
Research Article Vol. 15, No. 12 / 1 Dec 2024 / Biomedical Optics Express 6682

Enhancing image reconstruction in
photoacoustic imaging using spatial coherence
mean-to-standard-deviation factor beamforming

XINSHENG WANG,1 DAN WU,1,4 YONGHUA XIE,1 YUANYUAN BI,1

YUNQING XU,1 JING ZHANG,1,2 QING LUO,1 AND HUABEI JIANG1,3,5

1School of Optoelectronic, Chongqing University of Posts and Telecommunications, Chongqing, China
2Department of Ultrasound Imaging, The Fifth People’s Hospital of Chengdu, Chengdu, China
3Department of Medical Engineering, University of South Florida, Tampa, FL 33620, USA
4wudan@cqupt.edu.cn
5hjiang1@usf.edu

Abstract: In photoacoustic imaging (PAI), a delay-and-sum (DAS) beamforming reconstruction
algorithm is widely used due to its ease of implementation and fast execution. However, it
is plagued by issues such as high sidelobe artifacts and low contrast, that significantly hinder
the ability to differentiate various structures in the reconstructed images. In this study, we
propose an adaptive weighting factor called spatial coherence mean-to-standard deviation factor
(scMSF) in DAS, which is extended into the spatial frequency domain. By combining scMSF
with a minimum variance (MV) algorithm, the clutter level is reduced, thereby enhancing the
image contrast. Quantitative results obtained from the phantom experiment demonstrate that
our proposed method improves contrast ratio (CR) by 30.15 dB and signal-to-noise ratio (SNR)
by 8.62 dB compared to DAS while also improving full-width at half maxima (FWHM) by
56%. From the in-vivo experiments, the scMSF-based reconstruction image exhibits a higher
generalized contrast-to-noise ratio (gCNR), indicating improved target detectability with a 25.6%
enhancement over DAS and a 22.5% improvement over MV.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Photoacoustic Imaging (PAI) is an advanced non-invasive imaging technique that integrates
optical and acoustic technologies, which has garnered significant attention in the last two decades
[1–3]. It utilizes the high contrast of optical imaging and the exceptional penetration depth of
ultrasound (US) imaging to enable rendering of high optical contrast with scalable ultrasound
resolution at considerable imaging depths [4–7]. Short laser pulses are used to excite biological
tissues in PAI. Subsequently, due to the transient thermoelastic expansion of tissue chromophores,
broadband ultrasound waves (known as photoacoustic signals) are generated. An ultrasound
transducer receives and records these photoacoustic (PA) signals for PAI image reconstruction
[8–10]. PAI can accurately capture endogenous chromophores in blood vessels, including
oxygenated hemoglobin (HbO2) and deoxygenated hemoglobin (HbR), owing to its sensitivity
to these components. By analyzing these components, it evaluates blood oxygen saturation
(%sO2), offering an effective indicator for assessing individual physiological status [11]. In recent
years, PAI has been increasingly utilized in preclinical and clinical research domains including
functional brain imaging [12–14], cardiovascular [15,16], breast cancer screening [17–19], and
skin disease diagnosis [20–22].

