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Abstract: Polarization-resolved second harmonic generation (pSHG) is a label-free method that
has been used in a range of tissue types to describe collagen orientation. In this work, we develop
pSHG analysis techniques for investigating cranial bone collagen assembly defects occurring in
a mouse model of hypophosphatasia (HPP), a metabolic bone disease characterized by a lack
of bone mineralization. After observing differences in bone collagen lamellar sheet structures
using scanning electron microscopy, we found similar alterations with pSHG between the healthy
and HPP mouse collagen lamellar sheet organization. We then developed a spatial polarimetric
gray-level co-occurrence matrix (spGLCM) method to explore polarization-mediated textural
differences in the bone collagen mesh. We used our spGLCM method to describe the collagen
organizational differences between HPP and healthy bone along the polarimetric axis that may
be caused by poorly aligned collagen molecules and a reduction in collagen density. Finally,
we applied machine learning classifiers to predict bone disease state using pSHG imaging and
spGLCM methods. Comparing random forest (RF) and XGBoost technique on spGLCM, we
were able to accurately separate unknown images from the two groups with an averaged F1 score
of 92.30%±3.11% by using RF. Our strategy could potentially allow for monitoring of therapeutic
efficacy and disease progression in HPP, or even be extended to other collagen-related ailments
or tissues.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Second harmonic generation (SHG) imaging is a nonlinear technique sensitive to non-centrosymmetric
molecules like type 1 collagen, which is abundant in structural tissues in the body. Expressed in
numerous organ systems, type 1 collagen undergoes modifications and assembly into secondary
structures in each location to provide tissue-specific mechanical and biochemical properties.
Therefore, tissue defects in the assembly and modification of collagen structures may result from
disease pathology, which could in turn be detected using SHG imaging [1].

Bone collagen has extensive secondary modifications during mesh formation and co-deposition
with crystalline hydroxyapatite mineral. Collagen fibrils are produced early in osteoblastic
differentiation, and with the assistance of mineral seeds self-assemble in the extracellular space
[2]. As bone formation progresses, matrix vesicles rich in the enzyme tissue non-specific alkaline
phosphatase (TNALP) mediate mineral deposition at the surface of cells and throughout collagen
fibers where the extracellular matrix vesicles accumulate [3]. These mineral deposits within and
between collagen fibers significantly strengthen the toughness, failure strain and strength of the
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bone [4–6]. The mineral binds together with the collagen using a combination of physical linkages
[5], direct interactions with TNALP [7–10], hydrogen bonds [11], electrostatic forces [12], salt
bridges [11], and polysaccharide binding [13]. Together these interdependent mineralized fibrillar
structures create a hierarchy of lamellar sheets that increase the ability of bone to withstand
torsion and tension. The lamellar sheets self-assemble on top of one another in a plywood-like
fashion with neighboring layers arranged at differing angles.

Prior work by our group [14] and others [15] has used a SHG approach to explore the organization
of bone lamellar structures to uncover guiding principles of bone collagen organization. SHG is
non-destructive and provides direct information about collagen structure without the need for
fluorescent labeling. When imaged using polarized incident light, SHG can increase contrast to
highlight collagen orientation within tissues [16]. The intensity of the SHG signal is dependent
on the second order susceptibility χ (2), which is the bulk quantity visualized in the SHG
microscope and relies on collagen orientation relative to the excitation light and collagen
abundance. Second order susceptibility is associated with the molecular order of collagen and
the coherent amplification of peptide bonds along the length of the molecule. This is defined by
the first hyperpolarizability β [1], which is due to the coherent amplification of the SHG signals
from the peptide bonds aligned along the length of the collagen molecule [17].

This work aims to build on our prior efforts with SHG polarimetry in bone [14] to evaluate
the collagen lamellar sheet formation in a mouse model of a metabolic bone disorder impacting
mineral deposition. Hypophosphatasia (HPP) is a rare metabolic bone disease characterized
by mutations in the ALPL gene that encodes for TNALP [18,19], which is critical for mineral
production in bone [20]. TNALP is present on the surface of bone forming cells and their
mineralizing matrix vesicles and, along with associated annexins [7], allows these vesicles to bind
to collagen and deposit mineral crystals [9]. Therefore, bones with reduced TNALP activity are
likely to have an impaired capacity to form mineral stabilizing links between collagen molecules
and may suffer from impaired assembly of collagen into larger lamellar sheet structures. HPP
is characterized by rickets in children and osteomalacia in adults [21], with patients prone to
fractures [3]. Although the characteristic diminished mineral content of the bone in HPP is
associated with a reduction in bone forming cells in the growth plate and in overall bone size
[23], the impact of HPP on collagen structure has not been characterized previously.

