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Abstract: We derive analytical expressions to describe how light is frequency-shifted when
interacting with ultrasound within scattering media, due to the modulation of the refractive
index induced by the ultrasound pressure waves. The model is validated through Monte Carlo
simulations, works for high ultrasound pressures, and allows for many simultaneous ultrasound
waves or frequency components, which is important due to the non-linear propagation effects in
tissue. We also provide critical insights into how the ultrasound properties can be optimized for
an enhanced efficiency of the light to be frequency-shifted, facilitating applications in ultrasound
optical tomography and other photonic diagnostic techniques.
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1. Introduction

Understanding how light and ultrasound interact in scattering media is important to drive the
development of biomedical imaging techniques such as ultrasound optical tomography. The
multiple scattering events of light lead to complex paths and diffusion-like behavior. When
ultrasound is introduced, it induces periodic variations in the medium’s refractive index and
mechanical displacement of scatterers, and it can even change the optical properties of the
medium, although this last effect is often negligible [1]. These periodic variations can cause
frequency shifts in the light, a phenomenon that ultrasound optical tomography utilizes by
filtering out and examining only the frequency-shifted light, which must have originated from the
ultrasound location. This leads to spatially resolved optical contrast measured non-invasively at a
deeper level than conventional optical methods [2–4].

Several analytical and numerical models exist to study the light-ultrasound interaction [1,5–14].
However, most studies have focused on low acoustic pressures and one ultrasound frequency,
but for ultrasound optical tomography the pressures are high (in the range of MPa [15]), and
then non-linear ultrasound propagation effects are also important [16]. This was recently
addressed in Ref. [15], which presented a numerical model and validated it against experimental
measurements.

In this article, we complement previous works by developing a comprehensive analytical
framework for describing the frequency content of light modulated by ultrasound in scattering
media that works for high ultrasound pressures and multiple ultrasound frequency components,
and we validate the model through Monte Carlo simulations.

This analytical model not only enhances the understanding of light-ultrasound interactions
but also offers a tool for optimizing ultrasound parameters to maximize the efficiency for light
to be frequency-shifted. Such optimization could be important for improving the efficacy of
ultrasound optical tomography and similar modalities, where precise control over light modulation
is essential for accurate imaging and analysis.

The article is structured as follows: Section 2 presents the theoretical framework for light-
ultrasound interaction, while Sec. 3 compares the analytical predictions with Monte Carlo
simulations. Finally, Sec. 4 concludes with a summary of the findings and implications for future
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research. To ensure that this article is easy to follow, Table 1 provides a list of the most important
parameters used in this work.

Table 1. Descriptions and symbols of the most important parameters used in this work

Description Symbol Description Symbol

Ultrasound pressure P(t, r) Relative light intensity at nω1 Irel(n)

Ultrasound frequencies ωm Order of frequency-shift n

Ultrasound wave vectors km Bessel function of order n Jn(x)

Ultrasound phases αm Random photon path γ

Ultrasound pressure amplitudes Γm Number of straight sections in path J

Time-dependent refractive index n(t, r) Path integral parameters (Sec. 2.2) Bm, βm

Background refractive index n0 Light-ultrasound interaction

Piezo-optic coefficient dn
dP strength for path (Eq. (6)) xm

Scattering coefficient µs Distance traveled within

Absorption coefficient µa ultrasound volume L

Electric field E(t) Probability density function of L P(L)

Vacuum wave vector of the light κ0 Probability of the number of straight

Induced electric field phase φ(t) sections within ultrasound volume P(J)

2. Light-ultrasound interaction

Two main effects cause light to interact with an ultrasound focus and become frequency-shifted.
The ultrasound can cause scatters to move, which alters the physical path length the photon travels,
or it affects the refractive index, which changes the optical path length. In this study, we focus on
the second effect and assume that the first is negligible, in accordance with the results of Ref.
[15]. Previous studies have also found that the movement of scatters has less importance if the
ultrasound wave vector multiplied by the mean free path of the scattered photons is much greater
than one [4,8], which is the case for the MHz ultrasound frequencies and reduced scattering
coefficients of around 7.5 cm−1 that are typical values for examining tissue using ultrasound
optical tomography.

