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Abstract: The problems of complex background, low quality of finger vein images, and poor
discriminative features have been the bottleneck of feature extraction and finger vein recognition.
To this end, we propose a feature extraction algorithm based on the open-set testing protocol. In
order to eliminate the interference of irrelevant areas, this paper proposes the idea of segmentation-
assisted classification, that is, using the rough mask of the finger vein to constrain the feature
learning process so that the network can focus on the vein area and learn greater weight for the
vein. Specifically, the feature maps of the shallow layers of the network are first sent to the
feature pyramid module to fuse the primary features of different scales, which are then sent to the
spatial attention module to obtain the spatial weight map of the image. Based on the results of
several classical vein skeleton extraction algorithms, a weighting method is used to obtain a more
accurate mask to constrain the learning of the spatial weight map. Finally, a hybrid loss function
combining triplet loss and cross-entropy loss is used to reduce the distance between feature
vectors of the same categories and increase the distance between feature vectors of different
categories in the Euclidean space, thereby improving feature discriminability. Good recognition
results were achieved on the three public data sets of SDUMLA, MMCBNU, and FVUSM, and
the values of equal error rate (EER) on them are as low as 2.50%, 0.20%, and 0.14%, respectively.
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1. Introduction

Biometric identification is a type of authentication method that aims to implement identification
by using people’s natural physiological characteristics or behavioral characteristics [1], which
has better stability, security and uniqueness. At present, commonly used identification methods
based on physiological characteristics include face [2], fingerprint [3], finger vein [4], palm vein
[5], iris [6], etc. Among them, face, fingerprint and iris are external characteristics of people,
and their security is not as good as that of internal characteristics such as finger vein. Kono et
al. [7] first introduced finger vein to the biometric identification field in 2002, and since then,
finger vein recognition has become a research hotspot because of its good security, inexpensive
acquisition equipment, and potential for wide range of applications. For example, Zhang et al.
introduced a three-dimensional (3D) finger vein biometric authentication approach and system,
leveraging the innovative technology of photoacoustic tomography [8].

Due to the acquisition principle, finger vein images have the following characteristics:

• Poor contrast. Because of the possible scattering of near-infrared light inside tissues such
as muscles or the influence of ambient light, the acquired images are easily confused
between the venous and non-venous areas.

• Rotation or translation. One person may have different finger placement during multiple
acquisitions, which requires the feature extraction algorithms to have a certain degree of
rotation and translation invariance.
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• Small sample size. The number of finger vein images for each individual in existing public
datasets is relatively small.

Over the years, research in this field has progressed significantly, transitioning from conventional
methodologies to deep neural networks. These traditional approaches encompass vein skeleton-
based [9,10], texture-based [11,12], minutia-based [13,14], and subspace-based methods [15,16],
all of which heavily rely on high-resolution digital vein images and necessitate extensive
professional expertise for design and fine-tuning. Consequently, these methods struggle to
generalize effectively to novel images. In contrast, deep learning have emerged as a promising
alternative, incorporating transfer learning based classification models operating in closed or
open set environments [17–20], as well as networks augmented with attention modules [21,22].
However, it is noteworthy that the performances of transfer learning based models may falter
facing the relatively scarce medical data in the field of finger vein recognition. Furthermore,
many existing attention strategies are inadequately tailored to address the unique challenges
posed by this task.

Due to the above characteristics, although a large number of excellent finger vein recognition
algorithms have emerged in recent years, it is still a challenge to extract vein features with high
robustness, good discrimination, and generalization abilities from the vein images acquired by
different devices. To this end, this paper proposes a deep learning based feature extraction
algorithm that uses the mask of finger vein as a priori information to guide the feature extraction
process. The main contributions of this work are summarized as follows.

• To exclude the interference of irrelevant regions, this paper proposes a segmentation-
assisted recognition idea that uses the mask of finger veins to constrain the feature learning
process so that the feature extraction network can focus on learning the features of the vein
region.

• A mask guided module (MGM) is proposed, which serves to constrain the weight
distribution of the shallow feature maps. To this end, the mask of finger vein is obtained by
fusing the results of several traditional efficient vein skeleton extraction algorithms, which
is then used as priori information to guide the feature extraction network to learn the vein
features better.

• A deep learning based finger vein feature extraction framework is proposed, which is
based on the open-set testing protocol and combined with efficient image pre-processing,
resulting in better inter-class dispersion and intra-class aggregation for the extracted vein
features.

• Extensive experiments are conducted to evaluate the proposed method from three aspects,
including the performance comparison of the method before and after improvement,
the ablation study of the designed modules, and the comparison with other mainstream
algorithms. In short, the results demonstrate the effectiveness of the proposed method.

