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ABSTRACT
Objectives:  This study expolored the relationship between perivascular adipose tissue (PVAT) 
radiomic features derived from coronary computed tomography angiography (CCTA) and the 
presence of coronary artery plaques. It aimed to determine whether PVAT radiomic could 
non-invasively assess vascular inflammation associated with plaque presence.
Methods:  In this retrospective cohort study, data from patients undergoing coronary artery 
examination between May 2021 and December 2022 were analyzed. Demographics, clinical data, 
plaque location and stenosis severity were recorded. PVAT radiomic features were extracted using 
PyRadiomics with key features selected using Least Absolute Shrinkage and Selection Operator 
(LASSO) and recursive feature elimination (RFE) to create a radiomics signature (RadScore).
Stepwise logistic regression identified clinical predictors. Predictive models (clinical, radiomics-based 
and combined) were constructed to differentiate plaque-containing segments from normal ones. 
The final model was presented as a nomogram and evaluated using calibration curves, ROC 
analysis and decision curve analysis.
Results:  Analysis included 208 coronary segments from 102 patients. The RadScore achieved 
an Area Under the Curve (AUC) of 0.897 (95% CI: 0.88–0.92) in the training set and 0.717 
(95% CI: 0.63–0.81) in the validation set. The combined model (RadScore + Clinic) demonstrated 
improved performance with an AUC of 0.783 (95% CI: 0.69–0.87) in the validation set and 
0.903 (95% CI: 0.83–0.98) in an independent test set. Both RadScore and combined models 
significantly outperformed the clinical model (p < .001). The nomogram integrating clinical 
and radiomics features showed robust calibration and discrimination (c-index: 0.825 in 
training, 0.907 in testing).
Conclusion:  CCTA-based PVAT radiomics effectively distinguished coronary artery segments with 
and without plaques. The combined model and nomogram demostrated clinical utility, offering a 
novel approach for early diagnosis and risk stratification in coronary heart disease.
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Introduction

Although Global Cardiovascular diseases (CVDs) mor-
tality rates varied, CVD have emerged as a significant 
global health concern, with approximately 19.1 million 
deaths recorded in 2020 [1]. One of the leading causes 
of CVD-related deaths is arteriosclerosis [2].

An inflammatory disease, atherosclerosis involves 
the deposition of lipids and macrophages within arte-
rial walls [3]. The presence of inflammatory mediators 
in atherosclerotic plaques is associated with the patho-
genesis of cardiovascular diseases, as these mediators 
regulate tissue factor expression and activate the ath-
eroma macrophages [4–6].

Perivascular adipose tissue (PVAT) is a specialized 
type of adipose tissue that surrounds blood vessels, 
exerting both local and systemic effects [7]. Growing 
evidence supports the notion that the metabolic pro-
cesses of PVAT contribute to endothelial dysfunction, 
inflammatory response and smooth muscle cell prolif-
eration, thereby exerting influence on the initiation 
and progression of atherosclerotic plaques [8–10].

The metabolic crosstalk between PVAT and the arte-
rial wall plays a pivotal role in atherosclerosis develop-
ment [11]. PVAT-derived bioactive molecules and 
adipokines can directly modulate the inflammatory 
milieu within the vascular wall and the adjacent peri-
vascular region, activating endothelial cells and pro-
moting leukocyte recruitment [12,13]. Moreover, 
PVAT-induced dysregulation of lipid metabolism and 
adipose-derived cytokines may indirectly impact the 
arterial wall by promoting oxidative stress and altering 
the function of vascular endothelial cells, smooth mus-
cle cells and macrophages [9,10,12,14].Understanding 
the intricate interplay between PVAT and atherosclero-
sis is of paramount importance for unravelling the 
underlying mechanisms and identifying novel thera-
peutic targets.