We assume that the ultrasound pressure can be described as several sinusoidal plane wave
oscillations, with frequencies ωm, wave vectors km, phases αm, and pressure amplitudes, Γm(t, r);

P(t, r) =
∑︂
m
Γm(t, r) sin(ωmt − km · r − αm). (1)

Similar to previous theoretical works [1,8–10,12,14,15], we assume that the refractive index
changes linearly with the pressure according to

n(t, r) = n0 + n0
dn
dP

P(t, r), (2)

where dn
dP is the piezo-optic coefficient.

Given a random photon path γ, the phase due to the time-varying optical path length is given
by

ϕ(t) = κ0
∫
γ

n(t, r)ds. (3)

where κ0 is the vacuum wave vector of the light. This phase modulates the electric field as

E(t) = E0(t)eiφ(t), (4)

where E0(t) is the unperturbed electric field of the incoming light.
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The goal of this work is to describe the frequency content of the perturbed electric field E(t),
for any given ultrasound frequency, pressure, and volume, and any optical scattering coefficient
of the underlying medium. However, to do this, we will assume that the pressure amplitudes are
constant in the fixed volume where the light and ultrasound interact, i.e., Γm(t, r) = Γm.

2.1. Frequency content of the electric field

To obtain the electric field frequency content obtained from Eqs. (1)-(4), we start by noting that
the time-independent background refractive index term, n0, in Eq. (2) will not alter the frequency
content of the light, and can therefore be ignored in the subsequent analysis. The final expression
then involves integrals on the following form∫

γ
sin(ωmt − km · r − αm)ds =

1
2i

(︃
eiωmt

∫
γ

e−i(km ·r+αm)ds − e−iωmt
∫
γ

ei(km ·r+αm)ds
)︃

= Bm sin(ωmt − βm),

Bme−iβm =

∫
γ

e−i(km ·r+αm)ds,

(5)

where the solution to the path integral on the last line is discussed further in Sec. 2.2.
Thus, the problem is reduced to obtaining the frequency content of

E(t) = E0(t)
∏︂

m
eixm sin(ωmt−βm), xm = κ0n0

dn
dP
ΓmBm. (6)

From the convolution theorem, we know that the Fourier transform of E(t) is the convolution
between the Fourier transforms of the individual factors E0(t) and

∏︁
m eixm sin(ωmt−βm). Thus, we

are interested in the frequency content of the second factor, which can be rewritten using a Fourier
series expansion of the periodic function∏︂

m
eixm sin(ωmt−βm) =

∏︂
m

(︄
∞∑︂

n=−∞
cm,nein(ωmt−βm)

)︄
cm,n =

1
2π

∫ π

−π
eixm sin(τ)einτdτ = Jn(xm), τ = ωmt − βm,

(7)

where Jn(xm) is the Bessel function of the first kind of order n, and in our case n also represents
the order of frequency-shift, e.g., for n = 2 the light is shifted by twice the ultrasound frequency
ωm.

While the solution is valid for ultrasounds with arbitrary frequency components, we will
now focus on the case where the ultrasound consists of frequency harmonics of a fundamental
frequency ω1. Thus, the expression becomes

∏︂
m

(︄
∞∑︂

n=−∞
Jn(xm)ein(mω1t−βm)

)︄
=

∞∑︂
n=−∞

⎡⎢⎢⎢⎢⎣
∑︂

{nm }∈N(n)

∏︂
m

Jnm (xm)e−inmβm

⎤⎥⎥⎥⎥⎦ einω1t,

N(n) =

{︄
{nm} |

∑︂
m

nmm = n

}︄
,

(8)

whereN(n) is the set of all vectors {nm} = [n1, n2, . . . , nm] fulfilling the requirement
∑︁

m nmm = n,
and n now specifically refers to being frequency-shifted by nω1. For example, when interested
in the amplitude of being frequency-shifted by +ω1, that is n = 1, and there only exists the
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fundamental and first overtone, that is m is limited to 1 and 2, a few elements in N(1) are
{nm} = [n1, n2] = [1, 0], [3,−1], and [−1, 1].