Enhanced clarity and accuracy of PA images to more faithfully reflect the initial pressure
distribution inside tissue is the primary goal pursued by current PA image reconstruction
algorithms [23]. Several algorithms have been developed to optimize the quality of PA
images [24–26]. Among these, Delay-and-sum (DAS) algorithm has gained popularity in both
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photoacoustic and ultrasound imaging due to its simplicity and real-time processing capabilities
[27]. However, DAS algorithm has several limitations, such as reduced spatial resolution, high
sidelobe levels, low contrast and intense artifacts [28]. Extensive research has been conducted
to address the inherent limitations of DAS beamforming algorithm. For example, variational
coherence factor (VCF) [29], modify coherence factor (MCF) [30], lag-coherence factor (LCF)
[31]. In 2015, Matrone et al. proposed a delay-multiply-and-sum (DMAS) algorithm based on
signal correlation, which aims to overcome some of the limitations of DAS algorithm [32]. In
2017, the noise suppression limitations of DMAS algorithm were addressed by Matrone et al.
through an enhanced version known as double-stage delay-multiply-and-sum (DS-DMAS) [33].
DS-DMAS significantly improved noise tolerance compared to DMAS, but it is computationally
expensive than DMAS. Kirchner et al. proposed a signed delay-multiply-and-sum (sDMAS)
algorithm, which better preserves low-frequency PA information than DMAS and demonstrated
its applicability to multispectral PAI [34]. CF-DMAS has been proven to be effective in real-time
clinical photoacoustic imaging of humans in-vivo [35]. Several improved DMAS algorithms
and their integration with traditional beamformers have been previously reported [36,37]. The
minimum variance (MV) adaptive beamforming algorithm is used to overcome the limitations of
non-adaptive algorithms [38]. In addition, CF is used in MV algorithm to improve image quality
[39]. Although MV algorithm faces challenges in real-time imaging due to its requirement
for extensive and complex inverse matrix computations, researchers have developed methods
to reduce its computational complexity. Short-lag spatial coherence (SLSC) [40] is another
beamforming algorithm that can be used for PA and US imaging, demonstrating potential in
applications such as visualization of brachytherapy seeds in prostate cancer treatment [41] and
guidance of spinal pedicle cannulation [42], and mitigating skin tone bias [43]. However, SLSC
discards signal amplitude information, making it unsuitable for quantitative imaging. Mora et al.
proposed generalized spatial coherence (GSC) beamforming algorithm [44]. Compared to SLSC,
this algorithm retains signal amplitude information while achieving better image quality.

In this paper, we propose a new adaptive weighing method named spatial coherence mean-to-
standard-deviation factor (scMSF) and further combined it with MV beamforming algorithm to
reduce the clutter level. In order to enhance the robustness of the algorithm, it is extended to the
spatial frequency domain (fscMSF). The algorithm was validated through numerical simulations
and phantom experiments, and quantitatively accessed using various image quality metrics.
Furthermore, it was evaluated using PA data collected from human volunteers.

2. Materials and methods

2.1. Delay-and-sum and minimum variance beamforming

DAS algorithm is widely employed for time-domain reconstruction in PA imaging. In DAS,
appropriate delays are applied to the detected signals by calculating the distance between each
transducer element and the point of interest. The signals obtained from all the elements are
summed to obtain the composite signal strength at particular pixel. Repeat this process for
all pixels within the reconstruction area. The output of DAS (yDAS) at pixel position p can be
represented as [27]:

yDAS(p) =
N∑︂

i=1
xi[k + ∆i(p)], (1)

where N represents the number of transducer elements, xi is the PA signal is the PA signal
intensity corresponding to the ith element, k is time index, and ∆i is the time delay corresponding
to the ith element. DAS has limited ability to reject off-axis interference signals, resulting in
decreased image quality.

MV adaptive beamforming algorithm achieves off-axis signal suppression by minimizing the
total output energy of the array [45]. The optimal weights vector of MV at point p, wmv(p) are
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given by following equation:

wmν(p) =
R(p)−1a

aHR(p)−1a
(2)

where R(p) is the covariance matrix estimated using aperture data, a represents the directional
vector, (·)H donates the conjugate transpose. Before calculating the optical weights for MV, the
received PA signals need to be appropriately delayed. Therefore, the directional vector becomes
an array of ones [46]. Directly acquiring the covariance matrix is often impractical in practical
applications. Therefore, it is typically estimated using aperture data. To make the covariance
matrix more accurate, subarray averaging and temporal averaging techniques are used. The
covariance matrix after averaging can be represented as:

ˆ︁R(p) = 1
(2K + 1)(N − L + 1)

×

K∑︂
n=−K

N−L+1∑︂
l=1

Xl(k + n)XH
l (k + n) (3)

where L is the subarray length, and 2K+ 1 is the axial points used for temporal averaging.
Xl = [xl, xl+1, . . . , xl+L−1]

T is the lth subarray. To enhance the robustness of covariance matrix,
diagonal loading (DL) techniques are used [47]. It is calculated as follows:

R̂DL(p) = R̂ + (ε · trace{R̂})I (4)

where I is the identity matrix, ε · trace{R̂} is the diagonal loading factor, where ε is a constant,
typically smaller than 1/L. The output of MV is finally given as:

yMV (p) =
1

N − L + 1

N−L+1∑︂
l=1

wH
mvXl (5)