2. Related work

2.1. Traditional finger vein recognition methods

Traditional methods for finger vein recognition can be divided into the following four categories:

2.1.1. Vein skeleton based methods

The general idea of this type of methods is to apply threshold segmentation on the whole image to
get the skeleton structure of finger veins, and then use the geometry or topology of the segmented
image to perform template matching to get a matching score, and finally determine whether they
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are from the same persons according to the score. The representative methods include RLT
[9], MC [10], WLD [23], etc. Such methods require high quality finger vein images and are
susceptible to shadows and noises.

2.1.2. Texture-based methods

They mainly compare the gray values of the central element and the neighborhood elements
and then perform binary encoding, and finally realize image matching and recognition based
on certain distance, including Local Binary Patterns (LBP) and a series of variants [11,12,24].
These methods are characterized by the requirement of designing features manually according to
specific needs and only the target elements and elements in the neighborhood are considered in the
coding process, ignoring the elements in other regions, resulting in weak feature representation.

2.1.3. Minutia-based approaches

This type of methods mainly extracts different types of point features in the image, for example,
bifurcation points and ending points, which are normally the intersections of multiple veins.
Yang et al. [25] used the intersection and its surrounding venous branches (called tri-branch) as
minutiae for template matching. Liu et al. [26] proposed a minutiae matching algorithm based
on singular value decomposition. Yu et al. [27] first extracted the vein skeleton, then extracted
the ending points and bifurcation points from the vein skeleton, and finally used the improved
Hausdorff distance for matching feature points for recognition. In addition, a series of methods
based on SIFT (Scale Invariant Feature Transform) [13,14] can also automatically extract feature
points from finger vein images for matching. Among others, Qin et al. [28] combined finger
shape, orientation and SIFT feature for finger vein recognition.

2.1.4. Subspace-based methods

In these methods, the finger vein images are transformed into a lower dimensional space for
recognition by learning the transformation matrix from the training data. For example, Wu et
al. [15] used Principal Components Analysis (PCA) to extract features for identity recognition.
PCA requires reducing a two-dimensional(2D) image to a one-dimensional vector, which is
computationally tedious and time-consuming. 2DPCA directly projects the image to reduce the
time overhead, and Ma et al. [16] then used 2DPCA to implement feature extraction. Wu et al.
[29] implemented finger vein recognition using a combination of PCA and Linear Discriminate
Analysis (LDA). However, when recognition is performed in an open-set environment, such
methods require to update the transformation matrix, which is not very practical.

2.2. Deep learning based finger vein recognition

Compared with the traditional algorithms that require manual design of feature extractors, deep
learning-based methods use deep neural networks, e.g., CNN (Convolutional Neural Networks),
to automatically extract high-level abstract features from vein images, so they have stronger
feature representation ability. Based on the testing protocol, when evaluating the performance,
these methods can be classified as close-set and open-set testing protocol based ones.

2.2.1. Closed-set protocol

The closed-set protocol means that all categories of finger vein images will appear in the training
set, that is, some samples are selected from each category to compose the training set, and the
remaining untrained images in each category are used for testing. This protocol is suitable for
situations where the number of categories is fixed, and the disadvantage is that the recognition
models need to be retrained once a new category is added.

Among this group, Radzi et al. [17] implemented finger vein recognition using a simple
four-layer CNN model, which was claimed to be the first attempt to apply CNN to the finger vein
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recognition. Hou et al. [30] used Auto-Encoder for feature extraction and then CNN for finger
vein recognition, which achieved a large improvement compared with traditional algorithms.
Jalilian et al. [31] used a semantic segmentation network directly to extract finger vein patterns
without using pre-processing and post-processing and achieved better results. Yang et al. [32]
used a multi-task learning approach to integrate the recognition task and the aliveness detection
task into a unified lightweight CNN, which ensures the real-time performance. Zhang et al. [18]
combined CNN with Gabor filters using a method that adaptively learns the parameters of Gabor
filters, solving the difficult problem of parameter selection. Lu et al. [33] designed a CNN-based
local descriptor (CNN-CO) using a pre-trained network, selecting certain convolutional kernels
of the first layer of CNN to act as filters, whereby different CNN-CO images were obtained.
Zhang et al. [34] proposed a finger vein recognition pipeline by combining the multi-directional
local information and the features automatically learned by a CNN network. This pipeline has
the advantage of compensating for some finger vein features that may be overlooked.

2.2.2. Open-set protocol

In the open-set protocol, the finger vein images of some categories are used for training, and
the vein images of the other categories are used for testing, with no intersection between the
two category groups at all. In this open-set situation, finger vein recognition is no longer a
multi-classification task. Usually, for a category to be recognized, its feature vectors are first
extracted using a feature extraction model, and this category is then identified according to the
similarity between its feature vectors and the feature vectors of existing categories in the database.
For a new category, its feature vector can be stored into the database by a registration operation.
It is clear that such open-set protocol is more suitable for actual usage scenarios.