The relative light intensities, which represent the fraction of the intensity at different frequencies
nω1, are then given by

Irel(n) =

|︁|︁|︁|︁|︁|︁ ∑︂
{nm }∈N(n)

∏︂
m

Jnm (xm)e−inmβm

|︁|︁|︁|︁|︁|︁
2

, (9)

where xm is given in Eq. (6), and Bm and βm are calculated in the next section.

2.2. Path integral

To obtain Bm and βm, we must solve path integrals on the form

Bme−iβm =

∫
γ

e−i(km ·r+αm)ds. (10)

For this work, we assume that km ·r = km,zz, i.e., that all ultrasound frequency components travel
in the same direction. However, the framework can be readily extended to arbitrary directions by
defining a new coordinate system for each ultrasound frequency component, aligning the new
z-axis to the propagation axis, and then transforming the path γ into this new coordinate system.

The path γ the photon takes is a random scattering path through the ultrasound volume where
the pressure is Γm, and thus depends on the ultrasound focus size and the scattering coefficient of
the medium. We model the path as J straight lines from the initial position r0 via J − 1 scattering
events, rj, to the final position, rJ .

Bme−iβm ≈

J∑︂
j=1

∫
γj

e−i(km,zz+αm)ds = ie−iαm

J∑︂
j=1
∆Lj

e−ikm,z

(︂
z0+

∑︁j−1
l=1 ∆zl

)︂
km,z∆zj

(︂
e−ikm,z∆zj − 1

)︂
, (11)

where ∆Lj = |rj − rj−1 | is the length of the jth straight line, ∆zj = zj − zj−1 is the distance traveled
in the z-direction, and z0 is the initial z-coordinate.

The values of Bm and βm depend on the specific random scattering path γ, but we can
statistically estimate their distributions. In a medium with scattering coefficient µs the distance
between scattering events can be modeled as

∆Lj = − ln(ξj)/µs, (12)

where ξj is a uniform random value from the open interval (0, 1]. In general, ∆zj is given by

∆zj = κ̂j,z∆Lj, (13)

where κ̂j,z is the z component of the normalized light wave vector for the jth straight line.
Furthermore, we assume that z0 is equally likely to lie anywhere on the ultrasound oscillation,
i.e., z0 ∈ [0, 2π/km,z], which should be fairly accurate in a real case where the ultrasound focus
propagates through the medium and where the drop-off in pressure is gradual.

For isotropic scattering
κ̂j,z = 2ζj − 1, (14)

where ζj ∈ [0, 1]. However, for tissue, the Henyey-Greenstein phase function is more commonly
used [17], where the random scattering angles φ and θ between successive scattering events are
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given by

φj ∈ [0, 2π], cos(θj) =
1
2g

(︄
1 + g2 −

(︃
1 − g2

1 − g + 2gζj

)︃2)︄
, (15)

where g is the anisotropy coefficient. Assuming a random initial direction of the photon, κ̂j,z can
be calculated through the recursive formula

κ̂j,z = − sin(θj) cos(φj)
√︂

1 − κ̂2j−1,z + κ̂j−1,z cos(θj), κ̂0,z = 2ζ0 − 1. (16)

Note that estimating the distributions in this way can generate paths that extend outside the
ultrasound volume, but the overall statistical results still yield good agreement as will be shown
in Sec. 3.