In this work, we use polarization-resolved SHG to investigate HPP disruption of collagen
assembly. We determine the dominant orientation of collagen fibers within each pixel to delineate
lamellar sheets. We find that the HPP lamellar sheets are significantly smaller and less well
defined than the wild type (WT) lamellar sheets, which may contribute to the overall weakness of
HPP bone. We then use the gray-level co-occurrence matrix (GLCM) to describe the texture of
the SHG images and quantify differences in collagen organization induced by HPP. We explore a
spatial polarimetric GLCM method (spGLCM) which incorporates the response of the pixel of
interest and its neighbors along the polarization angle axis to yield an additional component to
the texture. Compared to standard GLCM, spGLCM increases sensitivity to the bone collagen
structure, finding significant alterations in the collagen of diseased HPP mice using several well
accepted machine learning techniques including random forest (RF) and XGBoost to classify the
state of disease. This implementation of SHG polarimetry analysis could be used as a guide for
researchers to describe bone health, disease progression, and response to therapy. Our findings
could enable future strategies for label-free identification of disease states of the bone and monitor
effectiveness of therapies for bone disorders like HPP; or be extended to study other metabolic
bone disorders.
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2. Methods

2.1. Animals

The use of all animals in this study was approved by The University of Georgia Institutional
Animal Care and Use Committee. Alpl-/- mice mimic infantile HPP, with phenotypes of elevated
levels of inorganic pyrophosphate (PPi), a lack of mineralization, and end-stage seizures. All mice
were given free access to modified laboratory rodent diet 5001 with 325 ppm Pyridoxine to delay
seizures and extend lifespan. Knockout Alpl-/- mice were identified by PCR at birth (Day 0) in
accordance with a protocol developed by Jackson Laboratory (Bar Harbor, ME) using primers 5’ –
CCGTGCATCTGCCAGTTTGAGGGGA – 3’, 5’ – CTGGCACAAAAGAGTTGGTAAGGCAG
– 3’, 5’ – GATCGGAACGTCAATTAACG TCAAT – 3’. Both Alpl+/+ and Alpl-/- mice were
collected at P14 (postpartum day 14) because in this disease model mice begin to die by P16
with 100% mortality by P21. The skulls of the specimens were extracted, and the cranial cavity
was evacuated. Specimens were mounted in silicone to prevent movement and hydrated with
PBS throughout imaging. A total of 26 mice (13 wild type (WT), 13 HPP) were sacrificed and
5 images per mouse of the intact cranial bone were captured within the approximate region
indicated by the blue square in Fig. 2(A).

Fig. 1. SEM and SHG imaging show structural lamella sheets differences between wild
type and HPP bone. The lamellar sheets of a two-week-old wild type (WT) mouse are
organized in a parallel fashion and can be visualized with SEM (A) and SHG (B). The skull
of a two-week-old HPP mouse has lamellar sheet defects that appear smaller in size and
irregular in organization (C, D). Scale bar indicates 20 µm.

2.2. Optical setup

The optical setup is similar to what we have reported previously [14,24]. Briefly, it has a
Ti:Sapphire femtosecond pulsed laser that produces light from 680 nm to 1080 nm—we used
775 nm, with the power of the beam adjusted by a half wave retarder and polarizing beam
splitter, then rapidly modulated by a Pockels cell attenuator and scanned over the specimen.
The back-collected emission light is sent to a photon multiplier tube with a 409 nm long-pass
dichroic beam splitter and bandpass filter of 390/18 to capture SHG of collagen. SHG intensity
is dependent on angular matching between laser polarization and fiber alignment, which can be
exploited to enhance contrast of collagen fibers [25]. Therefore, SHG images (512× 512 pixels,
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Fig. 2. SHG polarized imaging identifies collagen structures in WT and HPP bone. (A) The
frontal bones of juvenile mice were imaged dorsal to the jugum limitans (i) and lateral to the
sagittal suture (ii). (B) Polarized light was rotated, images were collected every 10°, and
pixels containing collagen fiber information were assigned colors based on fiber orientation.
(C) histogram of the angular distribution illustrates three specific orientations were chosen.
Regions of similar orientations are seen in the WT calvaria (D-G) while the HPP calvaria
has a mixture of orientations throughout the viewing area (H-K). The asterisk in G denotes
an osteocyte lacuna. Scale Bar: 20 µm. Average intensity profiles were plotted (blue dots),
fitted (black line), and 95% confidence intervals (red dashed lines) were established to
demonstrate the intensity signature of each orientation.

