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Abstract: Optical coherence tomography (OCT) is a technique that performs high-resolution,
three-dimensional, imaging of semi-transparent scattering biological tissues. Models of OCT
image formation are needed for applications such as aiding image interpretation and validating
OCT signal processing techniques. Existing image formation models generally trade off between
model realism and computation time. In particular, the most realistic models tend to be highly
computationally demanding, which becomes a limiting factor when simulating C-scan generation.
Here we present an OCT image formation model based on the first-order Born approximation
that is significantly faster than existing models, whilst maintaining a high degree of realism.
This model is made more powerful because it is amenable to simulation of phase sensitive OCT,
thus making it applicable to scenarios where sample displacement is of interest, such as optical
coherence elastography (OCE) or Doppler OCT. The low computational cost of the model also
makes it suitable for creating large OCT data sets needed for training deep learning OCT signal
processing models. We present details of our novel image formation model and demonstrate its
accuracy and computational efficiency.
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1. Introduction

Optical coherence tomography (OCT) is an imaging tool [1] used widely in ophthalmology [2]
and, increasingly, in other medical imaging applications such as dermatology [3], cardiology
[4] and gastroenterology [5]. OCT is based on a combination of low coherence interferometry
and confocal microscopy, which enables the recording of high-resolution depth profiles of
semi-transparent scattering biological tissues. Models for OCT image formation employ the
physics underlying OCT to simulate images possessing salient features consistent with images
acquired experimentally. Such features include realistic speckle properties, focal plane generation,
resolution, depth of focus and sample induced aberration. Simulation of OCT image formation has
proven powerful for investigating and developing a range of OCT-based imaging modalities, such
as optical coherence elastography (OCE) [6,7] and optical coherence tomography angiography
(OCTA) [8].

In the last two decades, several methods of simulating OCT image formation have been
developed [8–21]. The usefulness of such image formation models is determined by how
accurately a sample can be, and needs to be, represented and by the degree of approximation
of the model of light propagation. Making a rigorous error estimation of such models against
experimental OCT data is challenging. One reason for this is that sample parameters, such as
the microscopic refractive index distribution, which are integral to OCT image formation are, in
general, not known with sufficient accuracy to simulate the experiment.

Image formation models can be classified as either analytical or numerical. Analytical
models are based on mathematical functions describing the response of the optical system,
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usually the point-spread function (PSF) [8–10]. The advantage of these models is that they are
generally computationally inexpensive and they may provide additional information regarding the
physical properties of the imaged object. However, because of the intrinsic complexity of light
scattering, significant approximations are often necessary to find such analytical descriptions
when considering anything other than trivial samples.

Numerical models have been developed for scenarios where the governing equations are not
amenable to analytical solution. The most common numerical models for image formation in
OCT are based on Monte Carlo methods (MC) [11–14], full wave models (FW) [15–17,22,23]
and numerical PSF models [18–20]. MC methods usually employ a particle description of light
to model light-tissue interaction, where photon trajectories are simulated, therefore including
multiple scattering. Their main weaknesses are that tissue is represented by statistically averaged
properties and the computational cost can be high. FW models employ an electromagnetic
description of light in three-dimensional space, by numerically solving Maxwell’s equations to
determine how light is scattered by samples represented as three-dimensional refractive index
distributions. FW models thus inherently include phenomena such as multiple scattering. Unlike
MC methods, FW models can be used to simulate deterministic scatterers and wave properties of
the illumination, including polarisation and coherence, for example. However, the computational
cost of FW models can limit their applicability, particularly if a large number of OCT A-scans
must be simulated or if the sample is too large. The available image formation models thus
present a spectrum which varies in terms of realism and computational cost. For example,
While analytical PSF based models are not detailed enough to generate realistic OCT B-scans or
C-scans, the applicability of MC and FW based models can be limited by their computational
cost.

However, a good compromise between computational cost and realism can be achieved by
models employing a rigorous representation of the optical system, but assuming the first-order
Born approximation to calculate the scattered field. This approximation is suitable in many
applications where the primary contribution of the back-scattered field comes from single-
scattering, as is often the case in OCT. Such a model, which does not make the paraxial
approximation, and employs a rigorous vectorial description of the illumination [18,24], is
faster than FW and MC methods, yet is still not fast enough for the applications targeted in this
paper, such as the generation of OCT C-scans containing thousands of A-scans and hundreds of
thousands of scatterers in minutes to hours. A model able to produce such C-scan datasets rapidly
was proposed by Matveyev et al., where the illumination was defined by a scalar Gaussian beam
[8,19]. The same group recently proposed a generalisation of that model [20], which allows a
more general description of the scalar illumination and does not make the paraxial approximation
for the propagation of the beam, which must be calculated in advance on a transverse plane. The
model calculates the scattered field efficiently by using angular spectrum decomposition and
exploiting the speed of the fast Fourier transform (FFT) algorithm, which makes it suitable for
the rapid simulation of C-scans. However, this model does not take advantage of redundancy
when calculating a C-scans for samples with similar distributions of scatterers. In particular, an
independent re-calculation is required when the positions of scatterers are perturbed.