Finally, Bm and βm depend on the number of straight paths J, which thus must be determined.
For a given photon path that travels a length L within the ultrasound volume, the average scattering
distance of 1/µs can be used to estimate J ≈ Lµs. Furthermore, if only the average photon path
length ⟨L⟩ is known for a given ultrasound volume and scattering coefficient, we can use the
probability density function of obtaining a specific L

P(L) =
1
⟨L⟩

e−L/⟨L⟩ , (17)

to estimate the distribution of J values according to

P(J) ∝
1
⟨L⟩

e−J/(µs ⟨L⟩),
∑︂

J
P(J) = 1. (18)

3. Analytic model validation using Monte Carlo simulations

To validate the analytical model, we compare the results with Monte Carlo simulations where
computational photons scatter according to Eqs. (12) and (15). We use the sequential Monte
Carlo method, as presented in Chapter 3.3 of Ref. [18], and an open-source version of the
code is discussed in Ref. [19]. In this method, computational photons scatter throughout the
simulation volume according to Monte Carlo light transport until the photons exit the simulation
boundary. Unlike many other Monte Carlo simulations, light absorption is not included at this
stage. Instead, photons that exit through a predefined detection area have their paths saved.
Absorption is introduced afterward by dividing the simulation volume into V voxels, each with a
distinct absorption coefficient µa,v, and then for each saved photon path the total distance traveled
within each voxel, Dv, is calculated, and the photon transmission is determined through the
Bouguer-Beer-Lambert law: T = e−

∑︁
v Dvµa,v . The advantage of this method is that, as long as

the scattering remains unchanged, the same computational photons can be reused to quickly
calculate the transmission for different absorption settings. For further details, see Refs. [18,19].
In our current work, the sequential Monte Carlo method allows us to verify our analytical
light-ultrasound interaction method without considering absorption, as it can be added later as
explained above.

The simulation volume was 10 × 10 cm2 wide and the thickness varied between 4 and 8 cm
in steps of 1 cm, see Fig. 1(a). The photons were initialized in the center of the top surface
of the volume, traveling straight down, and scattered until they left the volume. If the photons
exited at the detector, which we define as a 0.5 cm radius circle placed straight underneath the
source at the bottom of the volume, the photon paths were saved. For each simulation with
a different thickness or scattering coefficient, we initialized new photons until 10, 000 photon
paths were detected and saved. The thickness did not significantly alter the distribution of
photons entering the ultrasound volume, which was placed in the center of the simulation volume.
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Therefore, in the following analysis, we show the results of all thicknesses combined to reduce
the statistical error, i.e., 50, 000 saved photon paths are examined for each scattering coefficient.
The detector radius is relatively arbitrary but was chosen to be large enough to collect sufficiently
many photons within a reasonable time, without being too large as that would result in fewer
photons entering the ultrasound volume. Since these simulations aim to validate the analytical
light-ultrasound interaction method, only the distance the photons travel within the ultrasound
volume is important, and the main results of this article are therefore unaffected by the size and
placement of the detector.

Fig. 1. (a) Shows the Monte Carlo simulation volume, where all photons are initialized at
a point source (red circle at the top). Each photon falls into one of three categories: A)
the photon leaves the simulation volume without being detected, B) the photon is detected
but does not enter the ultrasound volume, or C) the photon is detected and has been inside
the ultrasound volume. New photons are initialized until 10, 000 photons fall into either
category B or C. However, only photons in category C are analyzed when investigating
the light-ultrasound interaction. (b) Shows the oscillatory behavior of the Bessel functions.
Each photon path has a specific value of xm, and the corresponding |Jn(xm)|2 represents the
probability of being frequency-shifted by nω1.

In Fig. 2 we show the distributions of total path lengths traveled within the ultrasound volume
for several different ultrasound volumes and scattering coefficients. In each case, the distribution
only includes photons that have a non-zero total path length within the ultrasound volume, i.e.,
category C in Fig. 1(a). In all simulations, the material was homogeneous with an anisotropy
coefficient of g = 0.9. As shown, the exponential distribution of Eq. (17) fits the data very
well, except for the cases where the scattering coefficient or the volume are small, since then
many photons can travel straight through the volume resulting in a peak in the Monte Carlo
distribution around the size of the volume. Throughout this work, the analytical model will use
the exponential distribution of path lengths according to Eq. (17).

