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Abstract

Ribosome profiling (Ribo-seq) provides transcriptome-wide insights into protein synthesis dynamics, yet its analysis poses challenges,
particularly for nonbioinformatics researchers. Large language model–based chatbots offer promising solutions by leveraging natural
language processing. This review explores their convergence, highlighting opportunities for synergy. We discuss challenges in Ribo-
seq analysis and how chatbots mitigate them, facilitating scientific discovery. Through case studies, we illustrate chatbots’ potential
contributions, including data analysis and result interpretation. Despite the absence of applied examples, existing software underscores
the value of chatbots and the large language model. We anticipate their pivotal role in future Ribo-seq analysis, overcoming limitations.
Challenges such as model bias and data privacy require attention, but emerging trends offer promise. The integration of large language
models and Ribo-seq analysis holds immense potential for advancing translational regulation and gene expression understanding.
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Introduction
Ribosome profiling, also known as Ribo-seq, is based on high-
throughput sequencing of ribosome-protected messenger RNAs
(mRNAs) [1]. The method has facilitated the discovery of the

regulation of gene expression underlying diverse and complex
biological processes, the mechanism of protein synthesis, and
even the identification of new proteins, by providing a systematic
approach for experimental annotation of coding regions [2].
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In parallel, the field of artificial intelligence has witnessed
remarkable advancements, particularly in the realm of large lan-
guage models (LLMs). These models, such as OpenAI’s Generative
Pretrained Transformer (GPT) series, are trained on vast amounts
of text data and demonstrate exceptional capabilities in natu-
ral language understanding and generation. Beyond their initial
applications in language processing tasks like text generation and
summarization, LLMs have found utility across diverse domains
including healthcare, finance, and education [3–7]. Their ability to
comprehend and generate human-like text has spurred innova-
tive applications, transforming how we interact with information
and automate various tasks [8].

However, although there are so many wonderful toolkits for
ribosome profiling data analysis designed for various aspects
[9], there still exist challenges, especially for researchers lacking
any coding experiences or limited bioinformatics expertise. For
researchers without a background in bioinformatics, it demands a
significant investment of time and effort to acquire knowledge of
Linux, R, and Python which entails conducting ribosome profiling
(Ribo-seq) data analysis. Depending solely on standardized analy-
sis reports generated by sequencing companies may sometimes
fail to meet researchers’ personalized needs. Additionally, for
novice bioinformatics researchers, the choice of different data
analysis software for the same ribosome profiling raw data some-
times may yield disparate results [10]. Thus, optimizing data anal-
ysis workflows becomes an important consideration, but it is dif-
ficult for them. In summary, the immense volume and complexity
of ribosome profiling datasets present formidable obstacles for
data analysis, particularly for those without a background in
bioinformatics and newcomers to the field.

It is within this context that the potential of LLM-based chat-
bots emerges as a compelling solution. By leveraging the natu-
ral language processing (NLP) capabilities of LLMs [11], chatbots
may assist researchers in navigating the complexities of Ribo-seq
data analysis. From data preprocessing and alignment to down-
stream analysis and interpretation, LLM-based chatbots have the
potential to automate the appropriate workflows and empower
researchers to extract meaningful insights from Ribo-seq datasets
efficiently.

The intersection of LLMs and bioinformatics holds significant
promise for addressing current limitations in Ribo-seq data
analysis. LLM-based chatbots can democratize access to advanced
bioinformatics tools and reduce the learning curve for new
researchers. By integrating LLMs into the Ribo-seq data analysis
workflow, we can overcome existing barriers and enhance the
overall efficiency and accessibility of bioinformatics research.

In this review, we explore the convergence of Ribo-seq data
analysis and LLM-based chatbots, highlighting the opportunities
for synergy between these two domains. We examine the chal-
lenges inherent in Ribo-seq data analysis and discuss how LLM-
based chatbots can mitigate these challenges, paving the way for
accelerated scientific discovery in the field of bioinformatics and
biomedical science [12].

Fundamentals of ribosome profiling
Ribosome profiling, also known as Ribo-seq, is a cutting-edge
experimental technique developed to monitor translation in vivo
at a genome-wide scale [13, 14]. The principle underlying Ribo-
seq involves the selective isolation and sequencing of ribosome-
protected mRNA fragments, known as ribosome-protected
fragments (RPFs) [15]. These footprints represent the positions
of actively translating ribosomes along the mRNA transcriptome
[16].

Figure 1. An overview of ribosome profiling library preparation.

Workflow of Ribo-seq technique
The workflow of Ribo-seq typically involves the following steps
(Fig. 1):

The first step in ribosome profiling is the isolation of ribosomes
and the preservation of their positions on mRNA molecules. Cells
are typically treated with a translation inhibitor [17], such as
cycloheximide, to freeze ribosomes in their current positions [18].
This step prevents ribosomes from translocating along the mRNA
during the subsequent lysis and RNA isolation processes.