Based on this type of testing protocol, Song et al. [19] investigated a method that utilizes the
DenseNet and is robust to noise by feeding a composite image of two finger vein images to a
CNN. Hou et al. [35] used metric learning loss function and cosine distance to enhance the
representation ability of the feature extraction model. Ou et al. [36] used vertical flipping to
increase the number of categories and employed with intra-class data augmentation techniques
to solve the problem of insufficient training data, then combined classification loss and metric
learning loss to design a fused loss function. Shen et al. [37] proposed to build a lightweight
CNN to ensure the real-time performance of feature extraction and recognition. To deal with
the lack of large-scale finger vein dataset, Hou et al. citehou2022triplet designed a generative
adversarial network and combined it with a CNN based on triplet loss to extend the training data
and improve the discriminative ability of the algorithm, which was finally tested in both open-set
and closed-set scenarios. Lin et al. [20] proposed to improve the recognition performance of
intra-class matching and inter-class matching using a self-encoder-based internal feature module
and an external feature module using siamese network, respectively. Song et al. [38] first trained
a vein segmentation network using their own labeled dataset, then extracted features from the
segmented and the original images and fused them. Unlike other methods that extract features
only in the spatial domain, Huang et al. [39] proposed to use deep networks for feature extraction
in both frequency and spatial domains.

Most finger vein recognition methods mentioned above use images of single view, whereas
slight difference of the poses for the same fingers may increase the difficulty of intra-class
recognition. For this reason, Zhao et al. [40] designed a multi-view low-cost vein image
acquisition device and extracted hidden 3D features from each viewpoint through a global
backbone network and local features through a local perception module, thus improving the
feature recognizability and robustness. Zhang et al. [41] designed a reflectance imaging-based
acquisition device and constructed a large-scale dataset containing five different light intensities.
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To reduce the differences between different illumination data domains, they proposed a domain-
adaptive finger vein network to extract light invariance features to improve the robustness to
illumination variations.

2.3. Visual attention mechanism

When we pay attention to the image of finger vein, we should focus on information such as the
vein skeleton and finger outline in the image, and we can selectively ignore irrelevant information
such as the background. In this way, we can distinguish different categories of finger vein images
faster and more accurately. In fact, the attention mechanism has been introduced successfully
in various tasks of computer vision, such as classification, segmentation, image detection, etc.
Classical approaches employing visual attention mechanisms include SENet [21], ECANet
[42], and CBAM [22], etc. These attention modules are simple to compute and do not add too
much computation, while being plug-and-play and easy to use. For example, Huang et al. [43]
proposed a joint attention module using an attention mechanism that allows dynamic adjustment
and information aggregation of feature maps in spatial and channel dimensions, enabling the
network to focus on fine vein patterns rather than non-vein regions. Zhang et al. [44] proposed a
lightweight deep network to achieve accurate extraction of finger vein features by introducing
a convolutional attention module to adaptively assign feature weights. With the emergence of
transformer [45], several researchers began to introduce it into the task of finger vein recognition.
For example, literatures [46–48] used transformer-based methods to extract the global features of
vein images to make up for the insufficiency of convolutional networks.

3. Materials and methods

3.1. Finger vein dataset

Compared with the datasets in other fields, finger vein datasets are generally less in sample
number (only a few images for each category) and more difficult to obtain (requiring a specific
acquisition device). The datasets used in this paper include SDUMLA-HMT [49], MMCBNU
[50], and FVUSM [51], which are briefly described below.

SDUMLA: The dataset is a multimodal biometric database made public by Shandong
University [49], which contains 106 volunteers (61 males and 45 females). Each subject was
collected the images of six fingers, i.e., the index, middle and ring fingers of the left and right
hands, respectively, and each finger is regarded as a category, resulting in a total of 636 categories.
For each finger, six images were collected during the same session, obtaining a total of 3816
images in this dataset with a resolution of 320 × 240 pixels.

MMCBNU: This dataset was collected and released by Chonbuk National University in South
Korea in 2013 [50]. 100 volunteers (83 males and 17 females) were selected from more than 20
countries. Each volunteer was collected 6 images of fingers, namely the index, middle and ring
fingers of the left and right hands, resulting in a total of 600 categories. They were all acquired
in the same session and each finger was collected 10 times, obtaining a total of 6000 images with
a resolution of 640 × 480 pixels.

