0.628±0.0099∗∗∗

TG-CDDPM1: TG-CDDPM w/o pre-training. TG-CDDPM2: TG-CDDPM w/o the
2nd stage training. TG-CDDPM3: TG-CDDPM w/o pre-training or the 2nd
stage training.

which show that the content and length of the guide text affect
the generation of AMPs, and richer and more accurate textual
descriptions help TG-CDDPM generate AMPs.

Discussions
While TG-CDDPM demonstrated promising results in generating
novel AMPs, several limitations exist that warrant further inves-
tigation. First, the length of pre-training peptides is limited to 50
after pre-processing with a sliding window approach. This process
inevitably removes some biochemical information, resulting in
an incomplete representation of the pre-trained model. Second,
the fine-tuning dataset lacks detailed descriptions of inactive
peptides. To address this problem, we labeled all of them simply as
’target: inactive peptide’, which diminishes the diversity of nega-
tive descriptive information and affects the generation of inactive
peptides. Besides, TG-CDDPM is constrained by a peptide length
≤ 50 for generation, which limits its ability to generate active pep-
tides longer than 50 amino acids. Last, TG-CDDPM relies solely on
text description to guide peptide generation. While the function of
peptides largely depends on their spatial structure. Therefore, TG-
CDDPM may be extended to a model that can generate peptides
of any length. TG-CDDPM was trained with general text descrip-
tion including target, source, and taxonomy instead of specific
supervised information showing the antimicrobial activities of
peptides, such as charge, hydrophobicity, and structures. Incorpo-
rating these specific descriptions into the training datasets could
address the problem of missing textual description information
for inactive peptides and enhance active peptide design.

Peptides are considered intermediaries between amino acid
and protein sequences, capable of transitioning to proteins
through the folding of secondary structures. Given the similarities
between peptides and proteins, TG-CDDPM may also be adapted
for protein sequence design with appropriate text descriptions.
Moreover, TG-CDDPM employs a self-attention mechanism and
a positional encoding module, which could enable it to focus on
critical positional or structural information for designing protein
secondary structures, provided that structural data is available.
Through the application of TG-CDDPM, we can explore a wide
landscape for peptide and protein design.

Conclusion
In this study, we propose a pre-trained generative diffusion model
with text guidance, TG-CDDPM, for AMP generation aimed at
reducing resource consumption in biochemical methodologies.
Comparative analyses demonstrate that TG-CDDPM outperforms
state-of-the-art methods in AMP generation. Additionally, molec-
ular dynamics simulations indicate that the generated AMPs are
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capable of membrane penetration, underscoring TG-CDDPM’s
potential as a tool for discovering effective peptide-based thera-
peutics. TG-CDDPM facilitates the exploration and identification
of active AMPs prior to biochemical and clinical testing, thereby
accelerating the AMP discovery process.

Despite its efficacy, TG-CDDPM has a limitation that it cur-
rently cannot generate AMPs with specific secondary structures,
which are crucial for AMP activity. Future improvements are
deserved to enhance TG-CDDPM to generate AMPs with targeted
structures through more rich guidance.

Key Points

• This study constructs a pre-training dataset and a fine-
tuning dataset for antimicrobial peptide generation,
which can serve as a valuable benchmark for future
works.

• This study proposes a multi-stage framework for antimi-
crobial peptide generation based on text description that
outperforms three state-of-the-art methods.

• The molecular dynamics simulation demonstrated the
membrane permeability of the generated candidates by
the proposed method, showing its potential applicability
in drug design.
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