Next, the cells are lysed, the ribosome–mRNA complexes are
captured, and the ribosome-protected footprints are isolated. This
can be achieved through the addition of nucleases that degrade
unprotected RNA molecules, leaving the ribosome-protected frag-
ments (RPFs) intact. The resulting RPFs or ribosome footprints,
represent the positions of ribosomes along the mRNA molecules
at the time of lysis [19].

Following RPF generation, these fragments undergo several
steps before being subjected to high-throughput sequencing.
These steps include adenylation, adapter ligation, complemen-
tary DNA (cDNA) synthesis, and polymerase chain reaction (PCR)
amplification. The sequencing process generates millions of
short reads. Each clean read represents an individual ribosome
footprint, monosome-protected footprints with typical lengths
∼30 nucleotides [20], and disome-protected footprints with
typical lengths ∼60 nucleotides [21], corresponding to the size
of ribosome footprints [22].

Once the sequencing raw data are obtained, the analysis phase
begins. The raw sequencing reads are initially processed to remove
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Figure 2. Post mapping quality control step of Ribo-seq data analysis. (A) Triplet periodicity plots, using 28 nt reads as an example. (B) Length distributions
of all the RPF reads. (C) Numbers of reads mapped to different regions of the genome. The sample SRR9047194 in the dataset GSE131074 was used as
an example here [37].

adapter sequences [23], remove reads with low quality, and
remove ribosomal RNA (rRNA) contamination through quality
control measures [24, 25]. These steps ensure the accuracy and
reliability of downstream analyses.

After preprocessing, the ribosome profiling data are aligned to
the reference genome or transcriptome using specialized align-
ment algorithms [26]. This step maps the ribosome footprints to
their corresponding genomic locations, allowing for the identifica-
tion of the genes and regions undergoing active translation [27].

The aligned data can then be further analyzed to extract
various types of information, such as translation efficiency [28],
ribosome density [29], cotranslation between protein [30], and
translational dynamics [31–33]. Advanced computational tools
and statistical methods are employed to infer translation-related
parameters and identify differentially translated genes between
different conditions or cell types.

Overall, the experimental workflow of ribosome profiling
involves the isolation and preservation of ribosome–mRNA
complexes, followed by the generation of ribosome footprints
through nuclease digestion. The resulting footprints are then
sequenced, and the data are processed, aligned, and analyzed
to extract meaningful insights into translation dynamics and
regulation [34]. By following this workflow, researchers can obtain
genome-wide information on translation events and unravel the
intricacies of protein synthesis at a transcriptome-wide scale [35].

Key points of Ribo-seq data analysis
Because of the unique characteristics of Ribo-seq data, one crit-
ical step of ribosome profiling data analysis is the evaluation of
postmapping quality [36]. The key points are the assessment of
triplet periodicity (Fig. 2A), read-length distribution (Fig. 2B), and
DNA contamination (unique read count across genomic features
such as exon, intergenic region, intron, and ambiguous reads of
RNA) (Fig. 2C) [37].

Integrative analysis of Ribo-seq with other omics
data
Ribo-seq is a quintessential example of sequencing-based omics
data. The true potential of Ribo-seq is often realized when it is
integrated with other omics datasets, such as transcriptomics,
proteomics, and other translatomics. This integrative analysis

enables a more comprehensive understanding of the intricate
layers of gene regulation and protein synthesis.

One of the most common combinations is Ribo-seq with RNA
sequencing (RNA-seq). This integration allows for the calcula-
tion of translation efficiency (TE) [28], which is a key metric
that reflects the ratio of ribosome occupancy to mRNA abun-
dance. By comparing Ribo-seq and RNA-seq data, researchers can
distinguish between translational regulation and transcriptional
changes, offering deeper insights into how gene expression is
modulated at multiple levels. For example, differential TE across
conditions can reveal mechanisms of selective translation that
might not be apparent from RNA-seq data alone.

Polysome profiling, another powerful translatomics technique,
when combined with Ribo-seq, provides a detailed view of the
translational process. By integrating polysome profiling with ribo-
some profiling, it becomes possible to accurately quantify abso-
lute ribosome density, which can then be used in models such as
the totally asymmetric simple exclusion process to derive trans-
lation elongation efficiency and translation initiation efficiency
[31]. This integration is particularly valuable for understanding
the dynamics of ribosome movement along mRNAs.

The combination of Ribo-seq, RNA-seq, and proteomics data,
particularly liquid chromatography–mass spectrometry (LC-MS),
allows for a holistic view of gene expression from mRNA to pro-
tein. This integrative approach can uncover potential regulatory
elements and networks at multiple levels of gene expression.