FVUSM: It is a near-infrared light finger image dataset made public by the Universiti Sains
Malaysia in 2014 [51], which provides the processed ROI images. Specifically, this dataset was
collected from 123 subjects, 83 males and 40 females. Each subject was collected images of
four fingers, i.e., the index and middle fingers of the left and right hands, obtaining a total of
492 categories. The dataset was collected in two sessions, separated by more than 2 weeks,
with 6 images for each finger in each session, resulting in a total number of 5904 images with a
resolution of 640 × 480 pixels and large variation in image appearance.
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3.2. Evaluation metric

For the open-set testing, the input is an image pair, one is from the dataset and the other is the
one to be identified. According to whether the two images are of the same category, they can be
divided into genuine pair and impostor pair. To ascertain whether two images form a genuine or
impostor pair utilizing a pre-trained feature extractor, the cosine distance between the respective
feature vectors extracted by the model is computed. If this distance is less than a predefined
threshold, the model classifies the pair as genuine; conversely, if it exceeds the threshold, the
pair is deemed an impostor. The evaluation metrics we choose include the widely used false
acceptance rate (FAR), false rejection rate (FRR), equal error rate (EER), and receiver operator
characteristic (ROC) curves. Specifically, FAR denotes the probability of being incorrectly
considered as a genuine pair among all impostor pairs, and FRR denotes the probability of being
incorrectly considered as an impostor pair among all genuine pairs, EER represents the error rate
at which FAR and FRR are equal.

3.3. Overall architecture

As shown in Fig. 1, the overall framework proposed in this paper includes a backbone network, a
feature pyramid module, a mask-guided attention module, and a joint loss function composed of
triplet loss and softmax loss. During training, the ROI (Region of Interest) images are sent to
the backbone network RestNet18, and then the shallow feature map of the network is extracted
and sent to the feature pyramid module to obtain the fused features. These features are sent to
the mask guidance module to obtain the corresponding weight map, where the mask is used
to constrain the distribution of the weight map so that the network can give more attention to
the venous regions and weaken the contribution of the non-venous regions during the learning
process. The weight map is then multiplied and summed with the output of the backbone network
and the global average pooling operation is used to obtain the feature vector, which is then passed
through the classifier to obtain the predicted category. During the test, the mask guidance module
will not be used, and the trained network model can be used to directly obtain the feature vector
of the input vein image, which is applicable to the open-set scenarios.

GAP

Softmax Loss

BN

Triplet Loss

RLTPC

WLD GF

Backbone

FPN

SAM

MSE Loss

Mask guided attention 
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1*1 Conv
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output
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Input Images
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Fig. 1. Overall structure of the proposed method. The backbone network is used to extract
the finger vein feature and subsequently generates the feature vectors. The modified Feature
Pyramid Network (FPN) [52] is used to fuse the shallow features of the backbone network to
facilitate the generation of the weight map. The MGA module guides the network learning
by constraining the distribution of the weight map through SAM [22].
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3.4. Image preprocessing

The large difference in the finger vein images obtained by the acquisition devices and the interfer-
ence of irrelevant backgrounds undoubtedly increase the difficulty of subsequent identification.
Therefore, we extract a region of interest (ROI) in the finger vein image first and then perform
image enhancement [53]. The image preprocessing steps in this paper include finger contour
detection, midline fitting, rotation correction, ROI extraction and image enhancement, which are
shown in the Fig. 2.

(a) (b)

(c) (d)

(e)

(f)

(g) (h) (i)

Fig. 2. Finger vein image preprocessing steps. (a). Original image. (b). Finger contour.
(c). Midline fitting. (d). Rotation correction. (e). Rotated finger vein image. (f). Gray
distribution of finger vein along the horizontal direction. (g). Extracted ROI. (h). Image
normalization. (i). Image enhancement.

(1) Contour detection and midline fitting. Finger contour detection is the first step of
preprocessing, and the main purpose is to detect the finger edges and exclude the non-finger
regions. Here the simple Laplacian operator is chosen to extract the finger contours (Fig. 2(b)).
According to the obtained upper and lower edges of the finger (red curves) and the fitted edges
(green curves) in Fig. 2(c), the middle line (the dashed line) of the finger is fitted by using the
least square method.

(2) Rotation correction. Using the fitted midline, we obtain its slope, calculate the horizontal
deflection angle according to the arctangent function, and then correct the rotation of the entire
image with the opposite angle, as shown in Eq. (1), where θ represents the angle between the
midline and the horizontal direction, and A and B are two points on the midline. x and y represent
the horizontal and vertical coordinates of the element, respectively.

θ = arctan(
yB − yA

xB − xA
) (1)

(3) ROI extraction. The extraction of ROI is carried out in two steps, along the vertical and
horizontal directions. In the vertical direction, if we take the external rectangle of the finger edge,
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it will introduce some background information, so here we choose the internal rectangle of the
finger edge. In the horizontal direction, because the finger does not absorb infrared light well at
the joints, their gray values have two peaks, as shown in Fig. 2(f), based on which we choose the
content between the two peaks as ROI, so that we can fix the extraction range of each finger.

(4) Image enhancement. To make the grayscale distribution of images more comparable, we
first normalize each ROI, as shown in Fig. 2(h), and the normalization is given by

Img(i,j) =
I(i, j) − min
max − min

× 255 (2)

where I(i, j) represents the gray value of the pixel at (i, j) of the image before processing, min and
max are respectively the minimum and maximum gray values. Finally, to improve the contrast
between the vein and the non-vein regions, we use the CLAHE (Contrast Limited Adaptive
Histogram Equalization) algorithm [54] to enhance the ROI images.