In this paper we present a novel model of OCT image formation which is realistic and
computationally efficient. Our model applies to samples composed of a discrete set of point
scatterers and calculates the scattered field by employing the first-order Born approximation.
The illumination is rigorously defined by the Debye-Wolf integral (DWI) [24,25], which allows
the simulation of general vectorial beams, including aberrations. The numerical calculation of
the DWI is highly computationally demanding for modelling OCT image formation, because
it must be computed at each scatterer location and for each wavenumber of the simulation.
We have overcome this computational bottleneck by using the Taylor expansion and a new
optimal interpolation technique called multi-spectral regression (MSR). The Taylor expansion is
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employed to accurately approximate the DWI at all scatterer locations without directly numerically
calculating the field at those points. Because of MSR, the model computation time does not scale
with the number of wavenumbers and is memory efficient because the field is stored only for
few wavenumbers. Scatterer distributions and lateral scanning can be implemented arbitrarily,
without any restriction. This model can rapidly simulate C-scans for a broad range of OCT
system parameters. The model is thus useful for analysing a range of phenomena observed in
experiments and for training machine learning models that process raw OCT data. Furthermore,
the model is extremely fast for simulating OCT C-scans for axially displaced scatterers, because
the C-scan of the displaced scatterers is calculated as a perturbation to the initial C-scan, rather
than requiring a complete recalculation. This is useful when modelling image formation in
modalities such as optical coherence elastography (OCE) [26].

One example application is the simulation of large datasets of realistic OCT raw data used
to train deep learning strain retrieval models for OCE, or to test the existing models. Within
this example, we focus solely on an optical model of image formation in OCT which can be
coupled to any model of sample deformation. In particular, we assume that users of this image
formation model will also use a model of deformation appropriate to their application. This
approach follows many works dating to the earliest OCT image formation model introduced by
Schmitt [9], and later models such as [10] and [27]. Performing a rigorous accuracy analysis
against multiphysics models, which include a mechanical model of the sample is thus beyond the
scope of this paper.

We first overview models for OCT image formation based on the first-order Born approximation,
focusing on the case where the illumination is rigorously defined by the DWI. Later, we explain
in detail the two key components of our model, the Taylor expansion and the MSR. We first
introduce the Taylor expansion based approximation and demonstrate its validity by comparing
it with direct calculation of the DWI, including for phase-sensitive OCT, such as is used in
elastography. We then introduce the MSR technique, which is employed to efficiently estimate
arbitrary monochromatic components of the electromagnetic field from the computation of only
few of components, which is useful for efficiently simulating OCT signals with hundreds of
thousands of scatterers and several wavenumbers. Finally, we analyse the model’s accuracy and
computation time when employing both approximations. We also show some examples of the
model’s application, including the development of large OCT datasets that can be used for the
training of deep learning models.

2. OCT image formation model

A typical spectrometer based Fourier domain OCT system consists of a broadband source, an
interferometer with reference and sample arms and a spectrometer (see Fig. (1)). A low coherence
source emits light, which is split into the reference and sample arms. The reference arm beam is
reflected by a mirror, while the sample scatters light back to the spectrometer, via the objective
lens and optical fiber. For each wavenumber, k, the reference and sample-scattered fields are
coupled into the respective fibers. This process is mathematically described by integration of the
product of fields and fiber mode, over the end face of the fiber. We denote the results of such
integrations as the mirror (αmirr(k)) and sample (αscat(k)) modal coefficients, respectively [16,28].
The detected current I(k) is then processed to create the OCT A-scan A(z):

I(k) := ∥αscat(k) + αmirr(k)∥2 (1a)

A(z) := F −1{︁I(k)
}︁
(2z) (1b)

where F −1{︁.}︁ is the inverse Fourier transform operator. We assume that tissue can be represented
as a collection of discrete scattering potentials, and the back-scattered field is calculated assuming
the first-Born approximation. Each point scatterer is assumed to radiate as a harmonically
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oscillating dipole with moment proportional to the incident field, as shown by Born and Wolf [29].
Then, by denoting Einc (xs, ys, zs; k) as the monochromatic component of the incident electric
field scattered by a scatterer at position Ps = (xs, ys, zs) with wavenumber k, the moment of
the dipole which represents each scatterer, can be assumed proportional to the incident beam,
i.e., Escat (xs, ys, zs; k) = ρsEinc (xs, ys, zs; k), where ρs is a positive coefficient representing the
scattering cross-section of the scatterers, evaluated at Ps. Signal attenuation can be simulated by
varying ρs as a function of the depth z. Since low numerical aperture objectives are employed in
OCT, we assume that the longitudinal component of incident light can be neglected. Furthermore,
without loss of generality, we assume that light incident upon the sample is linearly polarised
in the x-direction. We point out, however, that the model can be easily adapted to cater for
arbitrary polarisation states. Thus, assuming a sample composed by Ns scatterers with positions
Ps = (xs, ys, zs)

|︁|︁s=1,...Ns , the modal coefficients of detected sample and reference arms can be
described by [20,28]:

αscat (k) :=
Ns∑︂
s=1

ρs

(︂
Einc

x (xs, ys, zs; k)

)︂2
, (2a)

αmirr (k) := ∆N

N∑︂
t=1

ρmirr

(︂
Einc

x (xt, yt, zmirr; k)

)︂2
, (2b)

where Einc
x is the x-component of the incident field. While Eq. (2a) represents the sum of the

integrated fields back-scattered by each individual scatterer, Eq. (2b) represents the integral of
the field reflected by the mirror, which is numerically calculated on the uniform grid of points
{(xt, yt, zmirr)}|t=1,...N at the mirror plane z = zmirr with discrete step-size ∆N , and ρmirr is the
reflectivity of the mirror (see Fig. (1)).

Fig. 1. Diagram of a fiber-based OCT system as explained in section 2). The sample-arm
fiber is depicted in the light-blue shaded section. The function ˜︁ϕ (︁

ux, uy
)︁

specifies the profile
of the field incident upon the aperture, which is mapped by the lens to the function ϕ

(︁
sx, sy

)︁
on the Gaussian reference sphere. Each point

(︁
ux, uy

)︁
uniquely corresponds to the vector(︃

sx, sy,
√︂

1 − s2
x − s2

y )

)︃
, which defines the direction of a particular ray in the sample space

(see [18] for more details).