Challenges in Ribo-seq data analysis
When researchers get the Ribo-seq data, sometimes they are
not satisfied with the standardized analysis reports generated
by sequencing companies. It comes up with several challenges
if the researcher requires customized data analysis due to the
complexity of Ribo-seq data.

Especially, for researchers with no or limited bioinformatics
expertise, although a lot of tools have been developed for Ribo-
seq data analysis [9], it is difficult for them to get started
with the software. There are two main reasons that shall be
blamed for the difficulty. Firstly, the tools are often implemented
in different programming languages, leading to an increased
demand for learning different computer languages. Secondly,
the software’s installation often depends on language-centered
running environments, leading to an increased difficulty of
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Figure 3. An overview of ribosome profiling data analysis.

software configuration management [36]. Hence, these users
need to be acquainted with Linux, R, and Python, which demands
a significant investment of time and effort. Steps of ribosome
profiling data analysis including adapter trimming, removing
rRNA contamination, alignment, and postmapping quality control
often require execution on the Linux platform, necessitating
proficiency in basic Linux commands. Processes including
differential analysis typically involve learning the R programming
language, while those that need statistics and computation may
necessitate familiarity with Python (Fig. 3).

On the other hand, for researchers with a bioinformatics back-
ground, the choice of different data analysis software for the
same ribosome profiling raw data sometimes may yield differ-
ent results. As different raw data may require distinct analysis
pipelines to achieve optimal outcomes, optimizing data analysis
workflows needs to be strongly considered. Furthermore, due to
variations in the library preparation methods for Ribo-seq, the
raw data reads may contain different adapters, unique molecular
identifiers (UMIs), and barcodes. Therefore, adjustments to the
optimized pipeline should be based on the specific characteristics
of each set of Ribo-seq raw data.

In summary, the complexity of ribosome profiling datasets
presents formidable obstacles to data analysis, particularly for
researchers without a background in bioinformatics and new-
comers to the field. Therefore, there is a demand for tools to
fulfill the following five features, as outlined in a paper: natural
language understanding (NLU), artificial intelligence (AI), trans-
parency, mobile and social media friendliness, and crowdsourcing
[38]. In my opinion, integration of LLM-based chatbots in ribosome
profiling data analysis may be a powerful weapon to achieving
these requirements.

Role of chatbots in scientific discovery
Chatbots, also known as conversational agents or digital
assistants [39], are software programs designed to simulate
human conversation through NLP techniques [40]. Over the years,
chatbot technology has undergone significant evolution, driven
by advances in artificial intelligence, machine learning, and NLP
algorithms [41]. Early chatbots relied on rule-based systems,
where predefined rules determined their responses to user
inputs. However, with the advent of machine learning and deep
learning techniques [42], modern chatbots can learn from data
and improve their conversational abilities over time [43]. Recently,
there have been notable advancements in the development of
LLMs such as GPT series, which have revolutionized chatbot
capabilities by enabling more contextually relevant and human-
like interactions.

Applications of chatbots in scientific research
Chatbots have shown diverse applications in scientific research,
enhancing various aspects of the scientific discovery process.

• Literature mining: Chatbots can assist researchers in nav-
igating the vast landscape of scientific literature by pro-
viding tailored recommendations, summarizing articles, and
extracting key information from research papers [44]. This
enables researchers to stay updated with the latest findings
in their field and identify relevant literature for their studies.

• Data analysis: Chatbots equipped with analytical capabilities
can fulfill data analysis tasks by automating data processing,
visualization, and statistical analysis [45]. More importantly,
chatbots possess features of being user-friendly and highly
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interactive, enabling researchers to use them more easily
[36]. In scientific disciplines like genomics, proteomics, and
bioinformatics, chatbots can facilitate the interpretation of
complex omics data and help researchers uncover meaning-
ful patterns and insights [46].

• Hypothesis generation: Chatbots can aid researchers in
hypothesis generation by synthesizing existing knowledge,
identifying research gaps, and proposing novel hypotheses
based on available data [47]. By leveraging machine learning
algorithms and knowledge graphs, chatbots can assist
researchers in formulating testable hypotheses and designing
experiments to validate them.

• Collaboration facilitation: Chatbots serve as virtual collabo-
rators, enabling seamless communication and collaboration
among researchers across geographical locations and disci-
plinary boundaries [48, 49].

Advantages of using chatbots in scientific
workflows
The integration of chatbots into scientific workflows offers sev-
eral advantages.

• Automation: Chatbots automate routine tasks and work-
flows, freeing up researchers’ time to focus on more creative
and intellectually demanding activities [50]. By automating
data analysis, literature search, and experiment design, chat-
bots enhance research productivity and efficiency [51].