2.2. Spatial coherence mean-to-standard-deviation factor

The numerator term of the mean-to-standard-deviation factor uses the mean of DAS, without
accounting for spatial correlation. Therefore, in scMSF, the numerator term uses the mean of
small aperture generalized spatial coherence (SA-GSC), and the denominator term uses the
standard deviation of DAS. GSC can be represented as [44]:

yGSC(p) =
M∑︂

m=1

N−m∑︂
i=1

xi(k)

4

√︄
k2∑︁

k=k1

x2
i (k)

·
xi+m(k)

4

√︄
k2∑︁

k=k1

x2
i+m(k)

=

M∑︂
m=1

N−m∑︂
i=1

Si(k) · Si+m(k)

(6)

where m is the lag. The kernel size (∆k = k2 − k1) is chosen at a single wavelength to achieve a
balance between axial resolution and correlation stability. Eq. (6) can be written as:

yGSC(p) = (S1S2 + S2S3 + · · · SN−2SN−1 + SN−1SN) + (S1S3 + S2S4 + · · · SN−2SN)

+ · · · + (S1S1+(M−1) + S2S2+(M−1) + · · · SN−(M−1)SN)

+ (S1S1+M + S2S2+M + · · · SN−MSN)

(7)
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Merge and sum polynomials in Eq. (7), it can be written as:

ŷSA−GSC(p) = [S1(S2 + S3 + · · · + S1+M)]⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
frist term

+ [S2(S3 + S4 + · · · + S2+M)]⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
second term

+ · · ·+

[SN−M(SN−M+1 + SN−M+2 + · · · + SN−M+M)]⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
(N−M)th term

+ · · ·+

[SN - 2(SN - 1 + SN)]⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
(N−2)th term

+ [SN - 1SN]⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞
(N−1)th term

(8)

In Eq. (8), the auto-correlation of the same signal with different lag signals is combined into a
new beamforming term. Each term can be considered as a form of small aperture DAS. The
newly generated term can be expressed as:

Ŝp =
∑︂min(i+M,N)

j=i+1
Sj, for 1 ≤ i ≤ N − 1, (9)

Therefore, Eq. (8) can be written as:

ŷSA−GSC(p) =
N−1∑︂
i=1

Ŝi (10)

In this work, we propose to use the mean of above SA-GSC algorithm as the numerator term
in the weighing factor. Considering that in DAS, the aperture data for the target region has a low
standard deviation, while the aperture data for the background noise region has a high standard
deviation. The standard deviation corresponding to the background noise region is significantly
higher than that of the target region. Therefore, the standard deviation from DAS is used as the
denominator of the weighting factor. At this point, the target region has a high mean and low
standard deviation, resulting in a high weighting value. In contrast, the background region has a
high mean and high standard deviation, leading to a low weighting value. Thus, scMSF can be
defined as:

yscMSF(p) =

1
N−1

N−1∑︁
i=1

Ŝi√︄
1
N

N∑︁
i=1

(xi −
1
N

N∑︁
i=1

xi)

2
, (11)

Since the Fourier transform can separate coherent and incoherent components from aperture
data, we utilize this property to compute scMSF in the frequency domain. This aims to improve
the algorithm’s adaptability and robustness to signal variations. fscMSF can be represented as:

yfscMSF(p) =
1

N−1
∑︁N−1

i=1 (ŝ1 − ŝi)√︂
1
N
∑︁N

i=1 [(s
′
1 − s′i ) −

1
N
∑︁N

i=1 (s
′
1 − s′i )]

2
, (12)

where ŝ1 is the DC component of SA-GSC aperture, s′1 is the DC component of DAS aperture.
After yfscMSF(p) is calculated, the fscMSF is used to weight the DAS and MV, which can be
represented as follows:

yfscMSF+DAS(p) = yfscMSF(p) × yDAS(p), (13)

yfscMSF+MV (p) = yfscMSF(p) × yMV (p). (14)
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2.3. PAI system