Identification and classification of coronary com-
puted tomography angiography (CCTA) features for 
screening abnormal coronary is a crucial task in the 
field of cardiovascular medicine. With the advance-
ments in medical imaging technology, specifically 
CCTA, it is now possible to detect and evaluate 
potential abnormalities in the coronary arteries 
non-invasively [11,15–17]. The perivascular fat attenu-
ation index (FAI) focuses on the analysis of PVAT, have 
emerged as promising tools for assessing the prog-
nostic significance of PVAT in predicting all-cause 
and cardiac mortality, surpassing the predictive 
capabilities of conventional clinical risk factors [18–
21]. Previous research has placed considerable 
importance on assessing the inflammatory state of 

the pericoronary artery using non-invasive imaging 
techniques [7,22].

However, most existing studies focus on the associ-
ation between PVAT and actual clinical outcomes 
[8,19–21,23,24], with limited exploration of quantitative 
indicators that can reflect functional differences in the 
vasculature. There is a notable gap in research com-
paring PVAT characteristics between vessels with and 
without coronary artery plaques. While non-invasive 
imaging techniques have been used to assess pericor-
onary inflammation, more precise and quantitative 
methods are needed to differentiate the inflammation 
status of different vascular segments. We hypothesize 
that there are differences in inflammation status 
between vessels with and without coronary artery 
plaques, which can be differentiated by PVAT radiomic 
features obtained from CCTA. Therefore, a retrospec-
tive analysis is being conducted to investigate the rela-
tionship between these radiomic features and 
abnormal PVAT status.

Methods and material

Patient characteristics

This retrospective study consecutively collected data 
on 183 patients who underwent coronary computed 
tomography angiography (CCTA) between May 2021 
and December 2022 due to relevant examination indi-
cations. Based on the established criteria (Figure 1), 
102 patients with a total of 208 coronary segments 
were included in the study. The patients were divided 
into two groups: those with coronary heart disease 
(CHD) and those without CHD. The study was reviewed 
and approved by the local medical ethics committee, 
and due to the retrospective nature of the study, the 
requirement for written informed consent was waived 
for all patients.

The inclusion criteria for patients with CHD were: (1) 
the presence of plaque or stenosis in the main 
branches of the coronary artery (left anterior descend-
ing branch, left circumflex branch and right coronary 
artery) as diagnosed by imaging, and (2) the diameter 
of the affected vessel segment was not less than 2 mm. 
The inclusion criteria for patients without CHD were 
those who underwent CCTA due to suspected coro-
nary heart disease but with normal coronary arteries 
as diagnosed.

The common exclusion criteria were: (1) obvious 
respiratory and cardiovascular motion artefacts in the 
CCTA images; (2) incomplete CT data; (3) abnormal 
contrast enhancement in the coronary artery; (4) 
abnormalities, anomalies and variations in the 
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coronary artery; (5) the presence of wall-adhering ves-
sels or myocardial bridges.

The research protocol was approved by our institu-
tional ethics committee. The experiment was con-
ducted in accordance with guidelines and protocols 
relevant to clinical research, without any gender or 
racial disparities.

CCTA protocol and image reconstruction

All examinations were performed using a Toshiba 
Aquilion ONE 320-row CT scanner (Toshiba Medical 
Systems, Otawara, Japan). Prior to the examination, 
patients underwent breath-holding training at least 3 
times to ensure stable inspiration amplitude. Patients 
with a heart rate ≥70 beats/min were administered 
25–50 mg of metoprolol tartrate (Betaloc) orally 1 h 
before the examination to control the heart rate <70 
beats/min and reduce motion artefacts.

The CCTA scanning range was set from 1 cm below 
the tracheal hilum to the lower edge of the cardiac 
diaphragm. A double-barrelled high-pressure injector 
was used to administer 50–70 mL of non-ionic iodin-
ated contrast agent (iodopramide, iopamidol) and 
40–50 mL of 0.9% saline solution into the antecubital 
vein, with an injection rate of 4.0–6.0 mL/s.

The contrast agent bolus tracking method was 
employed, with the threshold monitoring region of 

interest (ROI) set at the opening of the aorta. The 
default scan activation threshold was 100 HU. 
Monitoring began 10 s after contrast agent injection, 
and the CTA volume scan was automatically triggered 
when the ROI reached the threshold.