Based on the above steps, we obtain the ROI images for SDUMLA [49], FVUSM [51] and
MMCBNU-6000 [50] datasets, which will be used in our experiments. Note that we don’t use the
provided ROI images in the FVUSM dataset. Generally, there are inconsistencies in the obtained
ROI sizes, and the convolutional neural network requires images of same size as input. For this
reason, we resize all the extracted ROI images from the three datasets to 128×320 pixels, and
Fig. 3 shows the pre-processed ROI images of the three datasets.

(a) (b) (c)

Fig. 3. ROIs on three datasets. (a). SDUMLA. (b). FVUSM (c). MMCBNU.

3.5. Backbone network

The backbone network of our model is the ResNet [55], which is used as a feature extractor. In
this paper, the convolution operation at the last stage of the ResNet18 is modified so that the size
of the feature map is not reduced at this stage. On this basis, we feed the shallow features of
this network (the first three stages) into the feature pyramid module to upsample the small-size
feature maps, and then fuse them with the feature maps of the corresponding sizes to obtain
larger-size, more semantic features. Finally, to allow the output of the our modified Feature
Pyramid Network (FPN) to be stitched together with the features of the last stage of the backbone
network in the channel dimension, we connect two convolutional layers to the output of the FPN,
each using a 3×3 convolutional kernel followed by a batch normalization operation and a ReLU
activation function.

The shallow features of the convolutional neural network are mainly information such as
contours and edges, and the deep features are mainly abstract high-level semantic features.
Therefore, we expect to use the feature maps of the first few layers of the backbone network to
generate the weight maps. Specifically, we use the FPN structure and directly take the output
feature maps of the first three stages of the backbone network as input, which can include shallow
features at different scales and avoid the above-mentioned selection dilemma. Figure 4 shows the
modified FPN structure used in this paper.
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Fig. 4. The modified FPN. We add a convolution operation to the original one to make the
output conform to the requirements of the proposed model.

3.6. Mask guidance module

The mask guidedance module is designed to pay more attention and assign higher weights to the
vein regions in the learning process while reducing the attention to the non-vein regions. The
primary features in the shallow feature map of the convolutional network are very useful for vein
recognition, so we convert the shallow feature map into a spatial weight map by spatial attention,
and use the mask obtained in advance to constrain the learning process of the network. The
specific process is as follows. The output of FPN is sent to the spatial attention module, and
the new feature map is generated by retaining key information through maximum and average
pooling operations. Then the spatial attention map is generated using the convolutional layer and
Sigmoid function.

Currently, there are relatively few studies using deep learning to explicitly extract finger vein
patterns, and a key reason is the lack of publicly available datasets with manual annotation, which
is time-consuming and very prone to over-segmentation or under-segmentation. Inspired by the
literature [56], we employ five traditional vein skeleton segmentation algorithms including PC
[57], RLT, WLD, GF [58], and IUWT [59], and fuse their results to generate the final mask.

The fusion is conducted as follows. If the gray value at a pixel of the image produced by a vein
segmentation model is 255 then it is recorded as 1. Then the above binarized images are summed
and if the summed value is greater than or equal to 3, i.e., three or more models consider the
point as a vein point, this point is voted as a vein point and vice versa. These operations can be
described as

N(x, y) =
5∑︂

i=1
fi(x, y) (3)

P(x, y) =
⎧⎪⎪⎨⎪⎪⎩

255, if N(x, y) ≥ 3

0, otherwise
(4)

where fi(x, y) is the binarized images of the skeleton map extracted by the ith vein segmentation
model, and P(x, y) is the mask.

The segmentation results of the five models and the fused result are shown in Fig. 5. This
fusion strategy can improve the accuracy of vein segmentation to a certain extent and make up
for the shortcomings of individual segmentation models. The mask P(x, y) obtained above is
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used to guide the learning of the weight map through the mean square error loss, written as

Lmse =
1

M × N

H∑︂
i=1

W∑︂
j=1

∥Pi,j − Qi,j∥ (5)

where H and W represent respectively the height and width of the weight map, and P and Q
represent the mask and the spatial weight map, respectively.

Fig. 5. Segmentation results of five traditional finger vein skeleton extraction algorithms
and their fused result.

It should be emphasized that the proposed mask-guided attention mechanism is specifically
tailored to the prior knowledge of finger vein recognition, which differs from both the fully
self-learned attention and the hard attention that directly applies manually segmented masks. Our
approach leverages the mask as a supervisory signal to autonomously identify veins of interest.
This, in turn, directs the model’s focus towards these critical regions in the finger vein recognition
task, thereby imparting novelty to the proposed method. Although inaccurately segmented masks
may impact finger vein recognition, the soft attention approach adopted in this work is more
robust in learning from masks of different accuracies compared to hard attention commonly
adopted by others.