The efficacy of our proposed method was further validated using phantom and in-vivo experiments
through a home-made real-time PAI system. A schematic diagram of our PAI system is shown in
Fig. 1. High-frequency OPO pulsed laser (SpitLight EVO S OPO, Innolas, Justus-von-Liebig
Ring 8, 82152 Krailling, Germany) with a pulse repetition frequency (PRF) of 100 Hz, a pulse
width of 5 ns, and a wavelength of 760 nm is the excitation source for phantom and in-vivo
experiments. The optical energy density of the laser beam was maintained at approximately 2
mJ/cm2, significantly lower than the FDA’s safety threshold of 22 mJ/cm2, ensuring the safety
of the experiments. After the laser was directed onto the object through an optical fiber, PA
signals are obtained by a self-constructed 256-channel semi-annular ultrasonic transducer, with
the transducer’s center frequency being 5 MHz and a curvature radius of 80 mm. The PA signals
collected by the transducer was amplified and filtered by the data acquisition (DAQ) system with
a sampling rate of 40 MHz and a gain of 80 dB, followed by real-time PA imaging using the DAS
algorithm. All beamforming processing is performed on a desktop computer with an Intel Core
i5-13600KF CPU at 5.1 GHz and 32 GB of RAM.

 
Fig. 1. The schematic diagram of PAI system.

2.4. Numerical simulations

Numerical simulations were designed to compare our proposed algorithm with the existing
algorithm (i.e., DAS and MV). All numerical simulation studies were conduct using the k-Wave
MATLAB toolbox [48]. In our simulation study, we selected a uniform propagation medium
with a constant sound speed of 1500 m/s and a medium density of 1040 kg/m3 as the propagation
environment. Five pairs of circular point absorbers with a radius of 0.1 mm were placed in the
aforementioned propagation environment. These absorbers were vertically positioned at five
different depth levels: 10 mm, 13 mm, 16 mm, 19 mm, and 22 mm. Adjacent targets in the
lateral direction are spaced 2 mm apart. A 128-channel semi-annular transducer with a curvature
radius of 6 mm was used to detect the PA signals. The distance between the bottom of the
semi-annular transducer and the first circular point absorber was 10 mm. The center frequency
of the transducer was 7.5 MHz. The PA signal was recorded at a sampling frequency of 50 MHz.
Imaging field of view (FOV) was 45× 13 mm2. During the simulation, Gaussian white noise
with a SNR of 30 dB was added to each captured PA signals.

2.5. Phantom and in-vivo experiments

The performance of the proposed algorithm was validated through two phantom experiments.
Figure 2(a) illustrates a schematic of phantom 1. Six black nylon lines (0.1 mm) are placed as
PA absorbers in pairs within a water tank and positioned vertically to the ultrasonic transducer,
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with later spacings of 10 mm, 20 mm, and 30 mm. Figure 2(b) illustrates a schematic of
phantom 2, with three black nylon lines (1 mm) positioned at varying depths within the water
tank. For in-vivo experiments, we validated the index finger and the right palm of human
volunteer using an ultrasonic transducer wrapped in a water-filled, translucent plastic sheet
(TPU) with transabdominal ultrasound characteristics. Human volunteer is in contact with the
TPU. Ultrasound coupling agent was applied to the human volunteer for maximizing ultrasound
transmission.

 

Fig. 2. (a) the schematic diagram of phantom 1. (b) the schematic diagram of phantom 2.

2.6. Quantitative assessment of reconstructed images

Full-width at half maxima (FWHM), contrast ratio (CR), signal-to-noise ratio (SNR) and
generalized contrast-to-noise ratio (gCNR) were used to quantitatively evaluate image quality,
and they defined as follows [31,49]:

CR = 20log10(
µin

µout
), (15)

SNR = 20log10(
µin

σout
), (16)

gCNR = 1 −

1∑︂
x=0

min{hin(x), hout(x)}, (17)

where, µin and µout denote the average PA signal values within the region of interest (ROI) and
the background noise region, respectively. σout represents the standard deviation of the PA signal
in the background noise region. hin and hout represent the probability density functions of the PA
signal amplitudes in the ROI and background noise regions, respectively.

3. Results and discussion

3.1. Numerical simulations

The reconstructed images of the 10 point targets using different reconstruction algorithms (DAS,
MV, fscMSF-DAS, and fscMSF-MV) are shown in Fig. 3. All images are presented with
the same dynamic range. For fscMSF-DAS and fscMSF-MV, the lag was selected as 30% of
the transducer aperture. The ground-truth image of the numerical simulation is depicted in
Fig. 3(a). Figure 3(b) and (c) represent the reconstructed images of DAS and MV, respectively.
The reconstructed images of our proposed algorithm weighting DAS and MV are presented in
Fig. 3(d) and Fig. 3(e), denoted as fscMSF-DAS and fscMSF-MV, respectively. In Fig. 3(b),
PA image reconstructed using DAS are characterized by wide mainlobe and strong sidelobes.
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Additionally, due to the mutual interference of the sidelobes of two adjacent absorbers, significant
artifacts are generated between the absorbers. As the imaging depth is increased, the point targets
in DAS gradually became barely detectable. As shown in Fig. 3(c), although the MV algorithm
attenuates the sidelobes to some extent, fails to sufficiently reduce their magnitude. The fscMSF
weighting significantly suppresses the sidelobes and artifacts between absorbers in DAS and MV
beamformed images, providing narrower mainlobe and enabling the detection of point targets at
greater depths, as shown in Fig. 3(d) and (e).