A prospective electrocardiogram triggering 
sequence was used for acquisition. For patients with 
a heart rate <70 beats/min, information was col-
lected at 75% R-R interval, and for patients with a 
heart rate ≥75 beats/min, information was collected 
at 45% R-R interval. Automated tube voltage and 
current regulation technology was applied, with per-
sonalized settings determined for all patients based 
on their body mass index (BMI). The tube voltage 
was set at 100–120 kV (120 kV if BMI ≥25, 100 kV if 
BMI <25), tube current at 300–500 mA, layer thick-
ness at 0.5 mm, matrix at 512 × 512 and gantry rota-
tion time at 350 ms.

Semi-automated image analysis and 
segmentation

The target vessels included the left anterior descend-
ing (LAD), left circumflex (LCX) and right coronary 
artery (RCA). Two radiologists (with five and four years 
of cardiac imaging experience, respectively) evaluated 
each vessel independently without knowledge of clin-
ical results.

Figure 1. F low chart showing case collection in the present study, with the inclusion and exclusion criteria.
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The CCTA images were analysed using cvi42 soft-
ware (version 5.1.1, Circle Cardiovascular Imaging Inc., 
Calgary, Alberta, Canada) to record the location and 
severity of the diseased vessels. The degree of stenosis 
was automated measured in cvi42, which employs the 
Minimum Lumen Area (MLA) method. This method 
automatically calculates the cross-sectional area of the 
lumen at the point of maximum stenosis and com-
pares it to a reference lumen area to determine the 
percentage of stenosis. Using the open-source soft-
ware 3D Slicer (version 5.0.3, www.slicer.org), the 
Voxels of interest (VOI) were drawn around the PVAT 
surrounding the vessel segments where the plaques 
were located, as compared to cvi42.

To ensure the accuracy and reproducibility of the 
PVAT VOI in vessel segments with plaques, another 
radiologist performed a second delineation. To further 
evaluate the inter-observer reproducibility of the VOI 
delineation, 20 randomly selected cases were used for 
intraclass correlation coefficient (ICC) analysis between 
the two radiologists. Any disagreements in VOI range 
were discussed and modified by the two radiologists 
to reach a consensus.

Feature extraction, selection and model 
development

Radiomic features were extracted using the PyRadiomics 
(github.com/radiomics/PyRadiomics) package in Python 
(version 3.6.13, www.python.org), after normalizing 
and resampling the CT images with a bin width of 
100, normalized scale of 160 and resampled pixel 
spacing of (0.2 × 0.2 × 0.2 mm).

Radiomic features’ categories are consistent with 
previously established standards [25]. These features 
can be categorized into several classes: First-order sta-
tistics describe the distribution of voxel intensities; 
Shape-based features describe the three-dimensional 
size and shape; Texture features capture spatial rela-
tionships between voxels and describe patterns or 
repeating elements, including features derived from 
various matrices such as gray level co-occurrence 
matrix (GLCM), gray level run length matrix (GLRLM) 
and gray level size zone matrix (GLSZM); and 
Higher-order statistics are obtained by applying math-
ematical transformations(wavelets) to the original 
image before extracting texture features.

The extracted radiomics features were randomly 
divided into a training-validation set and a testing set 
(70% and 30%, respectively). The training-validation set 
was utilized for model development and feature selec-
tion, while the test dataset was solely employed for 
the final testing of the model.

Z-Score was used to normalize all the radiomic fea-
tures. To address the significant imbalance between 
non-plaque and plaque-containing artery groups, we 
employed the Synthetic Minority Oversampling 
Technique (SMOTE) [24,26]. SMOTE creates synthetic 
examples in the minority class by interpolating 
between existing minority instances, effectively balanc-
ing the dataset and mitigating the risk of model bias 
towards the majority class [24,26]. The feature matrix 
was further normalized, and before feature selection, 
we used Least Absolute Shrinkage and Selection 
Operator (LASSO) to perform dimensionality reduction 
on the data [27]. This can reduce the complexity of 
the model and the risk of overfitting, while improving 
the model’s generalization ability [28].