• Scalability: Chatbots provide scalable solutions for handling
large volumes of data and inquiries. Unlike human counter-
parts, chatbots can handle multiple inquiries simultaneously
and operate the whole day, ensuring rapid response times and
scalability to accommodate growing research demands [51–
54].

• Accessibility: Chatbots build access to scientific knowledge
and tools by providing intuitive interfaces and assistance
to researchers with varying levels of expertise [55, 56].
Researchers with limited computational or technical skills
can leverage chatbots to perform complex analyses and
access advanced research tools with ease [57].

In summary, chatbots play a key role in accelerating scientific
discovery by augmenting researchers’ capabilities, automating
routine tasks, and fostering collaboration and knowledge sharing
within the scientific community [58, 59]. As chatbot technology
continues to advance, its impact on scientific research is poised
to grow, unlocking new opportunities for innovation and discovery
across diverse domains [60].

Potential intersection of large language
models in Ribo-seq data analysis
Recent years have witnessed significant advancements in LLMs,
driven by breakthroughs in deep learning architectures and the
availability of vast amounts of textual data for pretraining [61].
Notable examples include models like Llama (Large Language
Model Meta AI), Claude, Mistral, NVLM, GPT-3.5 (Generative Pre-
trained Transformer 3.5) and its successors, such as GPT-4, GPT-
4o, and GPT-4o mini, all these giving us unimaginable surprises
[62–66]. These LLMs have achieved unprecedented performance
in natural language understanding and generation tasks, surpass-
ing earlier benchmarks and demonstrating capabilities akin to
human-level language comprehension.

Utilization of large language models in natural
language processing tasks relevant to
bioinformatics
In the domain of bioinformatics, LLMs have been increasingly
applied to various NLP tasks [67], leveraging their ability to extract
insights from textual data, such as Med-BERT [68], BioBERT [69],
and BioGPT [70].

• Literature mining: LLMs can analyze vast repositories of sci-
entific literature to extract relevant information [71], iden-
tify key concepts, and summarize findings related to gene
expression, protein synthesis, and translational regulation.
This facilitates literature review and knowledge synthesis for
researchers in the field.

• Textual data analysis: LLMs are capable of processing and
analyzing textual data from diverse sources, including
research articles, bioinformatics databases, and biological
annotations [72]. They can extract structured information
from unstructured text [73], enabling annotation for bioin-
formatics resources.

• Knowledge discovery: LLMs can uncover hidden patterns and
relationships within bioinformatics datasets by analyzing
textual descriptions of genes, proteins, and biological pro-
cesses. By integrating information from multiple sources,
LLMs facilitate knowledge discovery and hypothesis genera-
tion in biological research [3, 74].

Potential applications of large language
model–based chatbots in Ribo-seq data analysis
LLM-based chatbots offer promising opportunities for enhancing
various aspects of Ribo-seq data analysis. Figure 4 illustrates a
potential framework where LLM-based chatbots could enhance
Ribo-seq data analysis by integrating intuitive front-end inter-
faces for natural language queries with back-end automation of
data processing, offering a hypothetical improvement in both user
interaction and analytical accuracy.

• Data preprocessing: Fine-tuned LLM-based chatbots can
assist researchers in preprocessing Ribo-seq data by per-
forming quality control, adapter trimming, reads with low
quality removal, UMI and barcode handling, and rRNA and
transfer RNA (tRNA) removal. For example, as illustrated
in Fig. 4, fine-tuned LLMs, through the communication and
protocol offering system, can generate a protocol based on
model calculations. Users can then review this protocol to
determine if it aligns with their analytical needs. If suitable,
they can provide the adapter sequences for subsequent
analysis. However, if modifications are needed, such as
setting constraints on minimum or maximum read lengths,
users can request adjustments, and the fine-tuned LLM will
promptly update the corresponding software parameters
in the protocol. This capability, if fully realized, could
significantly reduce the learning curve and time investment
for biologists with limited programming skills.

• Feature extraction: Fine-tuned LLM-based chatbots can
extract meaningful features from Ribo-seq data, such as
ribosome occupancy profiles [75], translation initiation sites,
and ribosomal pausing events [76, 77]. For example, as
illustrated in Fig. 4, fine-tuned LLMs, through the file transfer
protocol (FTP) and cloud computing system, can generate
outputs that include metagene plots created using the
RiboMiner software [29]. If the fine-tuned LLM, leveraging its
multimodal learning capabilities, detects potential ribosomal
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Figure 4. An overview of possible front-end and back-end of LLM-based chatbot in ribosome profiling data analysis.

pausing events based on the metagene plot, it can alert
the user to this finding. Such proactive insights could
significantly contribute to scientific discovery by highlighting
critical events that may otherwise go unnoticed.