FOV 52.06× 52.06 µm) were collected with linearly polarized excitation, using a half-waveplate
rotated at 5° intervals to evaluate collagen orientation within the focus. We evaluated polarization
quality with a polarization state analyzer to measure the Stokes parameters at each excitation angle
and correct any residual polarization distortion. The polarization was verified to be maintained
at the focus by imaging spherical T-cells labeled with Di-8-ANEPPS [25,55]. Representative
polarized stacks of each mouse skull were generated at 5, 10, and 15 µm of depth. To probe
differences between HPP and WT mice, 5 distinct regions of the calvaria of each mouse 5 µm
from the periosteum were imaged to create polarized image sets. For all mice, the region lateral to
the sagittal suture, anterior to the coronal suture, and posterior to the jugum limitans of the whole
cranial bone was imaged (see Supplement 1 s1). We compensated for average intensity variations
between excitation polarizations in the images using the variant part of average intensity of all
SHG raw images.

2.3. Scanning electron microscopy

To perform independent analysis of lamella sheet organization, we used scanning electron
microscopy (SEM) to image skull fractured edges in WT and HPP bone. Fresh skulls were snap
frozen and freeze fractured before dehydration in a vacuum. Samples were then carbon coated
and mounted for SEM analysis with a Zeiss 1450EP.

2.4. Angular distribution of collagen fibers

To determine the approximate orientation of collagen fibers within the excited volume, we used
a single linear polarization of excitation light that was rotated at 5° intervals from 0 to 180

https://doi.org/10.6084/m9.figshare.26413663
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degrees to generate polarimetric, epi-collected second harmonic signal [14]. The second-order
susceptibility, linked to collagen’s molecular order, amplifies the molecular SHG signals of
peptide bonds coherently along the molecule’s length. These signals predominantly align at
approximately 50° from the collagen molecule’s triple helix of alpha-chains, which is aligned
along the main axis of the collagen fiber. A mathematical model was used to fit the relative
collagen second-order susceptibility tensors χ to the measured experimental values [26]. The
intensity of the SHG signal is dependent on the electric field, the number of collagen fibers within
the focal volume, and the orderliness of the collagen fibers. We assume a more general form
of the χ tensor that considers both trigonal and cylindrical symmetry. Therefore, the resulting
P-SHG signal can be described as:

I2ω(α) = A[(χyyysin2(α − φ) + χxxzsin2(α − φ))2

+ (χzxxsin2(α − φ) + χzzzcos2(α − φ))2]
(1)

where χyyy, χxxz , χzxx , χzzz are susceptibility tensors χ, A is the average number of detected
photons, α is the polarization orientation of the excitation light, and φ is a measure of the
average collagen fiber orientation within the focal volume [27]. S = |χ(2)yyy|/χ(2)zxx was
calculated to describe the balance between trigonal and cylindrical symmetries [26]. The
nonlinear susceptibility ratio ρ = χ(2)xxx/χ(2)xyy was also calculated and compared to ratio
values reported for collagen in the literature (∼1.4 for hydrated collage [n) [28]. To visualize
collagen lamellar orientation and organization, ImageJ2 and Python (version 3.8.12) were used.
To form the color images, every 10° of collagen orientation was assigned a different color, with
the collagen fibers parallel to the sagittal suture deemed 0°.

2.5. Delineation of collagen sheet boundaries

We next sought to describe boundaries of collagen lamella sheets 5 µm, 10 µm, and 15 µm from
the periosteum using 2D images with the calculated angle of collagen orientation assigned to each
pixel. The standard deviation of the angular differences between each pixel and its nearest eight
neighbors was calculated. We used a small region of interest for this calculation to determine
similarities of neighboring collagen molecules that would likely be within the same fiber or
within the same lamella sheet. A high standard deviation is therefore expected at the boundaries
of lamellar sheets that have juxtaposed angles of orientation or within a region of poorly aligned
fibers. The average SHG intensity image was masked using the Otsu technique and overlaid
on the standard deviation image. We observed a drop in SHG signal with most HPP samples
when compared to the WT bone and differences in the amount of SHG signal due to collagen
composition and bone structure (i.e. osteocyte lacunae). Therefore, an automated Otsu threshold
for each image was used rather than a single threshold value for all images.

2.6. Spatial polarimetric GLCM analysis

SHG polarimetry is known to provide contrast for the examination of secondary collagen
structures and has been used in the visualization of bone lamellar sheets [14,15,29]. Polarimetry
utilizes alterations in light polarization to reveal hidden structural organization within collagen
structures, offering enhanced contrast and insights into orientation and properties. To minimize
measurement variance based on physical orientation, we oriented all skulls in the same direction
such that the nose of the mouse was towards the top of the image, which yielded the dominant
direction of collagen fibers to be along the y-axis of the final image. We then captured an image
using each of excitation light polarization directions to create a polarized image stack. To leverage
the polarization contrast, we performed second order texture analysis across x, y, and polar
dimensions using a modified form of the symmetric gray level co-occurrence matrix (GLCM)
[30] in Python which we term spatial-polarimetric gray level co-occurrence matrix (spGLCM),
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adapted from previously published approaches using 3-dimensional stacks for GLCM analysis
[31]. Our final calculation of the spGLCM values in each polarimetric image are expressed as
GLCM analysis of the corrected polarization-resolved SHG raw images along 4 different axes
(Supplement 1 s2). Compared with 2D GLCM algorithms, the spGLCM method incorporates the
additional polarization contrast to provide improved discrimination of the alignment of collagen
fibers and their organization into lamellar sheet structures.