2.1. Scattered field definition

The most computationally costly aspect of OCT image formation models based on Eqs. (1–2) is
generally the calculation of the incident field Einc (xs, ys, zs; k). Matveyev et al. [20] modeled an
arbitrary scalar incident field, assuming knowledge of the electric field at each point on the plane
z = zs, before the region containing the scatterers, which is then used to calculate the field in all
points of the computational space using angular spectrum propagation. In our approach, each
monochromatic component of the electric field at point (x, y, z), in the vicinity of the focus of the
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lens, is calculated using the DWI [24,25]. Assuming that the beam incident upon the aperture of
the objective lens is linearly polarised in the x-direction, the focal field is given by:

E(r, z; k) = −
ikf
2π

∬
Ω

u (s) ϕ(s; k)√︁
1 − |s|2

eikη
(︂
r·s+z

√
1−|s |2

)︂
dsxdsy (3)

where r = (x, y), r · s is the dot product of the vectors r and s, f is the focal length of the objective
lens, η is the refractive index in the focal region, s =

(︁
sx, sy

)︁
, |s| =

√︂
s2
x + s2

y , ϕ(s; k) specifies the

profile of the field on the Gaussian reference sphere of the lens,Ω =
{︃
(sx, sy) ∈ R2

|︁|︁|︁|︁√︂s2
x + s2

y<
NA
η

}︃
and u (s) is a vector which describes refraction by the lens of the field incident upon the Gaussian
reference sphere of the lens, and is calculated using the generalized Jones matrix formalism [18].
For the remainder of this paper we will assume ϕ(s; k) = e−( k

W )
2
(s2

x+s2
y), where W is a parameter

that controls the waist radius of the Gaussian illumination (see Fig. (1)).
The DWI calculation can be sped up significantly by expressing it as linear combination of

the Bessel functions of the first kind Jn [30], which allows the field to be calculated partially
analytically as [24,31]:

Einc(r, z; k) = −ifk

arcsin
(︂

NA
η

)︂∫
0

√︁
cos(θ) sin(θ)e−( k

W )
2sin2(θ)+iηkz cos(θ)

·

⎛⎜⎜⎜⎜⎝
(︁
1 + cos(θ)

)︁
J0
(︁
ηkρ sin(θ)

)︁
+
(︁
cos(θ) − 1

)︁
cos (2ψ) J2

(︁
ηkρ sin(θ)

)︁(︁
cos(θ) − 1

)︁
sin (2ψ) J2

(︁
ηkρ sin(θ)

)︁
2 sin(θ) cos(ψ)J1

(︁
ηkρ sin(θ)

)︁
⎞⎟⎟⎟⎟⎠

dθ

(4)

where (ρ,ψ) are the polar coordinates of r. Even though Eq. (4) is an optimized version of the
DWI, it is too slow to meet the objectives of this paper, where we aim to calculate thousands of
A-scans. The high computational cost arises because Eq. (4) must be evaluated at each scatterer
location and for each wavenumber of the sampled simulated spectrum.

3. Novel efficient model of OCT image formation

Our new OCT image formation model introduces a novel approximation to Eq. (4) which allows
rapid evaluation of Eqs. (1–4). The new model enables very fast, phase-sensitive, OCT image
formation simulations allowing several OCT C-scans to be evaluated, in the order of minutes to
hours. We first introduce the innovation based on the Taylor expansion of the DWI, and later we
introduce the MSR technique, which is employed in the model to further speed it up and making
it memory efficient.

3.1. Taylor expansion based approximations

In order to simplify notation, we consider only the y-component of Eq. (4), since it has fewer
terms than the x-component, however the equivalent expression for the x-component immediately
follows from the y-component expression:

Einc
y (r, z; k) = −ifk sin(2ψ)

arcsin
(︂

NA
η

)︂∫
0

g(θ)e−( k
W )

2sin2(θ)+iηkz cos(θ)J2
(︁
ηkρ sin(θ)

)︁
dθ, (5)
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where g(θ) :=
√︁

cos(θ) sin(θ)
(︂
cos(θ) − 1

)︂
. Our goal is to calculate Eq. (5) in a fast and memory

efficient way, for each point in space (r, z) and each wavenumber k. We achieve this by first
evaluating Eq. (5) on a fixed sparse grid of relatively few points in the plane

(︂
ρs

j , z
s
l

)︂
which we

denote as source points. We then use the Taylor expansion to calculate the incident field at
arbitrary points within the plane (see Fig. (2)). We factor out axial phase oscillations present in
the DWI by collecting the eiηkz term outside of the integral, since the Taylor expansion would
otherwise be unsuitable to approximate the rapid phase oscillation of the DWI in the z direction:

Einc
y (r, z; k) = −ifk sin(2ψ)eiηkz · h (ρ, z; k) (6a)

h (ρ, z; k) :=

arcsin
(︂

NA
η

)︂∫
0

g(θ)e−( k
W )

2sin2(θ)+iηkz
(︁

cos(θ)−1
)︁
J2

(︂
ηkρ sin(θ)

)︂
dθ. (6b)

This simple step of axial phase factorisation (Eq. (6a)) causes h (ρ, z; k) to become much less
oscillatory than Einc

y (r, z; k), making it suitable for expansion as a Taylor series. The main idea
of the model is to numerically calculate the DWI, and its radial and axial derivatives up to a
specified order, at only the source points, which are then employed to approximate the DWI at
arbitrary points in space, as required to simulate each A-scan.