3.7. Fusion loss function

Our model uses a weighted combination of triple loss and cross-entropy loss to train the network,
aiming to not only correctly predict the finger category during training, but also strengthen the
intra-class aggregation and inter-class separation of feature vectors in the Euclidean space.

Cross-entropy loss is a commonly used loss function in classification tasks. The vector
corresponding to the number of category dimensions is obtained through the last fully connected
layer of the network, and then normalized to the probability value Pic of the corresponding
category by the Softmax function, written as

Lce = −
1
N

∑︂
i

M∑︂
c=1

yiclog(pic) (6)

where N is the number of samples, M is the total number of categories, yic represents 0 or 1,
yic=1 when the sample belongs to the cth category and 0 if it does not, and pic represents the
probability value that the given finger belongs to the cth category for the ith sample.

The triplet loss function constructs a triplet so that the distance between the anchor sample
and the positive sample is smaller than the distance between the anchor sample and the negative
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sample, given by

Ltri =

N∑︂
i
[∥f (xa

i ) − f (xa
i )∥

2
2 − ∥f (xa

i ) − f (xn
i )∥

2
2 + θ]+ (7)

where xa
i is the anchor sample, xp

i represents the finger vein image belonging to the same category
as the anchor sample, xn

i represents an image belonging to a category other than the category of
the anchor sample, θ represents the margin, and + means if the value is less than or equal to 0, it
is set to 0, otherwise it keeps the original value.

The fusion loss function is calculated as

Lall = αLce + βLtri + γLmse (8)

where α, β, and γ are the weights of the three loss functions, respectively. Specifically, α is the
coefficient of the cross-entropy loss, β is utilized to modulate the weight of the triplet loss, while
γ serves to adjust the segmentation loss. Based on our empirical observations, when α is set to 1,
β is set to 4, and γ is set to 1, the model exhibits optimal performance.

4. Results

This section will demonstrate the effectiveness of the proposed method in terms of both qualitative
and quantitative analysis, mainly including the comparison with baseline, ablation analysis, and
comparison with other methods. It is important to note that the reported metric values of other
methods in the comparison are cited directly from their original papers.

4.1. Implementation details

In this paper, we use the Pytorch deep learning framework to train our model on a Linux operating
system with a NVIDIA TITAN RTX GPU with 24 GB memory. Stochastic gradient descent
(SGD) is used to update the network parameters with an initial learning rate of 0.01, which
becomes 0.001 at epoch 60, and the total epoch is set to 100. When using triplet loss, the batch
size is 32 (four images are selected for each category, and a total of 8 categories are selected),
when only using the cross entropy loss function, the batch size is 64. The margin is set to 0.2,
and the image size is uniformly set to 128×320 pixels.

The three datasets used in this paper are first divided into training set and test set based on
the number of categories in a ratio of 1:1, with no intersection between the two sets at all, and
randomly selecting one image from each category in the training set form the validation set.
Table 1 shows the detailed division of the three datasets. Among them, FVUSM is a two-stage
data set, and we only selected the data of the first session. The test set is generated in the form of
image pairs, containing genuine pairs and impostor pairs. Obviously, genuine pairs are much less
in number than impostor pairs, and the situation of extreme imbalance in the number of positive
and negative sample pairs will easily occur. Therefore, when generating impostor pairs, we first
randomly select an image in each category, and then randomly select another image from each
of other categories, which not only reduces the number of impostor pairs, but also makes each
finger category compose an impostor pair with any other finger categories.

Table 1. Data division information for the employed three datasets.

Dataset Total Categories Training Valid Genuine pairs Impostor pairs

SDUMLA 3816 318 1590 318 4770 50403

MMCBNU 6000 300 2700 300 13500 44850

FVUSM 2952 246 1230 246 3690 30135
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4.2. Performance comparison before and after model improvement

In order to clearly understand the difference between the proposed method and the baseline, we
obtained the confusion matrixes and the cosine similarity distribution maps between the feature
vectors on the test sets of the three public datasets. Figure 6 and Fig. 7 show the confusion
matrixes of the baseline and the proposed method on the SDUMLA, MMCBNU and FVUSM
datasets. Among them, the results of the baseline were obtained using ROI, ResNet18 and
cross-entropy loss function. As for the baseline, the accuracy rates of genuine pairs and impostor
pairs on the SDUMLA, MMCBNU, and FVUSM datasets are 92.35%, 92.35%, 99.41%, 99.41%,
99.11%, and 99.14%, respectively. We can see that the accuracy rates of both intra-class matching
and inter-class matching on the SDUMLA dataset are relatively low compared with the other
two datasets, while the MMCBNU dataset has achieved promising results and the inter-class
matching on the FVUSM dataset has higher accuracy rate. As for the results of the proposed
algorithm, the accuracy rates of genuine pairs and impostor pairs on the three datasets reach
96.94%, 96.94%, 99.79%, 99.80%, 99.78%, and 99.93%, respectively, clearly higher than that
achieved by the baseline. Specifically, the SDUMLA dataset has the largest improvement, which
is due to the poor image quality of this dataset and the shallow structure of the baseline network,
which cannot encode the vein features well. In contrast, the feature representation ability of the
proposed network is largely enhanced, and thus can extract more distinguishable features. The
best performance is achieved on the FVUSM dataset, where the inter-class matching accuracy
reaches 99.93%, with a absolute improvement of 0.79%, and the intra-class matching accuracy is
improved by 0.67%, demonstrating that the proposed network can further increase the distances
between feature vectors of the same categories and decrease the distances between feature vectors
of different categories. In addition, the accuracy of inter-class matching is higher than (or equal
to) that of intra-class matching, proving that intra-class matching is more difficult in terms of
recognition difficulty. This is due to the fact that the finger images are affected by some subjective
or non-subjective factors among different image acquisitions, which may result in unstable feature
vectors and false rejection. This suggests a valuable future direction to design new strategy to
further compensate for these unwanted variations induced in the stage of image acquisition.