The light-ultrasound interaction was then simulated for all Monte Carlo photon paths following
the procedure outlined in Refs. [15,18], which numerically evaluates Eqs. (1)-(4), then Fourier
transforms the electric field, before integrating the results to obtain the probability that a photon
becomes frequency-shifted. Figure 3 shows the results for a few different ultrasound and material
properties. In all cases, the ultrasound pressure was described by Eq. (1), which filled a cubic
volume, V , of varying size located at the center of the simulation volume. The wavelength of light
was 689 nm, since there exists a promising rare-earth filter at that wavelength which can be used
for ultrasound optical tomography [20]. The background index of refraction was n0 = 1.3, and
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Fig. 2. Shows the probability density function for the distance traveled inside the ultrasound
volume for different volumes and reduced scattering coefficients. The histogram only
includes photons that have a non-zero distance within the ultrasound volume. The material
has no absorption and the anisotropy coefficient is g = 0.9. The blue bars show the Monte
Carlo results, whereas the black lines show the results from Eq. (17) using the average path
length from the Monte Carlo simulations.

we used the piezo-optic coefficient of water, dn
dP ≈ 1.466 × 10−10 Pa−1 [21], and the ultrasound

speed in 20◦ C water, 1480 m/s [22].
Figure 3 also validates the procedure outlined in Secs. 2.1 and 2.2, where the relative light

intensities at the different frequencies nω1 are given by Eq. (9), weighted by the probability, P(J),
that a photon scatters J times as given in Eq. (18). Since only one ultrasound frequency is used,
the relative light intensities can be simplified to

Irel(n) =
∑︂

J
P(J) |Jn(xm)|

2 , (19)

where xm depends on Bm which depends on J and the random variables ξj, ζj, and φj, hence xm
is different for each photon path. Since we are interested in the overall statistical results, we
generate 10, 000 Bm values for each J. Furthermore, we cap the summation at J = ⌈7µs⟨L⟩⌉.

Since Bessel functions of negative order relate to the positive order via J−n(xm) = (−1)nJn(xm),
we can see that positive and negative frequency shifts occur with the same probability if only one
ultrasound frequency is present. However, this is not true in the general case as discussed in Sec.
3.1.

The distinct sharp maximums in the probability density functions of Fig. 3 are due to the
oscillatory behavior of the Bessel functions as shown in Fig. 1(b). For example, the highest
fraction of the photon energy that can be frequency-shifted by ±ω1 as shown in the second row of
Fig. 3 is given by the maximum value of |J1(xm)|

2, which is around 0.34 as shown in the dashed
red curve in Fig. 1(b).

Due to this oscillatory behavior, increasing the ultrasound volume or pressure does not always
lead to larger probabilities of being frequency-shifted into a specific harmonic of the ultrasound
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Fig. 3. Shows the probability density function that a certain fraction of the photon energy is
(first row) not frequency-shifted, or (second to fourth rows) frequency-shifted by 1 → 3 times
±ω1, for different material and ultrasound properties (columns). Red bars show the results
from Monte Carlo simulations, where the frequency content of each photon is calculated by
numerically evaluating the equations in Sec. 2. The black lines are calculated using Eq. (19).

frequency, as can be seen in Fig. 4. Instead, depending on the distribution of xm values, there exists
an optimal ultrasound pressure for each ultrasound volume that maximizes the average probability
that a photon is frequency-shifted by a specific amount, given that the photon has been inside
the ultrasound volume. However, while this probability may decrease as the ultrasound volume
increases, the larger volume enhances the likelihood of a photon entering the ultrasound volume in
the first place, i.e., in Fig. 1(a), more photons are classified into category C. Consequently, when
considering the total number of detected frequency-shifted photons, increasing the ultrasound
volume is generally advantageous, especially when the fraction of photons entering the ultrasound
volume is initially small.

3.1. Multiple ultrasound frequency components

In the general case with multiple ultrasound frequency components, the probabilities of achieving
negative or positive frequency shifts can differ due to the interference effects in Eq. (9), which
contrasts with the one ultrasound frequency case where the probabilities are equal. These
interference effects are analog to those occurring in an electro-optical modulator (EOM), except
then the interaction occurs with one strength, whereas in our case the interaction occurs with a
distribution of strengths xm that depend on the photon path integral discussed in Sec. 2.2.