 

Fig. 3. The numerical simulation results. (a)Ground-truth image of numerical point
phantom. Employed the following four different algorithms for image reconstruction: (b)
DAS, (c) MV, (d) fscMSF-DAS, and (e) fscMSF-MV, to reconstruct images of 10 simulated
point targets.

To better compare the reconstructed images, Figs. 4(a) and 4(b) show the lateral distribution of
PA signals intensity at depths of 13 mm and 19 mm, respectively. The average of the FWHM
value of the two targets at the same depth is taken as the final FWHM value at that depth. The
variation of the FWHM of the point targets with increasing depth is depicted in Fig. 4(c). The
results indicate that, compared to traditional beamforming algorithms, the fscMSF-MV algorithm
exhibits the greatest sidelobes suppression and the narrowest mainlobe width. As the imaging
depth increases, the resolution of all algorithms decreases. However, compared to DAS and
MV, the resolution is significantly enhanced after fscMSF weighting. At a depth of 22 mm, the
FWHM values of the point targets for DAS, MV, fscMSF-DAS, and fscMSF-MV are 0.90 mm,
0.85 mm, 0.49 mm, and 0.48 mm, respectively. Therefore, our proposed algorithm significantly
enhances lateral spatial resolution compared to DAS and MV.

 

 

Fig. 4. (a) and (b) show the lateral distribution of PA signal for point targets at depths of
13 mm and 19 mm, respectively. (c) displays the FWHM of reconstructed point targets at
different depths.

To evaluate the efficacy of different reconstruction algorithms, we quantitatively calculated
the CR and SNR for all the recovered targets. When calculating the CR and SNR for the point
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targets at a depth of 10 mm, we selected regions based on the markings in Fig. 3(b): the target
region delineated by the blue box represents the imaging area of the point targets, while the green
box delineates the background noise region. The background region and the target region are at
the same depth. For point targets at other depths, we applied the same criteria as those used for
the 10 mm depth targets to select the target and background regions. Figure 5(a) and Fig. 5(b)
respectively illustrate the CR and SNR values for all algorithms at five different depths. These
values were obtained by averaging the measurements of two targets at each depth to ensure the
accuracy of the results. From the Fig. 5, it is clear that our proposed algorithm significantly
improves both CR and SNR. Taking the example of point targets at a depth of 22 mm, the
achievable CR values for DAS, MV, fscMSF-DAS, and fscMSF-MV are 10.28, 15.78, 23.92,
and 27.43 dB, respectively. the achievable SNR values are 23.33, 26.38, 36.28, and 40.79 dB,
respectively. The fscMSF-MV algorithm demonstrates a significant improvement in both CR and
SNR, with an increase of at least 17 dB and 14 dB respectively, across all depths.

 

Fig. 5. Quantitative evaluation of the reconstructed images shown in Fig. 3: (a) depicts the
CR values of point targets at various depths, while (b) illustrates the SNR values of point
targets at different depths.