For model construction, we utilized both clinical 
and radiomics features. Clinical features were derived 
from demographic, clinical and detailed coronary 
examination data collected for each patient. Radiomics 
features were extracted from the pericoronary adipose 
tissue of both plaque-containing and plaque-free cor-
onary artery segments using PyRadiomics, resulting in 
an initial set of 851 potential features.

To identify the most relevant predictors, clinical fea-
tures were selected through stepwise logistic regres-
sion, while radiomics features underwent a selection 
process combining LASSO and RFE with logistic regres-
sion as the classifier. Logistic regression, a linear classi-
fier that combines all features, was chosen for its 
interpretability and effectiveness in binary classifica-
tion problems [29].

Based on the clinical characteristics and radiomics 
features, we constructed three models: the Clinic 
model, radiomics-based model (RadScore model) and 
the combined model (RadScore + Clinic model).

To optimize each model’s hyper-parameters, includ-
ing the number of features, we employed five-fold 
cross-validation on the training and validation dataset 
[30]. This process ensured robust model performance 
and reduced the risk of overfitting.

The entire modelling process, including data pro-
cessing and standardization, dataset partitioning, fea-
ture selection and model construction and validation, 
was conducted using Python with the scikit-learn 
package (version 0.24, scikit-learn.org/stable/) and 
FeAture Explorer Pro (FAE, V 0.5.5).

We developed a nomogram based on the logistic 
regression model to predict the probability of abnor-
mal PVAT in specific sites of coronary arteries, inte-
grating their clinical characteristics and radiomic 
features (Figure 6). This nomogram enhances the 
interpretability of the combined model by providing 
a visual representation of the contribution of each 

http://www.slicer.org
http://www.python.org
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selected feature to the prediction outcome. To assess 
model calibration and clinical utility, we generated 
calibration curves and decision curves for the models. 
The concordance index (c-index) was calculated for 
the nomogram in both training and testing datasets 
to assess discriminative ability using R software (ver-
sion 4.1.3, www.R-project.org).

Statistical analysis

Statistical analysis employed T-test, ANOVA, Chi-square 
and Fisher’s exact tests as appropriate for comparing 
demographic, clinical and radiomics features between 
plaque-containing and plaque-free coronary artery 
segments.

All statistical analyses were performed using R and 
Python. Continuous variables were reported as 
mean ± standard deviation (SD), while categorical vari-
ables were expressed as count and percentage. The 
Shapiro-Wilk test was used to assess the normality of 
the data distribution.

For comparing clinical characteristics and radiomics 
features between plaques, we employed the Student’s 
t-test or Mann-Whitney U-test for quantitative vari-
ables, depending on the normality of distribution. The 
chi-square test or Fisher’s exact test was used for cat-
egorical variables, as appropriate.

To evaluate the models’ ability to distinguish coro-
nary artery disease between patients, we conducted 
Receiver Operating Characteristic (ROC) curve analysis. 
We calculated the Area Under the Curve (AUC), accu-
racy, sensitivity and specificity at the cut-off value that 
maximized the Youden index. A 95% confidence inter-
val (95%CI) for these metrics was estimated using 
bootstrapping with 1000 resamples.

The statistical significance level was set at p < .05 for all 
analyses. All tests were two-tailed, and the results were 
reported with their corresponding p values to allow for a 
comprehensive interpretation of the findings.

Results

Plaque-based characteristics

A total of 208 coronary segments from 102 patients were 
included in the study, comprising 150 (72.1%) segments 
from coronary plaque-containing arteries and 58 (27.9%) 
segments from normal coronary arteries. A statistically 
significant difference was observed in age (p = .001) 
between the two groups, with the coronary plaque 
group being older (57.01 ± 10.97 years) compared to the 
non-coronary plaque group (48.04 ± 10.66 years). No sig-
nificant differences were found in gender, BMI, heart rate, 

hypertension, diabetes and hyperlipidaemia between the 
two groups (Table 1).