(a). SDUMLA                                         (b). MMCBNU                                        (c). FVUSM 

Fig. 6. Confusion matrix of the baseline model on the test set of different datasets, where
genuine represents that the two images are of the same category and impostor represents that
the two images are of different categories. (a). SDUMLA. (b). MMCBNU. (c). FVUSM.

Figure 8 shows the cosine distance distribution maps of the feature vectors, where the first
row lists the results on the baseline, while the second row represents the results of the proposed
method. The horizontal coordinate is the cosine distance between two feature vectors, the closer
they are to 1, the more similar they are, and the closer they are to -1, the less similar they are.
The vertical coordinate is the proportion of the corresponding distance. The distributions of
genuine and impostor pairs are plotted in red and blue, respectively. We can see that when using
the algorithm proposed in this paper, the overlapping area of intra-class matching and inter-class
matching on the SDUMLA dataset is further reduced, which means that the feature discrimination
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(a). SDUMLA                                         (b). MMCBNU                                        (c). FVUSM 

Fig. 7. The confusion matrix of the proposed method on the test set of different datasets,
where genuine represents that the two images are of the same category and impostor
represents that the two images are of different categories. (a). SDUMLA. (b). MMCBNU.
(c). FVUSM.

becomes better and errors are less prone to occur. Especially for the distribution of inter-class
matching, it is obvious that most of the blue areas are concentrated around 0, which means that
the similarity between different classes of finger feature vectors has been largely reduced. On the
MMCBNU dataset, the distances of intra-class matching are more concentrated and close to 1 for
our proposed model. On the FVUSM dataset, our method produces almost no overlap between
the distributions of intra-class matching and inter-class matching, which indicates that a quite
low ERR can robustly obtained by easily selecting a similarity threshold been 0.6 and 0.7.

(a). SDUMLA                                                         (b). MMCBNU                                              (c). FVUSM 
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Fig. 8. The distribution of cosine distances between feature vectors on the baseline and our
method on the test sets of the three datasets, (a). SDUMLA. (b). MMCBNU. (c). FVUSM.
The first row is for the baseline method and the second row for our method. Genuine
represents that the two feature vectors are of the same category and impostor represents that
they are of different categories.

4.3. Ablation experiments

To understand the contribution of each component of the proposed algorithm, we conducted
ablation experiments on the SDUMLA, MMCBNU, and FVUSM datasets as shown in Table 2.

In each of the three tables, the first column lists six different types of masks (i.e., five masks
extracted by five specific vein segmentation methods and one mask by fusing the five ones), the
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Table 2. Results of different masks on SDUMLA, MMCBNU, and FVUSM (EER:%). BL is
ResNet18.

SDUMLA MMCBNU FVUSM

Mask type BL +SAM +Mask +Fusion BL +SAM +Mask +Fusion BL +SAM +Mask +Fusion

PC [57]

7.58 6.79

17.87 16.60

0.59 0.34

0.32 0.26

0.78 0.42

0.70 0.16

RLT [9] 7.70 4.46 2.22 0.21 0.41 0.19

WLD [23] 20.98 3.08 0.44 0.36 1.12 0.40

GF [58] 11.88 3.32 0.31 0.33 0.65 0.30

IUWT [59] 5.66 3.21 0.48 0.37 0.37 0.20

Fusion 6.06 2.50 0.28 0.20 0.35 0.14

second column represents the results obtained on the ROI images using the ResNet18 network
without using any masks, the third column "+SAM" represents the results of adding FPN and
SAM to the original network without using any masks, and the fourth column "+Mask" represents
the results of adding various masks as guidance on the basis of the third column, and the fifth
column "+Fusion" represents the results of adding a fusion loss function on the basis of the fourth
column. The data in the three tables are the EER values, with the best value being bolded. On the
whole, the EER values are relatively high on the SDUMLA dataset and low on the MMCBNU
and FVUSM datasets, because the SDUMLA dataset has poor image quality due to rotation,
overexposure, and low contrast, while the other two datasets have relatively good image quality,
with more visible vein and non-vein areas and less complex background.