2.7. Machine learning analysis

Data analysis was performed with Python (version 3.8.12). To investigate separation between
experimental groups based on spGLCM measurements, we conducted RF and XGBoost techniques.
In all methods, 121 spGLCM measurements for 13 mice per group with 5 images per mouse. We
applied rotational symmetry to the spGLCM features along the polarization axis to yield mirrored
data from 0◦-180◦ to 180◦-360◦. Then 80% data is used for training and 20% data is used for
5-fold cross validation. Once computed, F1 score is used to measure the classification accuracy.

3. Results

3.1. Visualization of collagen sheets

To visualize collagen sheets, we freeze fractured calvaria of WT and HPP bone separately and
performed SEM imaging at the fracture site to create a transverse view of the bone edge. We
are clearly able to visualize the lamella sheet formations in some subregions of WT bone along
the fracture line (Fig. 1(A)) compared with HPP (Fig. 1(C)), as indicated by the white arrow.
The HPP bone, however, has disrupted lamellar sheet formation in some subregions with small
collagen formations undulating in the cortical region of the skull with gapping between the
layers (Fig. 1(C)). This results in a lack of well-defined sheets and a large region of unorganized
collagen structures.

We then attempted to visualize the same phenomenon with SHG. SHG images were generated
by using a single excitation polarization and raster scanning in the x-y dimension, then creating a
z-stack with 1 µm step size, before finally reconstructing and reslicing with a 50 µm projection in
the y dimension to yield an x-z image of the bone. While SEM accentuated boundaries between
physically bonded areas, optical SHG cross-sections specifically target collagen molecules in a
sample. The SHG x-z cross-sections find alternating regions of bright and dark collagen intensity
profiles suggesting alternating layers of differently ordered collagen that are consistent with
lamella sheet structures (Fig. 1(B)). For HPP bone, however, the collagen intensity was more
similar throughout the image, suggesting a perhaps reduced definition of lamella sheet structures
(Fig. 1(D)).

3.2. Angular distribution of collagen fibers in bone

Using Eq. (1), the dominant angle of collagen fiber orientation, φ, of each pixel was determined
and every 10° was assigned a representative color (Fig. 2(B)). The WT bone displays subregions
(light blue and red pixels) that are localized in well-defined regions especially around suspected
osteocytes, indicating several well aligned groups of fibers (Fig. 2(D) & (F)) as well as a dominant
orientation for the field of view (Fig. 2(E)). Display of the whole spectrum of fiber orientations
(Fig. 2(G) & (K)) suggests that in comparison with WT, the HPP bone has fibers of similar
orientation but seems to have reduced small regions of similar orientation. The histogram of the
angular distribution (Fig. 2(C)) illustrates three specific orientations (20◦-30◦, 30◦-40◦,90◦-100◦)
that were chosen for individual display to highlight the main orientations present in the sample
and their respective polarization response curves (Fig. 2(D-F), (H-J)).

https://doi.org/10.6084/m9.figshare.26413663
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3.3. Lamella sheet integrity

After visualizing collagen assembly, we sought to more closely investigate boundaries of collagen
organization into lamella sheet-like regions. To do so, we acquired polarimetric images and
determined φ at 5 µm, 10 µm, and 15 µm depth into the bone, measured from the periosteum.
To quantify the similarity between pixels and their neighbors, we first determined the angle
of orientation of each pixel, measured the standard deviation (SD) and then found the average
difference in orientation between a pixel of interest and its nearest eight neighbors. In randomly
selected example WT bones, we find regions with highly conserved angular directions of collagen
fibers (red regions, Fig. 3(A)-(C)); and formation of collagen sheet-like structures oriented in
different directions around osteocyte lacunae. These findings suggest that the HPP bone has
reduced regions of well-defined lamella, with collagen fibers that are more heterogeneously
distributed relative to nearby fibers (Fig. 3(D)-(F)). We then quantified the distribution of these
SD values (Fig. 3(G)-(L)) using a cumulative distribution function (CDF). In this representative
plot, the CDF for WT bone increases more rapidly than for HPP bone. This suggests that the WT
bone tends to have lower SD values, which would indicate more similar spatial distributions of
collagen compared to HPP bone.