Regarding the distribution of coronary artery seg-
ments included in the study (Table 2), there were no 
significant differences between the plaque-containing 
and non-plaque groups (p = .743). The left anterior 
descending artery (LAD) was the most represented in 
both groups (54.0% of plaque segments and 53.4% of 
non-plaque segments), followed by the right coronary 
artery (RCA) (32.7% and 29.3%, respectively) and the 
left circumflex artery (LCX) (13.3% and 17.2%, respec-
tively). As expected, there was a significant difference 
in the degree of stenosis between the plaque-containing 
and normal coronary artery segments (p < .001).

Radiomics assessment of the PVAT

Our initial radiomics analysis extracted 851 features from 
each Voxel of interest in both the training and testing 
sets, using original and wavelet-transformed images. 
Through LASSO and RFE feature selection methods 
applied to the training dataset, we identified 12 key fea-
tures for logistic regression modelling (Figure 2, Table 3). 
Most of the features show good consistency (ICC > 0.9), 
except for wavelet-HHL_glszm_ZoneEntropy (ICC = 0.48). 
Despite some features having lower ICC values, we 

Table 1.  Patients characteristics.

Variable Category

Non-coronary 
plaque group 

(n = 23, 22.5%)

Coronary 
plaque group 

(n = 79, 77.5%) p
Sex (n, %) Male 16 (69.6) 46 (58.2) .461

Female 7 (30.4) 33 (41.8)
Age(years) 48.04 (10.66) 57.01 (10.97) .001*
BMI(kg/m2) 23.53 (2.77) 24.86 (3.52) .098
Heart rate(bpm) 72.65 (8.17) 69.56 (9.35) .154
Hypertension (n, %) 4 (17.4) 11 (13.9) .937
Diabetes (n, %) 2 (8.7) 3 (3.8) .683
Hyperlipidaemia 

(n, %)
0 (0.0) 15 (19.0) .054

Note: Data were expressed as means ± SD for continuous variables and 
number (percentage) for dichotomous variables. *P value of less than 0.05 
was considered statistically significant.

Table 2.  Plaque-based vessel segments characteristics.

Variable Category

Non-plaque vessel 
segments (n = 58, 

27.9%)

Plaque vessel 
segments 

(n = 150, 72.1%) p
Vessel (n, %) LAD 31 (53.4) 81 (54.0) .743

LCX 10 (17.2) 20 (13.3)
RCA 17 (29.3) 49 (32.7)

≤25% 58 (100.0) 14 (9.3) <.001*
Stenosis 

degree  
(n, %)

26%~50% 0 (0.0) 102 (68.0)
51%~75% 0 (0.0) 23 (15.3)

≥76% 0 (0.0) 11 (7.3)

Notes: Data were expressed as means ± SD for continuous variables and 
number (percentage) for dichotomous variables. LAD: left anterior 
descending artery; LCX: left circumflex artery; RCA: right coronary 
artery.  *P value of less than 0.05 was considered statistically significant.

http://www.R-project.org
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retained them due to their potential clinical value, possi-
ble synergistic effects with other features and to main-
tain methodological diversity in this exploratory study.

Based on the logistic regression coefficients and 
intercept (Table 3), we constructed a radiomics signa-
ture (RadScore) as follows:

Figure 2.  (a) LASSO regularization path, the optimal adjustment parameter λ was determined using the LASSO method through 10-fold 
cross-validation. (b) LASSO coefficient path for 829 imaging features. (c) The top 22 features after LASSO features selection.

Table 3.  12 Features finally selected for logistic regression modelling.
Selected features Coefficients ICC 95% CI