Fig. 2. Grid scheme of the algorithm described in section 2). The source points
(︂
ρs

j , z
s
l

)︂
define rectangular sub-sets of the plane (ρ, z). Given a point (ρ0, z0) belonging to the
rectangular-neighborhood of

(︂
ρs

j0 , zs
l0

)︂
, the value of h (ρ0, z0; k) is approximated by the

Taylor expansion centered on
(︂
ρs

j0 , zs
l0

)︂
(see Eqs. (7a–7c)). The right side of the figure shows

the additional axial expansion discussed in section 3.1.1). This further step is computed by
setting D0

z>0 in Eq. (9), which defines the algorithm calculating a second Taylor expansion
centered at the point (ρ0, z0), which is used to rapidly calculate many OCT simulations
where scatterers are displaced in the axial direction (for example in the case of strain retrieval
simulations). If D0

z = 0, Eq. (9) coincides with the approximation of Eqs. (7), and no further
axial expansion is performed.

The grid of source points
(︂
ρs

j , z
s
l

)︂
is composed of Nρ and Nz radial and axial coordinates,

respectively, as shown in Fig. (2). The orders of the highest order derivatives are denoted by Dρ

and Dz, for the radial and axial derivatives, respectively. Equation (6b) is then approximated
at each point (ρ0, z0) by evaluating the Taylor expansion of h, denoted hT , expanded about the
closest source point of the source point grid

(︂
ρs

j0 , z
s
l0

)︂
as:

h (ρ0, z0; k) ≈ hT (ρ0, z0; k) :=
Dρ∑︂
m=0

Dz∑︂
n=0

(︂
ρ0 − ρs

j0

)︂m

m!

(︂
z0 − zs

l0

)︂n

n!
S (m, n, j0, l0; k) (7a)
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S (m, n, j, l; k) :=
∂m+n

∂ρm∂zn

[︃
h (ρ, z; k)

]︃
(ρ,z)=(ρs

j ,z
s
l )

(7b)

j0 := argmin
j=1:Nρ

|︁|︁|︁ρ0 − ρs
j

|︁|︁|︁, l0 := argmin
l=1:Nz

|︁|︁z0 − zs
l
|︁|︁ (7c)

The application of the Taylor expansion is justified by the fact that h(ρ, z; k) is an analytic function
in both z and ρ variables [32]. Each derivative appearing in Eq. (7b) is calculated by analytically
differentiating the inner function of Eq. (6b), and numerically evaluating the resulting integral,
which is stored in the 5-D array S (m, n, j, l; k), where m, n are indices related to the radial and
axial derivative orders, j, l are the coordinates of the source point

(︂
ρs

j , z
s
l

)︂
and k is the wavenumber.

Altogether, the algorithm calculates and stores NTOT =
(︁
Dρ + 1

)︁
× (Dz + 1) × Nρ × Nz × Nk

integrals, where Nk is the number of wavenumbers used in the simulation. In practice, the
algorithm performs a calculation equivalent to the DWI itself

(︁
Dρ + 1

)︁
× (Dz + 1) times, for the

relatively small set of source points, which are then employed to generate each A-scan of the
simulation. In section 4), we prove heuristically that an error which can be considered negligible
for most applications, including phase-sensitive OCT simulations, is obtained by setting Dρ = 20,
Dz = 8, sz = 190µm and sρ = 28µm, where sz and sρ are the source point grid sampling rates in
the axial and radial directions, respectively. As an example, when these parameters are chosen,
Nρ = 3 and Nz = 6 are sufficient to allow for accurate calculation of Eq. (7a) within a domain
spanning 70µm in the radial and 1 mm in the axial directions, respectively. Nk determines
the unambiguous OCT imaging depth, assuming a fixed system spectral width, and is chosen
to satisfy the Nyquist Shannon sampling theorem, which guarantees that the FFT algorithm,
which is needed to calculate a discrete version of Eq. (1b), can be employed to approximate
the continuous Fourier transform. The number Nk can be a bottleneck for simulations where
scatterers are located deep in the sample, where Nk can be two or three orders of magnitude
larger than the other factors of NTOT . In section 3.2) we show how to overcome this obstacle to
further speed up the simulation and dramatically reduce the memory usage, by calculating only a
few monochromatic field components, which are used to calculate the field at any wavenumber in
the spectrum. With these parameters, the numerical evaluation of the array S of integrals at the
source points takes only few seconds.

Figure (3) shows an OCT C-scan simulated using the Taylor-based expansion. The 3D domain
of scatterers spans 200µm in both x and y directions, and the axial range is from 0 to 1mm. The
total number of randomly distributed scatterers in the region is Ns = 312500. This number was
chosen to guarantee fully developed speckles, as reported by [33]. The number of wavenumbers
is Nk = 865, a total of 200 of lateral scanning positions in x and y directions were used, resulting
in a total of 40000 A-scans for each C-scan. The focus in the left and right plots is placed at
zf = 300µm and at zf = 750µm, respectively, and was set by translating the z coordinate in the
DWI. To demonstrate the capability of this model in simulating OCT signals from heterogeneous
samples, we increased the cross-section ρs of the scatterers within the "TEST" region to be five
times larger than that of the remaining computational volume. As expected, in both cases the
OCT signal is brighter near the focal region. The time required to calculate each C-scan was
approximately 5 hours. The time required to calculate a single A-scan with the rigorous model
was 7 minutes and 11 secs, thus meaning that it would take circa 200 days to rigorously calculate
each C-scan. The rigorous generation of each C-scan of Fig. (3) requires the computation of
Nk × Ns × 200 × 200 ≈ 1.08 × 1013 numerical integrals. While the proposed method dramatically
speeds up the computation, such large C-scans inherently require unfeasible time to compute.