• Pattern recognition: Fine-tuned LLMs can recognize patterns
and regulatory motifs within Ribo-seq data, facilitating the
identification of translationally active regions, regulatory ele-
ments [78], and sequence motifs associated with translation
efficiency and ribosome dynamics [79]. In my opinion, the
functionality of this pattern recognition could potentially
draw inspiration from the design of an LLM for predicting
antibiotic resistance genes (ARGs) prevalence data by Zhang
et al. [80].

• Interpretation: LLM-based chatbots aid in the interpretation
of Ribo-seq data by providing contextually relevant insights
and annotations [81]. They can generate summaries, visu-
alizations [82], and interactive reports to help researchers
interpret complex patterns and biological implications from
Ribo-seq datasets [83].

In summary, the integration of LLMs into Ribo-seq data anal-
ysis holds immense potential for advancing our understanding
of translational regulation and gene expression dynamics [84,
85]. LLM-based chatbots offer scalable and intelligent solutions
for data preprocessing, feature extraction, pattern recognition,
and interpretation, thereby accelerating scientific discovery in
bioinformatics and biomedical science [86].

Case studies and applications
Since the introduction of the ribosome profiling technique in
2009, its popularity has greatly increased [9]. In recent years,
advancements in ribosome profiling techniques have led to the
development of lower input methods [35, 87, 88]. Consequently,
an increasing number of tools tailored for data analysis (Table 1)
have emerged to accommodate these advancements.

Exploring potential solutions: case study of
chatbot-assisted Ribo-seq data analysis
RiboChat, published in 2022, is the first online interactive
platform for direct Ribo-seq data analysis implemented via a
chat conversation [36]. Compared with existing tools, the primary
added value of RiboChat is that the user interface with human
language modalities enhances human–computer interaction,
thereby greatly reducing the barrier to entry for Ribo-seq data
analysis, particularly for users with no or limited programming
or bioinformatics skills. While this software, as a chatbot, greatly
facilitates researchers without programming skills by allowing
them to perform top–down analyses through natural language,
select from a predefined set of similar tools, and even modify
certain key parameters of the software, the user experience can
feel somewhat rigid and mechanical. This is primarily because
RiboChat is not based on LLMs, which limits its ability to provide
a more dynamic and flexible interaction.

Therefore, I explored using chatbots like GPT-4o to handle
certain tasks in the ribosome profiling data analysis work-
flow. The results demonstrated that GPT-4o can provide a
standard ribosome profiling data analysis pipeline and can
adjust the software used in the protocol based on user needs
(Supplementary Fig. 1). However, GPT-4o currently appears unable
to directly process ribosome profiling fastq and bam files, lacking
the ability to perform the specialized top–down data analysis
provided by RiboChat. Additionally, I explored GPT-4o’s ability
to interpret line graphs from metagene analysis in published
ribosome profiling data, and it demonstrated a fairly accurate
understanding of the graphical results (Supplementary Fig. 2).

Fortunately, the development of certain software has revealed
the potential intersection of LLM-based chatbots and ribosome
profiling data analysis. First, Hou et al. demonstrate that the
LLM GPT-4 can accurately annotate cell types using marker
gene information in single-cell RNA sequencing analysis [105].
They developed an R software package GPTCelltype for GPT-4’s

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae641#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae641#supplementary-data
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Table 1. Overview of tools tailored for ribosome profiling data analysis.

Name Year Introduction URL

Ribodeblur [89] 2018 A Python package for estimating A-site locations of
ribosomes from Ribo-seq

https://github.com/KingsfordGroup/ribodeblur

RiboCode [90] 2018 Detect translated open reading frames (ORFs) using
ribosome-profiling data

https://github.com/xryanglab/RiboCode

RiboChat [36] 2022 A chat-style web interface for analysis and annotation of
ribosome profiling data

https://db.cngb.org/ribobench/chat.html

RiboMiner [29] 2020 A Python toolset for mining multidimensional features of
the translatome with ribosome profiling data

https://github.com/xryanglab/RiboMiner

RiboDiff [91] 2017 Tool to detect changes in translational efficiency based on
ribosome footprinting data

https://github.com/ratschlab/RiboDiff

RiboDoc [92] 2021 A Docker-based package for ribosome profiling analysis https://github.com/equipeGST/RiboDoc
Ribo-DT [93] 2022 A snakemake pipeline to infer single-codon and codon-pair

dwell times
https://github.com/cgob/codonDT_snakemake

RiboGalaxy [94] 2023 A Galaxy-based Web Platform for Ribosome Profiling Data
Processing

https://ribogalaxy.genomicsdatascience.ie/

RiboHMM [95] 2016 A mixture of hidden Markov models to infer translated
sequences using ribosome footprint profiling