Original_shape_Sphericity 0.038 0.959 0.912 ~ 0.982
Original_glszm_SizeZoneNonUniformityNormalized 0.335 0.930 0.850 ~ 0.968
Original_glszm_ZoneEntropy 0.504 0.973 0.941 ~ 0.988
Wavelet-LLH_firstorder_Minimum 0.550 0.978 0.952 ~ 0.990
Wavelet-LLH_glszm_GrayLevelNonUniformity 0.766 0.925 0.841 ~ 0.966
Wavelet-LHH_glszm_SizeZoneNonUniformity 0.503 0.932 0.855 ~ 0.969
Wavelet-HLL_glrlm_ShortRunHighGrayLevelEmphasis 0.276 0.944 0.878 ~ 0.974
Wavelet-HLH_glszm_GrayLevelNonUniformity 0.616 0.932 0.854 ~ 0.969
Wavelet-HHL_glcm_SumEntropy 0.567 0.997 0.992 ~ 0.998
Wavelet-HHL_glszm_ZoneEntropy 0.322 0.480 0.121 ~ 0.728
Wavelet-HHH_glszm_SmallAreaHighGrayLevelEmphasis 0.153 0.743 0.506 ~ 0.876
Wavelet-LLL_firstorder_90Percentile 0.568 0.997 0.994 ~ 0.999
Intercept 0.290 – –
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RadScore =

0.038 x original_shape_Sphericity − 0.335 x original_
glszm_SizeZoneNonUniformityNormalized +

0.504 x original_glszm_ZoneEntropy − 0.550 x 
wavelet-LLH_firstorder_Minimum +

0.766 x wavelet-LLH_glszm_GrayLevelNonUniformity + 
0.503 x wavelet-LHH_glszm_SizeZoneNonUniformity + 
0.276 x wavelet-HLL_glrlm_ShortRunHighGrayLevel 
Emphasis +

0.616 x wavelet-HLH_glszm_GrayLevelNonUniformity + 
0.567 x wavelet-HHL_glcm_SumEntropy +

0.322 x wavelet-HHL_glszm_ZoneEntropy +

0.153 x wavelet-HHH_glszm_SmallAreaHighGrayLevel 
Emphasis–

0.568 x wavelet-LLL_firstorder_90Percentile + 0.290

By using stepwise regression, we selected the vari-
able of Age and combined it with the RadScore to 
construct a combined model.

Validation of the predictive model

Based on selected features, we finally constructed 
three models: the Clinic model (using selected clinical 
features), the radiomics-based model (RadScore model, 
using the 12 selected radiomics features) and the com-
bined model (RadScore + Clinic model, incorporating 
both selected clinical and radiomics features).

All models underwent five-fold cross-validation. The 
RadScore model demonstrated moderate discriminatory 
ability with an AUC of 0.897 (95% CI: 0.88–0.92) for the 
cross-validation training set and 0.717 (95% CI: 0.63–0.81) 
for the validation set. In the validation set, it showed 
desirable sensitivity (75.2%) and specificity (58.5%). 
Notably, the RadScore + Clinic model demonstrated supe-
rior stability compared to the other models. This stability 
was evidenced by the closer alignment of its training and 

validation set ROC curves, a smaller gap between train-
ing and validation AUCs (0.844 vs. 0.783) and consistent 
curve shapes across both datasets. These characteristics 
suggest better generalization ability and more reliable 
performance across different data sets. In contrast, the 
Clinic model’s performance was unsatisfactory, with an 
AUC of 0.520 (95% CI: 0.44–0.60). Both the RadScore and 
combined models significantly outperformed the Clinic 
model (p < .001, z = 5.425 and p < .001, z = 6.570, respec-
tively). However, no statistically significant differences 
were observed between these two models’ performances. 
Detailed results are presented in Table 4 and Figure 3.

We further evaluated the RadScore + Clinic model 
using an independent test dataset. This assessment 
demonstrated good discriminatory ability, with an AUC 
of 0.903 (95% CI: 0.83–0.98) (Figure 4).

Calibration curves were generated to evaluate the 
calibration of the two established models, which exhib-
ited varying levels of performance. The calibration plot 
showed that the RadScore + Clinic model fit the 
observed data well, with the calibration curve aligning 
closely with the diagonal reference line indicating 
good calibration while the Clinic model’s predictions 
appear less accurate, particularly for higher-risk predic-
tions (Figure 5). We developed a nomogram based on 
logistic regression model to predict the probability of 
abnormal PVAT in specific site of coronary arteries, 
integrating their clinical characteristics and radiomic 
features (Figure 6). The nomogram demonstrated good 
performance in both training and testing datasets, with 
a c-index of 0.825 and 0.907, respectively.