3.1.1. Additional expansion for axial displacements

We developed an additional expansion that further accelerates A-scan calculation when multiple
OCT signals are calculated, each for a different set of microscopic scatterer axial displacements.
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Fig. 3. OCT C-scan simulations performed using the approximation based on the Taylor
expansion. The two plots show the C-scan magnitude, normalized by dividing for its global
maximum. Both plots share the same scatterer distribution, with varying focus points for
each plot denoted as zf and highlighted by red dashed lines along the y axis.

This is particularly useful for simulating large OCE datasets, where the motion of the scatterers is
assumed to be principally in the axial direction [7,26]. After having computed hT (ρ0, z0; k), for
each scatterer, the expansion explained in this section uses the same grid of source points (ρs

j , z
s
l )

to calculate the Taylor expansion of its axial derivatives
(︂
∂n

∂zn
0
hT (ρ0, z0; k)

)︂
, which is performed

by analytically differentiating, with respect to z0, both sides of Eq. (7a). This process allows us to
approximate the Taylor expansion of h in the z direction rapidly. In particular, we use the same
array S to rapidly generate these new derivatives as:

∂n0

∂zn0

[︃
hT (ρ0, z; k)

]︃
z=z0

=

Dρ∑︂
m=0

Dz∑︂
n=n0

(︂
ρ0 − ρs

j0

)︂m

m!

(︂
z0 − zs

l0

)︂ (n−n0)

(n − n0)!
S (m, n, j0, l0; k)

=

Dρ∑︂
m=0

Dz−n0∑︂
n=0

(︂
ρ0 − ρs

j0

)︂m

m!

(︂
z0 − zs

l0

)︂n

n!
S (m, n + n0, j0, l0; k) .

(8)

We use Eq. (8) to approximate the the axial derivatives of h to generate a second Taylor
expansion, centered on each scatterer (ρ0, z0) of the domain, as:

h (ρ0, z0 + δ; k) ≈

D0
z∑︂

n0=0

δn0

n0!
∂n0

∂zn0

[︃
h (ρ0, z; k)

]︃
z=z0

≈

D0
z∑︂

n0=0

δn0

n0!
∂n0

∂zn0

[︃
hT (ρ0, z; k)

]︃
z=z0

, (9)

where D0
z is the number of additional axial derivatives. The second term of Eq. (9) is the

Taylor polynomial of degree D0
z of h (ρ0, z0; k). In contrast, the third term, which constitutes the

calculated value, is an approximation of the second term. In this approximation, each derivative
is estimated using its respective Taylor expansion at the source points

(︂
ρs

j , z
s
l

)︂
, described by

Eq. (8). Equations (8–9) can been used to rapidly simulate several OCT signals related to different
configurations of the same sample, where the scatterers are microscopically displaced axially,
in an arbitrary manner, for each configuration. This additional tool is particularly useful for
generating OCT data underlying large OCE datasets, given its additional speed, which can be
used for training deep learning strain retrieval models, for example.

As the degree of the Taylor polynomial on the right side of Eq. (8) decreases with respect to n0
(where the maximum exponent of the terms (z0 −zs

l0 ) is Dz −n0), the accuracy of the corresponding
approximation diminishes. To maintain consistent accuracy for all derivatives used in Eq. (9), it
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becomes necessary to calculate additional terms within the array S (m, n, j, l; k). In particular,
we need to calculate D0

z additional axial derivatives (for a total of Dz + D0
z ). The number of

derivatives D0
z is chosen such that the error of the approximation in Eq. (9) is negligible, and this

depends on the maximum axial scatterer displacement among all configurations of the sample.
The expansion described in Eq. (9) is a generalisation of the basic Taylor expansion of Eq. (7),
explained in the previous section. In fact, the latter is a specific case of Eq. (9), where D0

z = 0.

3.2. Multi-spectral regression technique

In this section we describe a method that makes the computational time almost independent
of the number of wavenumbers, allowing Eqs. (7–8) to be calculated directly for only a few
wavenumbers, which are then used to evaluate these equations at all wavenumbers. To simplify
the notation, let us rewrite h(ρ, z; k) as:

h(ρ, z; k) =

∬
Ω

d (s) e−a2(s)k2
eib(s)kdsxdsy, (10)

where a, b and d are functions of sx, sy, ρ and z but do not depend on k. The equation above is
found from Eq. (3) by setting ϕ(sx, sy; k) = e−( k

W )
2
(s2

x+s2
y). In order to explain the MSR method,

let us calculate Eq. (6b) for a subset of L wavenumbers k1, k2, . . . kL. We look for L functions
C1(k), C2(k), . . . , CL(k) that solve the following problem:

e−α2k2
eiβk ≈

L∑︂
j=1

Cj(k)e−α2k2
j eiβkj ∀α ∈ R, β ∈ [−B, B], k ∈ spectrum. (11)

To find a suitable solution of Eq. (11), we define an integral least squares minimisation
problem that we solve by applying the gradient descent method [34] (see section 3) of the
Supplement 1 for more details). Once the functions C1(k), C2(k), . . . , CL(k) have been found, we
can use Eqs. (10) and (11) to approximate h(ρ, z; k), for an arbitrary k, as a linear combination of
h(ρ, z; k1), .., h(ρ, z; kL) as follows (see section 1) of the Supplement 1 for more details):

h(ρ, z; k) =

∬
Ω

d (s) e−a2(s)k2
eib(s)kdsxdsy = eikη∆

∬
Ω

d (s) e−a2(s)k2
ei
(︁
b(s)−η∆

)︁
kdsxdsy (12a)

≈

L∑︂
j=1

Cj(k)ei(k−kj)η∆h(ρ, z; kj), (12b)

where ∆ is an arbitrary term such that |b(s) − η∆| <B. Namely, the right hand side of Eq. (12)
is approximately constant as a function of ∆. By substituting Eq. (12) into Eq. (6a) for each
component of the electric field, we can evaluate the DWI as:

E(r, z; k) ≈

L∑︂
j=1

k
kj

Cj(k)eiη(k−kj)(z+∆)E(r, z; kj), (13)

We would like to substitute Eq. (13) into Eq. (2a) and find a way to calculate the αscat(k) as
a function of αscat(kj), so as to make the computation of Eq. (13) independent of the number
of scatterers, which would dramatically reduce the computation cost of calculating αscat(k).
This goal is made difficult by the presence of the phase term

(︂
eiη(k−kj)(z+∆)

)︂
in Eq. (13), which

depends on the scatterer axial coordinate z. To overcome this obstacle, we first divide the region
containing scatterers into depth bands of thickness D, each centered on the plane z = ẑh, and

https://doi.org/10.6084/m9.figshare.27331239
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then we consider Eq. (13) with ∆ = ẑh − z to replace
(︂
eiη(k−kj)(z+∆)

)︂
with

(︂
eiη(k−kj)ẑh

)︂
, for each

scatterer in the same band. This step transfers the computationally expensive dependence of
Eq. (13) on single scatterers to depth bands, and we show how this is useful to consistently
reduce the RAM usage and the computational time. Let us call Ih the subset of indices (s) of
the scatterers Ps := (xs, ys, zs), belonging to the h-th band Ih :=

{︁
s ∈ N

|︁|︁ |zs − ẑh | ≤ D
2 , s ≤ Ns

}︁
.

We denote by zsh the axial coordinates zs of the scatterers having index s ∈ Ih. By substituting
Eq. (13) into Eq. (2a), and choosing ∆ = ẑh − zsh for each sh ∈ Ih, we find (see section 2 of the
Supplement 1 for more details):

αscat (k) ≈

H∑︂
h=1

eiη2kẑh

L∑︂
j1=1

L∑︂
j2=1

k2

kj1kj2
Cj1 (k)Cj2 (k)e−iη(kj1+kj2 )ẑhαcross(kj1 , kj2 , h) (14)

where αcross(kj1 , kj2 , h) :=
∑︁

sh ∈Ih ρshEinc
x

(︁
Psh ; kj1

)︁
Einc

x
(︁
Psh ; kj2

)︁
is called cross-modal coefficient.

The computational load of Eq. (14) is mainly related to the calculation of the terms αcross(kj1 , kj2 , h),
which is not demanding because each term considers a small number of the scatterers (Ih
subregions).

4. Analysis of accuracy and computational time

We have introduced three approximations in this paper, including the two Taylor approximations
and the MSR. It is important to note that all of these are integrated into a single model, which is
used to generate the results presented in this section. The only exception to this is the results
shown in Figs. (4(a)) and (4(b)), where we compare the different approximations. In this section
we analyze the computational time of the presented model, and we illustrate its accuracy by
calculating a relative integral error. As explained in section 2), we denote by rigorous each OCT
simulation evaluated using Eqs. (1–2), where the incident field has been calculated with the
DWI without any approximation, and by approximate each simulation made with the new model,
namely, by using Eq. (13) where each component of E(r, z; kj) is calculated with Eq. (9). To
quantify the accuracy of each approximation, we have used the following integral error:

Err(Fa) :=

⌜⃓⃓⃓⃓⃓⃓⎷∫
S

| |Fr(P) − Fa(P)| |2 dP∫
S

| |Fr(P)| |2 dP
, (15)

where Fr and Fa are electric fields or OCT signals simulated using the rigorous and approximate
method, respectively. In the case of OCT signals, the data can be A-scans, B-scans or C-scans.
The variable P and the integration domain S can be 1D, 2D, or 3D, depending on the arrays being
compared. For example, 1D for A-scans, 2D for B-scans and 3D for C-scans.

It is worth noting that each of the three approximations can be calculated with arbitrary accuracy,
at the cost of computational time. Thus, we need to trade computation time for precision. In
order to analyze computational time and accuracy we set an upper bound U for the integral error,
namely, we consider negligible any error smaller than U. To choose U, we simulated several
OCT and data sets, for the rigorous and approximate cases, and we observed that approximate
simulations Fa for which Err(Fa) ≤ 10−3, produced results nearly indistinguishable from those
obtained through rigorous simulations (Fa ≈ Fr). In view of this we chose a conservative value
of U = 3 × 10−4.

4.1. Parameter setting

Accuracy and computational time depend upon the parameters employed in the simulation, which
we divide into physical parameters and approximation parameters. To facilitate the calculations

https://doi.org/10.6084/m9.figshare.27331239
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Fig. 4. Plots a) and b) show computational times required to calculate one unloaded and 50
loaded A-scans on a log scale, by using the three expansions separately and together, and
each data point forming each curve is a complete simulation. In a) we increased the number
of wavenumbers Nk, in b) we increased the number of scatterers Ns. Plot c) computational
time versus integral error of the simulation of an OCT A-scan by using the approximation.
In order to test the Taylor expansion T2, a distribution of scatterers zsj was initially generated,
and a high strain ϵ̂ was applied to introduce an axial displacement zL

sj := zsj (1 + ϵ̂). Later,
the OCT A-scan related to zL

sj was generated from the signal of zsj , according to Eq. (9).