WT

HPP

G H I

J K L

Fig. 3. Local variance of collagen orientation in WT (A-C) and HPP (D-F) bone were
evaluated at 5 µm (A, D), 10 µm (B, E), and 15 µm (C, F) from the periosteum. Well aligned
areas (red) are prominent in the WT bone and are smaller in the HPP bone. WT histograms
(G-I) are left-skewed while the distribution of the HPP histograms (J-L) are more normally
distributed. Scale bar 20 µm.
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Furthermore, we analyzed the polarization data using a general symmetry model presented
in Eq. (1) [28,32,33] and then compared parameter ρ and S. The nonlinear susceptibility ratio
ρ ≈ 1.2 ± 0.04. Then, we compared ρ values obtained at different depths suggesting that effects
resulting from imaging depth (e.g. birefringence) do not significantly affect pSHG measurements
at less than 15 µm depth. Supplement 1 s3 shows the maximum intensity projections of pSHG
image stacks acquired in WT and HPP. WT samples are characterized by collagen fiber bundles
generated from multiple orientations, resulting in relatively high symmetry parameter S values,
with an average of 0.90± 1.26. In contrast, HPP specimens lack proper collagen formation and
are characterized by collagen fibrils assembled from a single orientation, akin to a straight-aligned
collagen fibril bundle, with an average S value of 0.26± 0.32.

3.4. Spatial polarimetric GLCM analysis

We next explored the grey level variations in polarization-resolved SHG to examine the effects
of HPP on bone organization. To accomplish this, we developed a spatial polarimetric GLCM
analysis (spGLCM) that incorporates polarization contrast into texture analysis. spGLCM
measures included energy, homogeneity, contrast, entropy and correlation with offsets ranging
from 1 to 17 pixels along x-axis, y-axis, polar-axis and polar-spatial diagonal axis. For this
analysis, we imaged 13 mice per group with 5 image stacks each at a depth of 5 µm from the
surface. To demonstrate how the WT and HPP images respond to spGLCM measures, the GLCM
parameters were extracted from a representative image from each group and plotted to provide
a visualization of observed trends with different offsets along each analysis direction (Fig. 4).
The heatmap is generated to evaluating the difference between spGLCM features of WT and
HPP. To generate this heatmap, we measure the difference between the mean values of five
features (entropy, homogeneity, contrast, correlation and energy), along four directions (polar,
x, y, diagonal) at nine different offsets (1,3,5,7,9,11,13,15,17) of 121 WT and HPP samples
separately.

Energy is a measure of the degree of stability of the gray scale variations, which reflects the
degree of uniformity of the image. We observed small trends towards a difference between the
two groups when we compare energy values in the spatial dimension at different offsets along
the x-axis and y-axis (orange and green lines). Along the polarization axis and diagonal axis
(blue and red line) the energy values tend to stay higher in the HPP than the WT even at extended
offsets. The difference is pronounced for spGLCM measurement within 100◦ to 170◦ (offset
between 10 to 17) when compared to the WT energy values, indicating a higher degree of stability
of the gray scale variation within sampled fibers (i.e. more uniformity in the polar dimension)
that is also present in the diagonal dimension in a slightly reduced fashion in the HPP image.

Homogeneity describes local changes of image texture, indicating similarities of gray level
distributions. Overall, in the spatial dimension along the x-axis and y-axis the WT and HPP
images have similar homogeneity measures across offsets, with some differences observed with
pixels of interest that are in close proximity. Along the polarization and diagonal axes the WT
and HPP images have a qualitatively somewhat different rate of change between 90◦ to 170◦
(offset between 9 to 17). This suggests that the gray levels within sampled collagen pixels differ
from one another more quickly in the HPP image, indicating that the texture is less uniform and
collagen orientation with a single pixel is more varied.

Contrast measures the variance between the pixels of interest, which highlights edges of
features. In the spatial dimension along the x-axis and y-axis, the overall shape of the contrast
measure is similar between the WT and the HPP representative images, and the rate of change in
the contrast measure is also similar. However, the contrast values of the WT image are overall
higher than in the HPP image. Along the polarization and diagonal axes, the contrast values of
the WT image are much higher than the HPP image, especially after 100° (offset> 10), indicating

https://doi.org/10.6084/m9.figshare.26413663
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Fig. 4. spGLCM metrics describe the differences between example WT and HPP
polarization-resolved SHG images. A single polarization-resolved SHG image of WT
and HPP bone was analyzed with spGLCM to exemplify the differences between the mea-
sures of contrast, homogeneity, energy, entropy and correlation at four exemplary directions.
A heatmap was generated to visualize the average difference in all 121 WT and HPP images.
The GLCM measurements at differing pixel offsets along the x- and y-axes responds similarly
in WT and HPP, but with different magnitudes. However, measurements along the polar-axis
and diagonal-axis suggest a potential difference between WT and HPP with oscillations due
to collagen contrast in the polar dimension, indicating sensitivity to the texture differences
caused by polarization.
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more distinct edges of collagen fiber formation in the WT image and more homogeneous gray
levels in the HPP image, suggesting a lack of collagen fiber organization or less ordered collagen.