https://github.com/rajanil/riboHMM

Ribomap [75] 2016 A package that generates isoform-level ribosome profiles
from ribosome profiling data

https://www.cs.cmu.edu/~ckingsf/software/
ribomap/

RiboNT [96] 2021 A noise-tolerant predictor of open reading frames from
ribosome-protected footprints

https://github.com/songbo446/RiboNT/

RibORF [97] 2018 Identifying genome-wide translated open reading frames
using ribosome profiling

https://github.com/zhejilab/RibORF

RiboTaper [98] 2016 A new analysis pipeline for ribosome profiling experiments https://ohlerlab.mdc-berlin.de/software/
RiboTaper_126/

RiboToolkit [99] 2020 A convenient, freely available, web-based service to
centralize Ribo-seq data analyses

http://rnabioinfor.tch.harvard.edu/RiboToolkit

RiboVIEW [100] 2020 Visualization, quality, and statistics for ribosome profiling https://github.com/carinelegrand/RiboVIEW
riboviz [101] 2022 Analysis and visualization of ribosome profiling data https://github.com/riboviz/RiboViz
riboWaltz [102] 2018 R package for calculation of optimal P-site offsets, diagnostic

analysis, and visual inspection of ribosome profiling data
https://github.com/
LabTranslationalArchitectomics/RiboWaltz

RPiso [103] 2021 A tool for analyzing and visualizing Ribo-seq data at the
isoform level

http://cosbi7.ee.ncku.edu.tw/RPiso/

Xtail [28] 2016 Genome-wide assessment of differential translations with
ribosome profiling data

https://github.com/xryanglab/xtail

RiboTools [104] 2015 A Galaxy toolbox for qualitative ribosome profiling analysis https://testtoolshed.g2.bx.psu.edu/view/
rlegendre/ribotools

automated cell type annotation, and it can considerably reduce
the effort and expertise required for cell type annotation. This
may suggest that implementing GPT for ribosome profiling data
analysis might only require the development of a dedicated
application programming interface (API), which was pretrained
and fine-tuned specifically on ribosome profiling data. Second,
Yang et al. developed a platform called ShennongAlpha for
acquiring and translating knowledge about natural medicinal
materials [106]. This platform includes an LLM-based chatbot
named ShennongChat, which can provide information on
natural medicinal materials (NMMs) through daily conversational
exchanges in both Chinese and English. Users can access more
detailed information via a provided ShennongSearch link, which
includes the NMM ID, abstract, systematic nomenclature, and
Chinese Pharmacopoeia associated with each natural medicinal
material. Thanks to these advantages, users can obtain more
accurate, detailed, and comprehensive information on target
natural medicinal materials solely through natural language
input. This approach successfully addresses the limitations
of ChatGPT or Wikipedia in providing sufficient accuracy and
completeness for explaining natural medicinal materials. The
ShennongSearch link in ShennongChat suggests that linking
mechanisms could be used to provide users with a more

comprehensive explanation of related content, similar to the
concept illustrated in Fig. 4. Third, a range of LLMs have been
developed to address issues in specific research domains: EpiGePT
by Gao et al. [107], scGPT by Cui et al. [108], GenePT by Chen et al.
[109], CellPLM by Wen et al. [110], scMulan by Bian et al. [111],
scBERT by Yang et al. [112], and DNABERT by Ji et al. [113], as well
as further LLMs developed on this foundation by Zhang et al. [80]
and NVLM by Dai et al. [66], which address challenges within the
fields of epigenomics, scRNA-seq, genomics, and vision-language
tasks, respectively.

In summary, with the concerted efforts of researchers in related
fields, I hope that LLM-based tools for ribosome profiling data
analysis will be developed in the future.

Potential contributions of chatbots in Ribo-seq
data analysis
Through integrative analysis of Ribo-seq data with other omics
datasets [38], the chatbot uncovered regulatory mechanisms
controlling translational efficiency, mRNA stability, and post-
translational modifications. By correlating translational activity
with gene expression and protein abundance, the chatbot
identified key regulatory factors and pathways involved in gene
expression regulation [114].
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In addition, the LLM-based chatbot can accurately predict
translation initiation sites from Ribo-seq data by analyzing
sequence features and ribosome occupancy profiles [115]. By
identifying translation start codons and associated regulatory
elements, the chatbot provided insights into the mechanisms of
translation initiation and ribosome recruitment [116].

Moreover, the chatbot can be used to analyze temporal changes
in ribosome occupancy and translation efficiency across different
experimental conditions or cellular states [75]. By detecting shifts
in translation dynamics and differential expression of transla-
tional regulators [35, 84], the chatbots elucidated the regulatory
networks governing protein synthesis and cellular response to
environmental stimuli.