presented in this section, we choose practically relevant values for the physical parameters. These
include: NA = 0.1, ρmax = 70µm, zmax = 1mm, η = 1, where ρmax and zmax are the maximum
distance of the scatterers from the optical axis (distant scatterers can be considered negligible for
the DWI) and the axial coordinate of the deepest scatterer, respectively. We set the spectrum to
[1170, 1408]nm to approximately match that of our Thorlabs TELESTO-II - spectral domain
OCT system. The setting of the approximation parameters can be performed independently for
each approximation. The parameters which must be set for the Taylor expansion are Dρ, Dz and
sρ, sz, while and Nz, Nρ are easily found as a function of their related sampling rates. For each
choice of the first two, we can find values for the others such that the approximation error is
smaller than U. By running several simulations we empirically found that Dρ = 20, Dz = 8 is
an optimal solution for the computational time, to which correspond sampling rates sρ = 28µm
, sz = 190µm , Nz = 6 and Nρ = 3. The MSR parameters are L, T , D and B. In a similar way to
the Taylor expansion, by setting L and T we can find D to satisfy the threshold U. Empirically
we found L = 35, T = 4,which corresponds to D = 15µm. A suitable value for B is given by (see
section 4) of the Supplement 1 for more details):

B = ρmaxNA + zmax
NA2

η
+ η

D
2

. (16)

By replacing the chosen physical parameters and D in Eq (16) we find B = 25µm. The
parameter employed in the additional Taylor expansion is D0

z , which is non-zero only if axial
scatterer motion is simulated, in which case multiple distributions of scatterers are generated. In
the case of simulation of Nd axial displacements, let us call {zj(d)}d=1:Nd all the subsequent axial
coordinates of the jth scatterer. We heuristically found that D0

z := ⌈0.15 × Ms⌉ maintains the error

below U, where ⌈·⌉ is the ceiling function and Ms := max
j=1:Ns

{︃
max

d=1:Nd

{︁
zj(d)

}︁
− min

d=1:Nd

{︁
zj(d)

}︁}︃
is

the maximum axial displacement among all scatterers measured in µm.

4.2. Comparison of the three approximations

Figures (4(a)) and (4(b)) compare the computational time of the three approximations described,
i.e., the two Taylor expansions and the MSR, which are labeled as T1,T2, and M, respectively.
Each data point of each plotted curve represents the result of an entire simulation, consisting in
the generation of one unloaded and 50 loaded A-scans (Nd = 51). In Fig. (4(a)), we simulated

https://doi.org/10.6084/m9.figshare.27331239
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Ns = 2 × 105 scatterers, while the number of wavenumbers Nk varied from 102 to 2 × 104. In
Fig. (4(b)), each simulation employed Nk = 2048 wavenumbers, while the number of scatterers
Ns varied from 102 to 2 × 106. In both plots, the improvement due to MSR is higher than that due
to the Taylor expansions, because we chose extremely challenging simulations, which employ a
large value of Nk, where MSR becomes vital. The use of all approximations proves to be much
more efficient than each individually. In particular, MSR makes the model particularly suitable
for swept-source OCT image formation simulations, where a large number of wavenumbers
are often needed. Finally, the inclusion of the additional Taylor expansion makes a further
reduction in computational time, by a factor of 3 to 10 in both plots. Fig. (4(c)) shows a plot of
computational time versus accuracy for an OCT A-scan simulated using the three approximations.
In order to use the additional Taylor expansion, we initially generated an A-scan (unloaded), and
then the axial coordinate zj of each scatterer was displaced introducing a large strain ϵ̂ = −10mϵ ,
and a loaded A-scan was calculated from the unloaded A-scan, by employing the additional
Taylor expansion (see Eq. (9)). We considered 64000 scatterers having axial coordinates between
0.5mm and 1mm, deliberately choosing a deep axial region to challenge the algorithm. Each
of the 5 points in the plot represents a computation of the loaded A-scan, where D0

z = 2, as
calculated using the formula provided in section 4.1. In each simulation, we systematically
increased the values of Dρ and Dz. As expected, at each step, the computational time increased
and the error decreased. The red dashed line represents the upper bound U. Notably, the error in
the last two simulations was smaller than U, showing consistency with the parameters setting
that we described in the previous section. The analysis presented in this section validates that the
model, utilizing all three approximations and run with Dρ = 20 and Dz = 8 achieves the optimal
computational time while maintaining optimal precision, as depicted in the Fig. (4). Based on
these results, we recommend this model configuration for all simulations.

4.3. Rapid simulation of multiple C-scans

Figure (5) shows two examples of simulation of a large number of OCT C-scans, which have
been rapidly simulated, to demonstrate the model speed. Both examples involve the simulation
of 1000 OCT C-scans at different strain levels, of which 9 are shown. The uniform axial strain is
incrementally increased in steps of 10−2mϵ , reaching a maximum of 10mϵ . In Fig. (5(a)), each
C-scan is composed of 29×29 A-scans in a volume of 20µm ×20µm ×25µm with 1280 scatterers.
The computational time was 27 minutes and 3 seconds, compared with an estimated computation
time for the rigorous method of 39 hours. The plots in Fig. 5(b)) are for a larger field of view of
48 × 48 A-scans per C-scan, representing a volume of 80µm ×80µm ×90µm containing 7200
scatterers. The computation time was 6 hours and 53 minutes, and in this example, we have
estimated more than 114 days would be required in the case of rigorous calculation using DWI.
An example of application of these datasets is the training dataset generation for a DL model for
strain retrieval in OCE that predicts the strain for each pixel by taking in input small volumes of
unloaded and loaded OCT C-scans related to the spatial region surrounding the pixel, and giving
in output the related strain, which is assumed locally uniform. This assumption of uniform strain
is not restrictive, and is taken by conventional models in OCE, including WLS [10] and VM [35].