We performed a decision curve analysis (DCA) to 
evaluate the net benefit of the clinic model and the 
combined model, showing the performance of both 
models across varying risk thresholds (Figure 7). The 
combined model demonstrates a higher net benefit 
over a wide range of risk thresholds from 0.05 to 0.75, 
significantly outperforming the clinic model alone 
(p < .05 across most thresholds). This indicates that the 
combined model provides greater clinical net benefit 

Table 4.  Performance of three different models.

Model Cohort AUC [95%CI] Sensitivity [95%CI] Specificity [95%CI] Accuracy [95%CI]
Youden index 

[95%CI]

RadScore model CV Training 0.897 0.862 0.76 0.811 0.621
[0.877–0.918] [0.836–0.888] [0.734–0.786] [0.785–0.837] [0.585–0.657]

Validation 0.717 0.752 0.585 0.706 0.585
[0.644–0.790] [0.726–0.778] [0.559–0.611] [0.680–0.732] [0.549–0.621]

RadScore + Clinic model CV Training 0.844 0.774 0.757 0.766 0.531
[0.819–0.868] [0.747–0.801] [0.730–0.784] [0.739–0.793] [0.495–0.567]

Validation 0.783 0.657 0.854 0.712 0.511
[0.716–0.849] [0.631–0.683] [0.827–0.881] [0.685–0.739] [0.475–0.547]

Clinic model CV Training 0.62 0.5 0.695 0.615 0.195
[0.588–0.652] [0.474–0.526] [0.668–0.722] [0.588–0.642] [0.159–0.231]

Validation 0.52 0.422 0.688 0.578 0.11
[0.453–0.586] [0.396–0.448] [0.661–0.715] [0.551–0.605] [0.074–0.146]

*Note: CV: cross validation; AUC: area under the curve; CI: confidence interval.
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when predicting inflammation status in vascular seg-
ments, indirectly reflecting the potential PVAT inflam-
mation associated with plaques.

At risk thresholds below 0.05, the net benefit of 
both models is relatively close, with the clinic model 
slightly outperforming the combined model. However, 
as the risk threshold increases above 0.1, the com-
bined model significantly outperforms the clinic model, 
and this trend continues up to a threshold of approx-
imately 0.75. Beyond this point, the difference in net 
benefit narrows and approaches zero, with the com-
bined model occasionally performing slightly worse 
than both the ‘All’ and ‘None’ strategies.

Discussion

This study demonstrated that models based on PVAT 
radiomics features could effectively differentiate 
between coronary artery segments with and without 
plaques, supporting the hypothesis that PVAT radiomic 
features can distinguish vascular inflammatory status 

associated with plaque presence. Our findings not only 
contributed to the growing body of evidence linking 
PVAT characteristics to CAD but also offered a novel 
perspective on the potential of radiomics in risk strat-
ification and early detection of CAD.

The focus on comparing PVAT characteristics 
between vessel segments with and without plaques 
represents a shift from traditional approaches that pri-
marily examine clinical outcomes in diagnosed CAD 
patients [9,31–35]. This paradigm shift allowed us to 
potentially capture the earliest stages of plaque forma-
tion, offering a window into the pathophysiological 
changes that precede clinically significant coronary 
artery disease [11]. Such early detection may have the 
potential to impact preventive cardiology, possibly 
enabling targeted interventions before the onset of 
symptomatic disease in some cases.

The superior performance of our RadScore model 
(AUC = 0.717, 95% CI: 0.63–0.81) compared to the clin-
ical model underscores the potential of radiomics to 
capture subtle tissue changes that are not reflected in 

Figure 3.  ROC curves depicting the performance of the RadScore, Clinic and RadScore + Clinic models in predicting abnormal 
PVAT status. The RadScore + Clinic model demonstrates superior stability, as evidenced by the closer alignment of its training (solid 
green line) and validation (dashed green line) set ROC curves.
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Figure 4.  ROC curves of the RadScore + Clinic model for predicting abnormal PVAT status within the cross-validation training 
dataset, validation dataset and separate testing dataset.