With the development of LLMs, the chatbots show great
potential contributions in Ribo-seq data analysis, mainly in
these aspects including discovery of regulatory mechanisms,
identification of translation initiation sites, and characterization
of translation dynamics.

Comparison with traditional methods and
existing tools
Compared with traditional methods and existing tools, chatbots
exhibit several advantages.

• User-friendliness: Chatbots offered intuitive interfaces and
user-friendly functionalities, making them accessible to
researchers with diverse backgrounds and levels of expertise
[117, 118]. Their interactive features, such as natural language
interaction and visualizations, enhanced user experience and
facilitated collaboration among interdisciplinary research
teams.

• Efficiency: Chatbots enabled Ribo-seq data analysis work-
flows by automating repetitive tasks and leveraging parallel
processing capabilities. Researchers experienced significant
time savings and increased productivity [119, 120] allowing
them to focus on higher-level analysis and interpretation
tasks.

In summary, the mentioned software exemplifies the unique
value of LLM-based chatbots applied in ribosome profiling data
analysis. They demonstrate characteristics of user-friendliness
and efficiency while maintaining the accuracy of data analysis. It
is believed that in the future, LLM-based chatbots will be applied
in ribosome profiling data analysis, leveraging their powerful NLP
capabilities to address the current limitations of the software.
They can be utilized for discovering regulatory mechanisms, iden-
tifying translation initiation sites, and characterizing translation
dynamics.

Challenges and future directions
Challenges associated with large language
model–based approaches in Ribo-seq data
analysis
Though LLM-based chatbots show great advantages in potential
Ribo-seq data analysis, limitations and challenges associated with
LLM-based approaches are probably inevitable. Listed but not
limited to model bias are data privacy problem and lower inter-
pretability. By extension, LLMs may exhibit biases inherited from
the training data [121] which can influence their performance and
the accuracy of predictions. Biases in LLMs trained on general
text corpora may affect their applicability to specific domains
like bioinformatics and biomedical science [122–124], leading to
suboptimal results in Ribo-seq data analysis.

Ribo-seq data often contain sensitive information about gene
expression and translational regulation, raising concerns about
data privacy and security [125]. Integrating LLMs into Ribo-seq
data analysis workflows requires careful consideration of privacy
regulations and ethical guidelines to protect sensitive unpub-
lished ribosome profiling data [126, 127].

Besides, the black-box nature of LLMs poses challenges for
interpreting their predictions and understanding the underlying
mechanisms driving Ribo-seq data analysis [128–130]. Enhancing
the interpretability of LLM-based models is essential for gaining
insights into translational regulation and validating computa-
tional findings through experimental validation.

Strategies for mitigating challenges
To diminish the probable limitations and challenges of LLM-
based chatbots, we can adopt suitable strategies to mitigate chal-
lenges. Topping the list is fine-tuned LLMs on domain-specific
datasets [131], including the Ribo-seq dataset and omics litera-
ture, which can mitigate model bias and improve performance in
ribosome profiling data analysis tasks [132]. Designing machine-
understandable prompts like Fig. 4 and incorporating them into
the software’s help manuals is crucial for ensuring that LLMs
accurately comprehend user intent and provide appropriate data
analysis workflows. Additionally, to improve the accuracy of inter-
preting Ribo-seq result files and the ability to extract mean-
ingful biological insights from them, the model’s capacity to
learn from translationally relevant biomedical literature should
be reinforced during training, with specific methods such as those
employed in BioGPT [70]. When misunderstandings of user intent
or the provision of unsuitable solutions arise during training, it
is essential to promptly relay this feedback to the LLM or its
developers until the LLM consistently understands user intent
and delivers suitable solutions.

Second, implementing privacy-preserving methods [133],
such as federated learning and differential privacy [134, 135],
can address concerns about data privacy while leveraging the
collective intelligence of distributed datasets for model training.
By decentralizing data storage and training, privacy-preserving
approaches enable collaborative analysis of Ribo-seq data without
compromising data confidentiality [136].

Last but not least, integrating interpretability techniques into
LLM-based chatbots enables users to understand the rationale
behind model predictions and identify influential features in
Ribo-seq data analysis [137]. Methods such as attention mecha-
nisms, feature importance ranking, and model visualization facil-
itate the interpretation of LLM-based predictions and enhance
trust in computational findings [138].

Future directions
Combined with all the advantages and disadvantages of LLM-
based chatbots in the applications of Ribo-seq data analysis,
we put forward some emerging trends and future directions in
the integration of LLMs and Ribo-seq data analysis. Multimodal
learning has the potential to be an emerging trend. Integrating
multimodal data sources, such as Ribo-seq data, transcriptomics,
and epigenomics data, with textual information can enrich LLM-
based models and enable comprehensive analysis of gene expres-
sion regulation [139]. Multimodal learning approaches enable
synergistic analysis of complementary data types and facilitate
a holistic understanding of biological processes [140].