3.2. Phantom experiments

The PA results of two phantom experiments reconstructed using all beamforming algorithms are
shown in Fig. 6 and Fig. 9, respectively. Figure 6(a1)-(d1) depict the PA images reconstructed
using the DAS, MV, fscMSF-DAS, and fscMSF-MV algorithms for three pairs of 0.1 mm
nylon lines, respectively, and displayed with the same dynamic range. For fscMSF-DAS and
fscMSF-MV, the lag was selected as 30% of the transducer aperture. Figure 6(a2)-(d2) shows the
local magnified images of the nylon threat phantom within the green box area in the reconstructed
images by all algorithms. Each target in the phantom is clearly visible in all four reconstruction
scenarios. However, when using the DAS algorithm, both the background noise and sidelobe
artifacts are higher levels. After applying fscMSF weighting, the background noise nearly
disappears, sidelobes and artifacts are suppressed to a lower level, and the detectability of targets
is significantly improved. Figure 7(a) show the lateral variations in PA signal intensity for point
targets at depth of 20 mm. The average of the FWHM values of the two targets at the same depth
is taken as the final FWHM at that depth. Figure 7(b) displays the change in lateral resolution
of targets reconstructed all algorithms as depth increases. Figure 7(a) demonstrates that after
applying fscMSF weighting technique, the mainlobe becomes narrower and the sidelobes are
significantly reduced. According to Fig. 7(b), the FWHM calculated at 10 mm for DAS, MV,
fscMSF-DAS, and fscMSF-MV are 0.25 mm, 0.24 mm, 0.12 mm, and 0.11 mm. The FWHM
of fscMSF-MV improved by 56.00% and 54.17% compared to DAS and MV, respectively. It
indicates that the proposed fscMSF weighing method can achieve enhanced lateral resolution.

The quantitative evaluation of targets at different depths in phantom 1 was conducted using
three image quality metrics: CR, SNR, and gCNR. The results of quantitative evaluation are
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Fig. 6. PA images of phantom 1 were reconstructed using the (a1) DAS, (b1) MV, (c1)
fscMSF-DAS, and (d1) fscMSF-MV algorithms. (a2)-(d2) show magnified images (marked
with a green box) of the phantom at 10 mm reconstructed by different algorithms.

 

 

Fig. 7. (a) shows the variation in lateral PA energy intensity at a depth of 20 mm. (b) shows
the change in FWHM of targets reconstructed by all algorithms as depth increases.

 

Fig. 8. All the algorithms were quantitatively evaluated at different depths in phantom 1
using (a) CR, (b) SNR, and (c) gCNR.

 

Fig. 9. Reconstructed PA images of phantom 2 using the following algorithms: (a) DAS,
(b) MV, (c) fscMSF-DAS, and (d) fscMSF-MV.
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depicted in Fig. 8(a)-(c). The target region and background region are represented by blue
and white boxes, respectively. The values of CR and SNR of DAS and MV are improved by
incorporating the fscMSF weighting method, as shown in Fig. 8(a)-(b). Figure 8(c) demonstrates
that although the gCNR of all algorithms decreases with increasing depth, the gCNR after fscMSF
weighting consistently remains at a higher level.

The first phantom experiment demonstrates a significant enhancement in resolution and contrast
ratio for multiple small targets through the proposed method. Considering that artifacts from
large absorbers are significantly stronger than those from small ones, another phantom experiment
was utilized to confirm the proposed method is effective in improving the imaging quality of large
absorbers. Figure 9(a)-(d) depict the PA images reconstructed using the DAS, MV, fscMSF-DAS,
and fscMSF-MV beamforming algorithms for three 1 mm nylon lines, respectively, and displayed
with the same dynamic range. In the DAS image, there are noticeable streaking artifacts around
point targets and high signal amplitude in the background. After applying fscMSF weighting, the
streaking artifacts are significantly reduced, and the background noise is substantially lowered.
In the fscMSF-MV image, the streaking artifacts and background noise are almost completely
absent. We conducted quantitative evaluations of targets at 19 mm and 27 mm depths in Fig. 9,
as shown in Fig. 10(a)-(c). At 19 mm depth, the fscMSF-MV algorithm improved CR and SNR
relative to DAS by 23.48 dB and 9.98 dB, respectively. For gCNR, the fscMSF-MV algorithm
improved by 15.1% relative to DAS and 13.8% relative to MV. It indicates that fscMSF weighting
can provide better detectability of targets.

 

 

Fig. 10. Quantitative evaluation of the existing imaging algorithms (DAS and MV) and
the proposed methods (fscMSF-DAS and fscMSF-MV): (a) CR, (b) SNR, and (c) gCNR of
targets at two different imaging depths (19 mm and 29 mm).