4.4. Example of strain retrieval in OCE from simulated OCT raw data

Now we compare the rigorous and approximate methods for generating unloaded and loaded
OCT signals that are used as input for the weighted least square method (WLS) for strain retrieval
in OCE, with a similar approach to the one described by Kennedy et al.[10]. The following steps
were conducted twice, once for the rigorous approach and once for the approximate method. We
simulated a 3D computational volume of size 1000µm×140µm ×500µm in the x, y and z directions,
respectively. Our primary objective was to obtain a 2D elastogram at the plane y = 70µm.
However, due to the optimal performance of the WLS method’s unwrapping algorithm with 3D
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Fig. 5. Two examples of OCT C-scan dataset generation. a) and b) show OCT C-scans with
volumes of 20µm ×20µm ×25µm and 80µm ×80µm ×90µm, respectively. Each simulation
includes 1000 C-scans and uniform axial strains ranging from 10−2mϵ to 10mϵ . Each figure
shows the OCT magnitude normalised by the same factor. The plots are arranged in order of
increasing strain, with plot 1 and plot 9 having the lowest and the highest strains, respectively.

OCE data, OCT C-scans comprising seven unloaded/loaded pairs of B-scans were calculated
at adjacent planes, namely y = 70µm +∆y, where ∆y = [−3.6, −2.4, −1.2, 0, 1.2, 2.4, 3.6]µm.
For each B-scan, 825 A-scans were calculated, with a lateral scanning step of 1.2µm. We
used a simple mechanical model based on a stiff inclusion in the form of an elliptic cylinder.
Specifically, the cross-section of the inclusion at the plane y = 0 is elliptical, and it extends
uniformly throughout the entire computational domain in the y-direction. To simulate mechanical
loading, we set ϵ̂1 = −0.5mϵ inside the inclusion, while ϵ̂2 = −3mϵ was applied to the remaining
regions within the computational volume.

Lastly, the WLS method was used with the pairs of generated OCT C-scans to retrieve the
strain distribution, and the central elastogram (y = 70µm) was extracted and compared in
Fig. (6). Figs. (6(a)) and (6(b)) show the central unloaded B-scan magnitude on a log scale,
normalized by its maximum magnitude, for the rigorous and approximate cases, respectively.
Fig. (6(c)) illustrates the absolute value of the difference between the complex-valued rigorous
and approximate phase-sensitive OCT calculations, within the dynamic range of [10−5, 10−3] to
enhance visibility. Fig. (6(d1)) and Fig. (6(d2)) illustrate the integral error of the two B-scans
shown in Figs. (6(a-b)), evaluated for each OCT A-scan and plotted as function of x and z,
respectively.

Fig. 6. Comparison of simulations of pairs unloaded/loaded OCT signals and related
strains retrieved with the WLS method, for the rigorous and the approximate cases. a-b)
Normalized magnitudes of the OCT B-scan on a log-scale, for the rigorous and approximate
case, respectively. c) Absolute value of the residual image of the OCT B-scans shown in a)
and b). g) Absolute value of the residual image of e) and f). d1-d2) integral error of the
central B-scan along the axial and lateral direction, plotted as a function of the lateral and
axial direction, in h1) and h2), respectively. h1-h2) integral error of the strains along the
axial and lateral direction, plotted as a function of the lateral and axial direction, in h1) and
h2), respectively.

Figure (6(e)) and (6(f)) show the retrieved elastograms, for the accurate and the approximated
methods, respectively. It is important to highlight that while Fig. (6(e)) represents the rigorous
case, the ellipse is slightly blurred since it represents the retrieved strain, in contrast to the image
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of the strain map, which has sharp boundaries between regions of differing strain. Fig. (6(g))
illustrates the absolute value of their difference within a dynamic range of [10−8, 10−4], chosen to
enhance visibility. Fig. (6(h1)) and Fig. (6(h2)) show the integral error of the two elastograms
shown in Fig. (6(e))-(6(f)) along the axial and x direction, plotted as function of x and z,
respectively. The dashed red lines in the plots d1), d2), h1) and h2) of Fig. (6) indicate the
threshold U. The integral error in this case is even smaller than in the OCT case. This outcome
is expected since, for each pixel, the strain is estimated by performing linear regression on an
axial range surrounding that pixel in the respective OCT image. While this process reduces
the resolution of OCE images compared to their OCT counterparts, it effectively averages and
diminishes the error introduced by the approximation.

Each simulation presented in this article was computed using Matlab’s (Matlab R2021b) with
an NVIDIA A6000 48GB GPU, and two CPU AMD EPYC 7453 with 28-Cores.

5. Conclusion

We have presented a fast, efficient and flexible model to simulate OCT image formation, which
relies on the first-order Born approximation for the calculation of the scattered field, without
making the paraxial approximation. The model allows arbitrary scatterer distributions in the focal
region, arbitrary lateral sample scanning, simulations of aberrations and customizable spectral
bandwidth. We showed that the model rapidly calculates OCT A-scans by efficiently combining
the Taylor expansion formula and the MSR technique, that we have introduced, and which can be
used to approximate arbitrary monochromatic components with high accuracy. MSR is largely
employed in the model to dramatically reduce the memory usage and further speed it up, allowing
simulations with large number of scatterers, wavenumbers and lateral scannings.

The model has an additional sub-algorithm that makes it 3-10 times faster in simulating series
of OCT C-scans, where the scatterers are arbitrarily (not necessarily uniformly) axially shifted.
If lateral strains are needed, the model can be used in conjunction with more general mechanical
loading simulators, such as finite-element-methods, at the cost of losing this additional speed.
The model is suitable for generating large datasets of OCT signals, which can be potentially
used for training deep learning models that use OCT raw data. Furthermore, the growth of the
computation time is negligible as a function of the number of wavenumbers, making it robust
in simulating deep OCT C-scans. We showed a comparison of the three approximations of the
model, clarifying their importance. We analysed the error and computational time, to demonstrate
the validity and the accuracy of the model, including an example of strain retrieval in OCE.
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