Entropy measures the level of disorder or uncertainty in the grayscale variations within the
images, which could highlight randomness or lack of clear patterns within the grayscale values.
In the spatial dimension along the x-axis and y-axis, entropy tends to increase as the distance
between evaluated pixels increases, indicating greater unpredictability or randomness in grayscale
variations at greater distances for both WT and HPP images. Within the polarization and
diagonal axis, the entropy values of the WT image are higher than the HPP image especially after
100◦(offset>10), reflecting the disorderliness or lack of specific patterns linked to polarization
direction or alignment in HPP samples.

Correlation has a range of [-1, 1], with values close to either end indicating a perfectly positively
or negatively correlated image. In the spatial dimension, as the distance between evaluated pixels
increases along the x-axis and y-axis, correlation values generally decrease. In WT images,
we observe a linear decay in correlation as we move away from the pixel of interest across all
angles of light. In the polar dimension, the HPP images tend to have larger correlation values
(blue line) and exhibit more significant changes than the WT images as the evaluation distance
increases. Intriguingly, the difference between polar vs. diagonal is smaller in WT images than
HPP, which might suggest that WT images have more similar gray-level pairs regardless of the
light’s orientation.

In summary, spGLCM suggests a more well-defined collagen orientation in the WT than the
HPP bone (Fig. 5). To further explore the collagen alignment, we explored collagen orientation
distributions. We applied a FFT on polarization averaged WT and HPP SHG images and showed
the radial sum intensities for 360◦ around the center of the FFT image for an example image
(Fig. 5(A)-(B)). We found that for this HPP image, the prominent peaks except four axes (90°,
180°, 270°, 360°) are seen at 30° and 210°, in accord with the original SHG and FFT image [34].
We created a flow map of (I, φ), represented as vectors colored with I and oriented with φ, and
found the WT bone image displays groups of fibers as well as a dominant orientation for the
field of view (Fig. 5(C)) [35]. This Fourier space analysis supports our observations that the
HPP bone has less well-defined regions of similar collagen orientations (Fig. 5(D)). We selected
a subregion (100*100 pixel) per image from a subset of WT and HPP images (10 images per
group) and found that for most subregions collagen fibers in WT and HPP tend to form along a
dominant orientation, but in some images in HPP the collagen fibers were found to be oriented to
more than one direction in the representative subregion (Fig. 5(E)-(F)).

3.5. Machine learning classification

spGLCM analysis provides a rich data set for the comparison between healthy and diseased
bone collagen organization for machine learning. There is substantial variability within the
populations, so individual features did not show statistical significance although they exhibited
trends in previous figures. To synthesize this broad range of parameters into a description of
the impact of HPP on bone collagen organization, we trained random forest and XGBoost using
121 spGLCM features where 80% of the data was used for training and 20% for validation. The
ROC curve in Fig. 6(A) shows the True Positive Rate (Sensitivity) versus the False Positive
Rate (1 - Specificity) for the RandomForest and XGBoost models after 5-fold cross-validation.
The RandomForest model achieves a higher AUC-ROC score and an F1 score of 92.30%,
outperforming XGBoost, which has an F1 score of 84.62% (Fig. 6(B)). Despite greater variability,
random forest consistently demonstrates higher sensitivity and a better balance between sensitivity
and specificity, indicating its superior overall performance. Confusion matrices and feature
importance plots are shown in Supplement 1 S4 to illustrate the sensitivity and specificity of the
two classification models. In the random forest model, we next explored features of importance
to classification, and found that polar energy, contrast, homogeneity, entropy and correlation

https://doi.org/10.6084/m9.figshare.26413663
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Fig. 5. (A-B) FFT intensity spectrum and radium sum intensity for WT and HPP sample.
The radial sum intensities for 360 angles around the center of WT FFT image are plotted
as an x-y scatter graph. The peaks at 90°, 180°, 270°, and 360° are from the axes of the
FFT itself, show as red, green, blue and brown lines. Prominent peaks (black stars) are seen
at 30° and 210°, in accord with the original HPP image and FFT image. (C-D) Flow map
of (I, φ) represented as vectors coloured with I and oriented with φ, superimposed to the
intensity image in grey. (E-F) Collagen orientation distribution of WT and HPP.

effectively describe the texture within the juvenile cranial bone. These spGLCM parameters find
similar orientations of collagen that can help describe subtle differences in the collagen packing
and alignment that might be otherwise missed.