3.3. In-vivo experiments in human volunteers

To assess the performance of our proposed reconstruction algorithm on in-vivo imaging, we used
the PAI system to acquire PA data from the index finger and right palm of human volunteers and
reconstructed PA images using all beamforming algorithms. Figures 11(a)–11(d) depict the PA
images of the index finger reconstructed using the DAS, MV, fscMSF-DAS, and fscMSF-MV
beamforming algorithms. For fscMSF-DAS and fscMSF-MV, the lag was selected as 30% of the
transducer aperture. In the result reconstructed using the fscMSF-MV algorithm, the artifacts
on the upper surface of the skin have almost completely disappeared. After fscMSF weighting,
the layers of the skin can be clearly observed, making the dermis and epidermis of the finger
skin more distinct and easier to differentiate (see the white arrows in Figs. 11(a)–11(d)). The
background noise around the skin is significantly reduced after being weighed by fscMSF. The
background noise weighted by the MV algorithm is lower than that weighed by the DAS algorithm
(compare areas within the dashed circular boxes in Figs. 11(a)–11(d)). The lower background
noise enhances the PA images contrast. Select the palmar digital veins within the blue box area
in Fig. 11(a) as the target region for quantitative analysis. As shown in Table 1, compared to
DAS, the fscMSF-MV algorithm improves the CR and SNR by 21.51 dB and 8.5 dB, respectively.
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When compared to MV, the CR and SNR are improved by 21.06 dB and 7.88 dB, respectively.
When compared to DAS and MV, the fscMSF-MV algorithm improves the gCNR by 8.8% and
6.5%, respectively.

 

Fig. 11. Reconstructed PA images of the index finger obtained using (a) DAS, (b) MV, (c)
fscMSF-DAS, and (d) fscMSF-MV.

Table 1. The imaging performance (SNR, CR, and gCNR) of different
beamforming methods when imaging the palmar digital vein of the index finger.

DAS MV fscMSF-DAS fscMSF-MV

CR (dB) 5.42 5.87 26.34 26.93

SNR (dB) 39.72 40.34 47.75 48.22

gCNR 0.91 0.93 0.99 0.99

To further validate the efficacy of the proposed algorithm and assess its performance in
enhancing the quality of superficial blood vessel visualization, we performed imaging on the
right palm of a human volunteer. Figure 12(a) show the photography of the right palm, and the
red dashed line is the location of the PA image region. Figure 12(b)-(e) show the PA images
of the right palm reconstructed using four different algorithms: DAS, MV, fscMSF-DAS, and
fscMSF-MV. In Fig. 12(b), Blood vessels respectively are one of the deep dorsal metacarpal
veins (label 1) and ulnar vein deep palmar branch (label 2). After applying fscMSF weighting,
the layered structure of skin becomes clearer (marked with white arrows in Fig. 12(b)-(e)). This
result is consistent with the qualitative analysis of the index finger. When using our proposed
method, the improvements in CR and SNR are clearly visible, which is due to the significant
reduction in background noise. When using the conventional DAS algorithm (Fig. 12(b)), vessel
contrast is low due to background noise and sidelobe artifacts. In the PA image reconstructed
using the MV algorithm, background noise has been suppressed but remains strong. After
weighting DAS and MV with fscMSF, the background noise in the PA images is significantly
suppressed (see the dashed rectangular boxes in Figs. 12(b)–12(e)). Moreover, as the background
noise decreases, blood vessels that were previously hidden due to strong noise become clearly
visible in the PA images. When using the fscMSF-MV algorithm (Fig. 12(e)), background noise
is suppressed, and vessel contrast is significantly enhanced.
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Fig. 12. The in-vivo experiment results of the right palm of a human volunteer. (a) a
photograph of the right palm. The red dashed line indicates the location of the imaging
region cross-section. The PA reconstruction images of the right palm of a human volunteer
obtained using (a) DAS, (b) MV, (c) fscMSF-DAS, and (d) fscMSF-MV.

To quantitatively evaluate the improvement in PA image quality, we selected target and
background regions to calculate the CR, SNR, and gCNR of one of the deep dorsal metacarpal
veins (label 1) and ulnar vein deep palmar branch (label 2). In case of vessel 2, the target region
is represented by the blue box in Fig. 12(b). The selection criteria for the vessel 1 are the same.
In case of ulnar vein deep palmar branch, the CR values are 4.69 dB, 5.29 dB, 27.58 dB, and
29.07 dB for DAS, MV, fscMSF-DAS, and fscMSF-MV, respectively. The PA reconstruction
image by fscMSF-MV improved the CR value by 24.38 dB and 23.78 dB compared to DAS and
MV, respectively. And the SNR value relative to DAS and MV is improved by 9.22 dB and 8.85
dB, respectively. Regarding gCNR, our proposed algorithm achieves improvements of 13.8%
and 12.5% compared to DAS and MV, respectively. When using our proposed method, there are
significant improvements in CR, SNR, and gCNR for two vessels (more details can be found in
Table 2).