Figure 5. C alibration curves for the two predictive models: (a) Clinic model and (b) RadScore + Clinic model.



10 K. YE ET AL.

traditional risk factors [36]. This suggested that PVAT 
might undergo structural and functional alterations 
even before visible plaque formation, potentially serv-
ing as a ‘canary in the coal mine’ for coronary artery 
health. This finding was consistent with recent studies 
on the role of PVAT in the development of atheroscle-
rosis [17,37], further supporting the notion that PVAT 
may be involved in coronary plaque formation. The 

integration of these radiomics features with clinical 
data in our combined model (AUC = 0.783, 95% CI: 
0.69–0.87) further emphasized the synergistic potential 
of combining advanced imaging techniques with tradi-
tional clinical assessment.

Our final model retained some features with lower 
ICC values, such as wavelet-HHL_glszm_ZoneEntropy 
(ICC = 0.48). We chose to keep this feature in our 

Figure 7.  The decision curve analysis (DCA) of the clinic model and the combined model.

Figure 6. N omogram for predicting abnormal PVAT status in specific site of coronary arteries.
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exploratory study despite its lower reproducibility, con-
sidering its potential to capture subtle tissue charac-
teristics relevant to early atherosclerotic changes. 
However, we recognized the need for further valida-
tion in larger, more diverse cohorts to confirm its con-
sistent contribution to model performance and to 
better understand its potential biological significance. 
This approach highlighted the exploratory nature of 
our study and emphasizes the importance of rigorous 
validation in future research.

Our decision curve analysis demonstrated the poten-
tial clinical utility of the combined model across a wide 
range of threshold probabilities. This suggested that the 
integration of PVAT radiomics into clinical decision-making 
could enhance risk stratification and potentially guide 
more targeted preventive strategies. However, the declin-
ing net benefit at very high threshold probabilities also 
highlighted the need for careful consideration of how 
such a model would be implemented in clinical practice.

The development of a nomogram based on our 
combined model represented a step towards translat-
ing complex radiomics data into a user-friendly tool 
for clinicians. This could potentially bridge the gap 
between advanced imaging analysis and practical clin-
ical application, facilitating the integration of PVAT 
assessment into routine cardiovascular risk evaluation.

Our study provided a new approach for early iden-
tification of high-risk coronary artery segments. The 
differences in PVAT radiomics features may reflect dif-
ferent states of the tissue surrounding vessel segments 
with and without plaques, possibly related to local 
inflammation or metabolic changes [7,31]. Although 
our study could not directly prove that these changes 
predict future plaque formation, it laid the foundation 
for further research on the relationship between PVAT 
characteristics and plaque development.

This study has certain limitations. Firstly, the 
cross-sectional design limits our ability to establish 
causality between PVAT characteristics and plaque for-
mation, suggesting a need for longitudinal studies. 
Secondly, our sample size, while sufficient for initial 
analysis, may not fully represent the variability in PVAT 
characteristics across a broader population. Consequently, 
external validation would be beneficial to assess model 
generalizability across different populations and imag-
ing protocols, as suggested by previous research [34]. 
Furthermore, the complexity of radiomics features 
challenges biological interpretation, indicating a need 
for research linking computational features to specific 
PVAT pathological changes. Future studies addressing 
these aspects may help validate our findings and 
explore potential clinical applications of PVAT radiom-
ics in coronary artery disease assessment.

Conclusion

In conclusion, our study demonstrated that CCTA-based 
PVAT radiomics analysis effectively differentiated between 
coronary artery segments with and without plaques, 
offering a novel approach for assessing local coronary 
artery status. This method may enhance early diagnosis 
and risk stratification of coronary heart disease. The 
developed nomogram, validated through decision curve 
analysis, shows potential as a clinical tool. While the spe-
cific role of PVAT characteristic differences in plaque for-
mation requires further investigation, our findings pave 
the way for future studies, potentially advancing the 
understanding and prevention of coronary artery disease.
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