We next investigated the importance of each feature, using an accepted metric known as
the mean decrease in impurity [36], which is computed as the mean and standard deviation
of accumulation of the impurity decrease within each tree. (Fig. 6(C)). We find energy along
polar axis with larger offset are heavily weighted for the machine learning models, indicating
the uniformity or periodicity in the structure are different between WT and HPP. Overall, these
well-established machine learning models on the pSHG imaging data set suggest that expanding
analysis to include polarimetric data with spGLCM features can more effectively categorize
unknown samples into WT or HPP bone using differences in the collagen architecture associated
with the HPP phenotype.
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Fig. 6. Machine learning classification results. A. Mean ROC curve after 5-fold cross
validation. B. spGLCM random forest found the highest F1 score of 92.30%±3.11% in the
test data sets for correctly identifying WT and HPP bone. C. Importance of all features
based on mean decrease in impurity.

4. Discussion

Polarization-resolved SHG is a label-free, non-destructive method of analyzing collagen structure
that has been used in many tissues to describe disease states [37–39]. These range from direct
mutations of collagen structure such as occur in osteogenesis imperfecta [37] to increases in
collagen production caused by tumor formation [38] to collagen organization and remodeling
during cervical ripening [40]. Our work applies polarization-resolved SHG to investigate the
impact of defective mineral deposition in the bone on collagen assembly using a HPP mouse
model. HPP is a debilitating disease that is defined by a mutation in the TNALP enzyme that
dramatically reduces mineralization of the bones and teeth [41]. It is well established that the
collagen-mineral interface changes the mechanical properties of bone [5,42,43], though this
interface is poorly understood. Complementary to existing literature on collagen formation that
has focused on the putative role of water to stabilize collagen structures and hydrogen bonding
[44–46], our work supports the role of mineral in stabilizing collagen macrostructures observed in
prior studies that have found mineral nucleation and growth within immature collagen fibers. This
process compresses the collagen molecules along their triple helix axis [47,48], thereby allowing
space for mineral propagation and collagen assembly into sheets [49]. The SHG polarimetry used
in this work visualizes the disruption of the collagen structure at both the fiber and lamella sheet
level of organization. Our texture analysis method incorporates both spatial and polarimetric data
to clearly differentiate between healthy and HPP bone by evaluating the structure of the collagen
fibers along the polarization angle axis.

The current work extends our prior efforts to evaluate collagen formation in full-thickness
bone [14]. Other bone studies have used polarized SHG analysis to explore collagen organization
in different regions of sliced bone [50] and in response to disease [37], but here, we did not
manipulate the bone and were still able to describe collagen organization in healthy and diseased
states. Much of the previous SHG work has relied on comparison between forward and back
generated SHG to directly study thin sections [29,51], or extract bulk optical parameters of
thicker samples [52] . Our SHG collection is limited to epi-mode so we collect a combination
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of back-generated signal and forward-generated signal that has been back-scattered, which
may reduce our sensitivity to collagen orientation in comparison to thin sections that are able
to separate the forward and backward SHG. Optical properties of the cranial bone such as
birefringence, diattenuation, and polarization crosstalk impact the accuracy of polarimetric
measurements in thick tissue [53]. Our prior work found minimal effect of these parameters on
polarimetric measures captured within the first scattering length of the cranial bone; therefore, in
the current studies we imaged less than 15 µm deep [14]. Our findings reveal that the nonlinear
susceptibility ratio ρ≈1.2± 0.04 remains consistent up to a depth of 15 µm, compared to ratio
values reported for collagen in the literature (∼1.4 for hydrated collagen) [28], indicating minimal
impact from imaging depth on pSHG measurements. Similar approaches to investigate collagen
fiber alignment have leveraged the periodic arrangement common in collagen using Fourier based
analysis of bone and other tissues [15,54,55], including work from our lab [14]. This is especially
well suited to tissues like tendon and muscle that have highly periodic structures, but less so for
bone where there are numerous orientations of collagen bundles. Texture analysis using has
been used to describe age and disease related differences in tendon and pancreatic tissues with
SHG [56], and some studies have explored the potential to combine polarimetry with texture
analysis on resulting collagen orientation profiles [57–59]. Here, we build on these methods
to develop a spGLCM approach that includes the spatial polarimetric response of collagen in
describing diseased states in whole bone tissue. Our work shows how the lack of molecular scale
mineralization found in HPP appears to be associated with disruption of larger collagen lamella
sheet structures. Using our spGLCM method allows the inclusion of polarization information in
epi-detected thick samples, which makes classification between healthy and HPP more accurate.