Figure 5 shows the average probability of being frequency-shifted by ±ω1 as a function of
the pressures of the first and second harmonics, where the phase of the second harmonic has
been optimized to maximize the +ω1 frequency-shift. For ultrasound waves that are harmonics
of a fundamental frequency, a translation in time or space alters the phases αm by mα1, where
α1 is the phase change of the fundamental wave, and such phase changes generate the same
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Fig. 4. Shows the average probability of being frequency-shifted as a function of the
ultrasound pressure and volume. The ultrasound frequency is ω1 = 6 MHz and the reduced
scattering coefficient is µ′s = 7.5 cm−1. For each ultrasound volume, the average photon
path lengths, ⟨L⟩, used in Eq. (18) are estimated based on Monte Carlo simulations.

interference effects. Thus, if only the fundamental and the second harmonic are present, it is
enough to optimize the phase of the second harmonic as we have done. As can be seen from this
simple example, it is possible to achieve a higher average probability when the second harmonic
is present compared to when it is not.

Fig. 5. Shows the average probability of being frequency-shifted by ±ω1 as a function of the
first and second order harmonic pressures, Γ1 and Γ2. For each configuration of pressures,
the average probability of being shifted by +ω1 is maximized by optimizing the phase of
the second ultrasound harmonic. The sidelength of the ultrasound volume is 3 mm, and as
in Fig. 4 the fundamental ultrasound frequency is ω1 = 6 MHz and the reduced scattering
coefficient is µ′s = 7.5 cm−1.
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Fig. 6. Shows the average probability of being frequency-shifted by +ω1 as a function
of the reduced scattering coefficient and ultrasound volume. In (a) only the fundamental
ultrasound frequency ω1 is present, whereas in (b-d) additional harmonics are added. The
pressure and phase of the harmonics are related via Γm = Γ1/m and αm = (m − 1)π, and
Γ1 ∈ [0, 5] MPa is optimized for each setting to maximize the probability. The fundamental
ultrasound frequency is ω1 = 1 MHz, and to speed up the calculations, we only consider
nm ∈ [−3, 3]. For each setting, the average photon path lengths, ⟨L⟩, used in Eq. (18) are
estimated based on Monte Carlo simulations.

If only one interaction strength xm had been present, one can optimize the probability of being
frequency-shifted by +ω1 by relating the properties of the ultrasound harmonics via Γm = Γ1/m
and αm = (m − 1)π, and only optimize Γ1. Despite having a distribution of interaction strengths,
this approach still increases the probability in our case, as shown in Fig. 6. However, due to
the large distribution of xm, the gains are relatively modest, below a factor of 2, at least for the
cases shown in Figs. 5 and 6. One should also consider the technical challenge to achieve such
precise control of the ultrasound properties deep inside tissue due to the non-linear ultrasound
propagation effects [16] and the frequency-dependent attenuation of around 0.75 dB/cm/MHz for
soft tissue [23]. However, performing an optimization that accounts for this is beyond the scope
of this article.

4. Conclusion

We have modeled how light is frequency-shifted when interacting with ultrasound within scattering
media, resulting in simple analytical expressions involving summations of Bessel functions.
The model is validated through Monte Carlo simulations and allows for the use of multiple
high-pressure ultrasound frequency components, opening up the possibility of optimizing the
pressures, frequencies, and phases of the ultrasound waves to maximize the probability that light
is frequency-shifted.

Even if such optimization only results in modest gains at this stage, the analytical framework
presented here also has an advantage in general as it allows for much faster estimations of
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the light-ultrasound interaction compared to the numerical methods presented in Ref. [15],
and non-linear ultrasound propagation effects in tissue demands the incorporation of several
ultrasound frequency components, which previous analytical models were missing.

Future research could expand on this model by incorporating the effects of scatterer movement
due to the ultrasound waves, model time-varying or spatially-varying pressure fields, or investigate
if more advanced ultrasound setups can result in larger probabilities of light being frequency-
shifted.
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