Table 2. The measured quantitative values of different beamforming methods
when imaging the palmar venous plexus of right palm

Blood vessel DAS MV fscMSF-DAS fscMSF-MV

CR (dB)
1 4.08 4.79 24.77 25.46

2 4.69 5.29 27.58 29.07

SNR (dB)
1 32.43 33.84 39.28 39.83

2 35.65 36.02 44.50 44.87

gCNR
1 0.78 0.80 0.96 0.98

2 0.87 0.88 0.98 0.99
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4. Conclusion

In this work, we describe a weighted factor based on spatial coherence mean-standard deviation
method to enhance the performance of PA imaging. The algorithm is extended to the frequency
domain to enhance its robustness across different environments. The MV algorithm mitigates
clutter by estimating the optimal weights for channel signals, thereby reducing off-axis energy.
The fscMSF weighing factor is applied to the MV beamformer to enhance imaging contrast.
Traditional DAS algorithm, due to its blindness and nonadaptiveness, result in reconstructed
PA images with low resolution, high sidelobes, and poor CR value. Our proposed method
effectively mitigates these drawbacks and provides improvements in image quality metrics such
as higher resolution, sidelobe suppression, and contrast enhancement. The numerical simulation,
phantom experiments, and in-vivo studies were used to validate the efficacy of the proposed
method. The results of numerical simulation demonstrate that our proposed method outperforms
the traditional methods in terms of FWHM, CR, and SNR (see Figs. 4 and 5). The results of
the lateral energy distribution in the first phantom experiment show that our proposed method
achieves lower sidelobe level and an FWHM closer to the phantom size (see Fig. 7). For the
FWHM of the phantom at a depth of 10 mm, the fscMSF-weighted DAS and MV algorithms
improve by 52% and 54%, respectively, compared to the algorithms without fscMSF weighting.
Additionally, the quantitative evaluation results from the two phantom experiments indicate
that the fscMSF-weighed PA images show significant improvements in CR, SNR, and gCNR
compared to unweighted images (see Figs. 8 and 10). For the phantom at a depth of 19 mm in
the second phantom experiment, the fscMSF-weighed CR and SNR increased by 22.3 dB and
8.44 dB, respectively. Although CR and SNR values decrease with depth, the fscMSF-weighed
images still exhibition high CR and SNR values. In-vivo feasibility of fscMSF beamformers was
demonstrated by performing PA imaging of the index finger and right palm of the human volunteer.
The PA reconstruction results from the in-vivo experiments show that our proposed method
enhances the clarity of the imaging region in PA images by reducing background noise (see
Figs. 11 and 12). After fscMSF weighting, the skin structure in the index finger and right palm
becomes more clearly visible, allowing for the distinct identification of the dermis and epidermis
layers. The quantitative analysis of blood vessels in the index finger and right palm shows that
the evaluation metrics of the fscMSF-weighed images are significantly improved compared to the
unweighted images (see Tables 1 and 2). The CR/SNR values from the in-vivo experiments show
that the fscMSF-MV algorithm improves by at least 20 dB and 6 dB, respectively, compared to
the MV algorithm. For the deep dorsal metacarpal veins (label 1), the fscMSF-MV algorithm
increases the gCNR by 0.18 compared to the MV algorithm, indicating a 22.5% improvement in
lesion detectability.

Finally, all the experiment results demonstrate that our proposed method effectively enhances
the clarity and details of PA images, with significant improvement in various quantitative
image evaluation metrics. Furthermore, this method can be integrated with other beamforming
algorithms to achieve even better PA imaging results.

In this study, we designed a novel weighting technique (fscMSF) aimed at overcoming the
inherent limitations of traditional reconstruction algorithms, such as low resolution. This
technique addresses issues such as insufficient contrast, prominent background noise, and low
resolution typically associated with traditional algorithms. We comprehensively validated the
efficacy of the proposed method through numerical simulations, phantom experiments, and
in-vivo studies. The experimental results obtained have confirmed the efficacy of our proposed
method in improving quantitative metrics including FWHM, CR, SNR, and gCNR.
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