The fusion of spatial polarimetric gray-level co-occurrence matrix (spGLCM) analysis and
machine learning reveals distinct patterns in bone collagen between healthy and hypophosphatasia
(HPP) states. Our models, particularly random forest, highlight the significance of polar energy
and contrast in categorizing these states. Random forest builds multiple decision trees, averaging
their predictions to reduce overfitting, while XGBoost improves gradient boosting with parallel
processing and tree pruning for higher accuracy. However, XGBoost can be more sensitive to
unscaled features compared to random forest and requires careful tuning of hyperparameters,
making it less robust. Additionally, the use of only 121 samples is insufficient for some machine
learning techniques, which may be the primary cause of inaccuracy. To enhance performance
and ensure consistent results, we employ a cross-validation strategy, providing a more reliable
assessment of the models.

Our random forest model showcases the impact of polar energy in categorizing these states.
The values for energy in the polar and diagonal dimension found the highest magnitude of
difference between the WT and HPP data sets, and the highest value for mean accuracy decrease
in our machine learning models, indicating the importance of this GLCM feature in capturing
collagen alterations in HPP. GLCM energy represents the sum of squared elements, reflecting
periodicity and variation of the uniformity within pixel samples of collagen in the HPP mice.
A flat curve suggests regularity and periodicity, whereas a highly fluctuated energy curve
indicates randomness. We found that HPP samples had varying differences in uniformity in
comparison with WT, suggesting differences in collagen packing and organization. Our findings
underscore the potential of spGLCM parameters in delineating subtle differences in collagen
organization, highlighting the relevance of polarimetric data in understanding HPP-associated
collagen architecture.

Taken together, this study finds that collagen fiber and lamella sheet assemblies are significantly
impaired in the HPP bone. Both SEM and SHG data support previous studies that indicated
impairment in HPP collagen structure within osteoid using histological methods [59]. Our
work does not directly address the mechanical effects of collagen organization; but literature
investigating a range of disease states with bone fragility phenotypes such as osteoporosis, diabetes
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and aging has found collagen structural defects to be associated with fragility [60–64], and that
misalignment of collagen and hydroxyapatite impairs bone strength and mechanical function [65].
Although the bone fragility of HPP has a direct origination from reduced mineral deposition
and resulting bone mineral density [66], impaired collagen organization may increase severity of
the bone weakness phenotype resulting from HPP. Thus, not only does the hypomineralization
directly weaken the bone, but the associated observed collagen deformations may further diminish
bone tensile properties and toughness. Furthermore, although we did not investigate collagen
organization in the other mineralized craniofacial tissues like the periodontal ligament (PDL), it
is possible that the disrupted collagen assembly we observe in HPP plays a role in reducing the
binding strength of the PDL and contributes to the intact tooth loss associated with even mild
odontohypophosphatasia [67].

In the future, it would be of interest to investigate the impact of a mineralization rescuing
treatment on the collagen disorder observed in HPP. This could be done by treating HPP mice
with Strensiq, the synthetic bone-targeted alkaline phosphatase enzyme used in patients to treat
HPP [22]. In addition, it is important to note that our study uses the severe infantile form of
HPP and evaluates lamellar sheet formation at two weeks of age when disorganized regions
still are prevalent even in healthy mice. Future studies could seek to understand the impacts
of HPP on collagen structure in mature mice with more mild forms of the disease using an
adult HPP murine model. Many HPP patients exhibit comparatively mild symptoms such as
tooth loss, frequent fractures, or bone degradation and osteoporosis in mid-life [22,41,66] that
may also have a collagen organization defect or collagen degradation associated with them. In
addition, our current work focused on the calvaria of HPP bone, and future efforts may aim to
incorporate analysis of long bone- and even extend the technique to investigate other metabolic
bone disorders.

5. Conclusion

Our work presented here develops polarized SHG imaging together with a spGLCM texture
analysis for evaluating collagen fibers and lamella sheet structures of the bone in both a healthy
and diseased state. By using HPP as our disease model, our work supports the linkage between
collagen and mineral within the bone to stabilize macro collagen structures. We found that
collagen is organized into regions of similar orientation within healthy bone and these regions
are diminished within HPP bone. Similarly, lamella sheets are clearly defined with one or
two dominant angles of orientation within the WT bone, but the collagen fibers of HPP bone
lack as clear of a dominant angle of orientation. We developed a texture analysis method that
incorporates both spatial and polarimetric data to differentiate between healthy and HPP bone by
evaluating the structure of the collagen fibers along the polarization angle axis, using several
machine learning classification techniques. This method can be expanded to describe bone health
as it relates to aging or other diseases like osteogenesis imperfecta; and may be complimentary to
current bone analysis techniques such as bone mineral density. This could allow for additional
guidance on treatment of HPP and other metabolic bone disease by monitoring the collagen
response to therapy.
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