Interactive chatbot interfaces are essential in the future of
LLM-based chatbots. Developing interactive chatbot interfaces
with natural language interaction capabilities and real-time
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feedback mechanisms enhances user engagement and collabo-
ration in Ribo-seq data analysis [141]. Interactive chatbots enable
researchers to interactively explore data [142], refine analysis
parameters, and validate computational findings through
iterative experimentation.

Given the power of LLM-based chatbots, ethical considera-
tions should always address users’ attention. Addressing ethical
considerations and societal implications of LLM-based Ribo-seq
data analysis is essential for responsible research conduct and
equitable knowledge dissemination [143]. Engaging stakehold-
ers, including researchers, policymakers, and community repre-
sentatives, in ethical discussions and decision-making processes
ensures that LLM-based technologies are deployed in a socially
responsible manner.

In summary, addressing challenges associated with LLM-based
approaches in Ribo-seq data analysis requires concerted efforts
to improve model robustness, ensure data privacy, and enhance
interpretability. Future directions in the integration of LLMs and
Ribo-seq data analysis involve domain-specific training, privacy-
preserving methods, and emerging trends such as multimodal
learning and interactive chatbot interfaces, paving the way for
innovative applications in bioinformatics and biomedical science.

Conclusion
In this review, we have explored the potential of leveraging LLM-
based chatbots to address challenges in ribosome profiling data
analysis. Ribosome profiling, a powerful technique for studying
translation dynamics at the transcriptome-wide level, presents
formidable obstacles in data analysis, particularly for researchers
without a background in bioinformatics. The complexity of
ribosome profiling datasets, coupled with the diverse needs of
researchers, necessitates user-friendly and efficient tools for data
analysis.

While there are currently no examples of LLM–based chatbots
applied in ribosome profiling data analysis, existing software
solutions exemplify the unique value of chatbots in this field.
These tools demonstrate characteristics of user-friendliness and
efficiency while maintaining the accuracy of data analysis. It
is anticipated that in the future, LLM-based chatbots will be
deployed in ribosome profiling data analysis, leveraging their pow-
erful NLP capabilities to overcome current limitations of software.
They have the potential to aid in discovering regulatory mecha-
nisms, identifying translation initiation sites, and characterizing
translation dynamics, thereby advancing our understanding of
translational regulation and gene expression dynamics.

Despite the promising prospects, challenges remain in integrat-
ing large language models into ribosome profiling data analysis.
Model bias, data privacy concerns, and interpretability issues
pose significant hurdles that need to be addressed. Strategies
such as domain-specific training, privacy-preserving methods,
and interpretability techniques can enhance the performance
and robustness of LLM-based chatbots in ribosome profiling data
analysis.

Looking ahead, emerging trends such as multimodal learning
and interactive chatbot interfaces offer exciting opportunities for
innovation in bioinformatics and biomedical science [78, 144]. By
embracing these advancements and addressing ethical consider-
ations, we can harness the full potential of LLM-based chatbots
to accelerate scientific discovery and unlock new insights into
translation regulation and gene expression dynamics [145].

Potential collaborative research opportunities between bioin-
formaticians and AI researchers could greatly enhance the

development and application of LLM-based tools in ribosome
profiling data analysis. For instance, bioinformaticians can pro-
vide domain-specific knowledge and curate high-quality datasets,
while AI researchers can focus on developing sophisticated
models and algorithms tailored to bioinformatics challenges.
Additionally, collaborative efforts could focus on creating bench-
mark datasets and standardized evaluation metrics, ensuring
that LLM-based tools are reliable and effective across various
biological contexts. By working together, bioinformaticians and AI
researchers can push the boundaries of what is possible, driving
forward innovations that benefit the entire scientific community.

Key Points

• Ribo-seq data analysis is complex, especially for
researchers lacking bioinformatics skills, requiring
proficiency in multiple programming languages and
software environments, large language model (LLM)–
based chatbots have great potential to overcome this
difficulty.

• Beyond data analysis, chatbots have broad applications
in literature mining, hypothesis generation, and collab-
oration facilitation.

• LLM-based methods have already been successfully
applied to address challenges in single-cell transcrip-
tomics, epigenetics, natural medicine, and genomics.

• The integration of LLMs and Ribo-seq analysis may
advance translational regulation and gene expression
research, but challenges like model bias, data privacy,
and AI transparency need to be addressed.

• We hope to encourage scientists in translatomics and
the LLM domain to collaborate in driving forward inno-
vations that benefit the entire scientific community.
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