Although ResNet18 solves the gradient disappearance problem in the form of residual structure,
for the finger vein extraction task, ResNet18 may be too shallow to focus on the vein features,
so there is much room for improvement. After adding FPN and SAM, large improvements are
achieved on the three datasets. This is because the input of FPN is the shallow feature map of the
network, and the spatial weight map is obtained by fusing information such as primary features
(texture, edge), and then superimposed with the deep features to improve the attention of the
network to the vein area, which helps realize the effective extraction of vein features.

For the results guided by six different types of masks, we found that the results of combining
the masks of five traditional methods are more stable, and using one mask alone may decrease
rather than increase the performance of the model (e.g., PC, WLD, etc. on SDUMLA). This is
because the traditional vein skeleton extraction methods require high image quality and are prone
to mis-segmentation or over-segmentation, and using such masks may mislead the learning of the
network. Furthermore, using the fusion loss function on the basis of mask guidance can increase
the inter-class separation and intra-class aggregation of feature vectors on the Euclidean space,
making the features more discriminative, thus improving the network performance.

The ROC curves for the three datasets are shown in Fig. 9. The AUC (Area Under Curve)
values listed in the lower right corner of each figure also indicate that the introduced strategies
are effective in improving the network performance.

4.4. Comparison with other methods

In order to verify the performance of the method proposed in this paper, we select some traditional
methods and deep learning based state-of-the-art ones to compare on the three datasets, and the
results are shown in Table 3. As mentioned before, all the ERR values of the existing methods
are directly cited from their original papers. It is obvious that on the datasets of MMCBNU and
FVUSM, our method proposed in this work outperforms all the compared methods in terms of
ERR, as shown in Table 3. While on the SDUMLA dataset (Table 3 ), our model performs better
than others, only slightly worse than the method of Lu et al. [33] (2.50 vs. 2.37). We noticed
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Fig. 9. ROC curves on the three datasets. From left to right, SDUMLA, MMCBNU, and
FVUSM.

that the results of all the methods on the SDUMLA dataset are at an unsatisfactory level, which
is mainly due to the image quality problem of this dataset.

Table 3. Comparison with other methods on SDUMLA, MMCBNU, and FVUSM (Unit:%).

SDUMLA MMCBNU FVUSM

Method Year EER Method Year EER Method Year EER

MC [10] 2005 3.65 MC [10] 2005 1.12 MC [10] 2005 2.63

ITQM [60] 2017 2.78 ITQM [60] 2017 1.33 ITQM [60] 2017 1.05

Yang et al. [25] 2017 3.46 Kang et al. [61] 2018 0.827 Kang et al. [61] 2018 0.216

Lu et al. [33] 2019 2.37 Yang et al. [62] 2019 0.42 Zhang et al. [18] 2019 0.57

Choi et al. [63] 2020 3.93 Yang et al. [32] 2020 1.11 Yang et al. [32] 2020 0.95

SRLRR [64] 2021 3.75 Ou et al. [36] 2021 1.21 Ou et al. [36] 2021 0.48

Zhao et al. [65] 2023 3.61 Yang et al. [66] 2023 0.42 Zhao et al. [65] 2023 2.55

Hong et al. [67] 2024 4.72 Qin et al. [68] 2024 1.00 Yang et al. [66] 2023 0.61

Ours 2024 2.50 Ours 2024 0.20 Ours 2024 0.14

4.4.1. Analysis of performance

As the compared methods have neither reported their parameter counts nor computational
complexity, nor provided accessible code for reproducibility, it is challenging to directly compare
the computational complexity of the proposed approach with that of those methods. Consequently,
we solely compared our model against the baseline to observe the impact of the introduced
modules on performance, as shown in Table 4. In terms of parameter counts, the proposed
model contains only 13.36M parameters, representing a mere 0.1M increase over the baseline.
Regarding computational complexity, the difference in FLOPs between our model and the baseline
is negligible, with only a slight increase in execution time on both CPU and GPU. In summary, our
model achieves substantial performance gains while introducing minimal additional parameters
and computational complexity, rendering the benefits highly significant and desirable.

4.5. Failure cases

We select two images from the SDUMLA dataset that were incorrectly identified on the validation
set, as shown in Fig. 10. Among them, ’024/left/ring_6.bmp’ represents the name of the original
image, and ’10’ represents the output category of the proposed method. We checked the ROI of
the corresponding category to be recognized and the original image, as indicated by the arrow,
and observed that this original image has a large axial rotation compared with other five fingers
of this category, which might be the main reason leading to the image incorrectly recognized. To
further improve the performance of the model in the future, we can start from minimizing the
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Table 4. Illustration of the computational complexity
and parameters, as well as the inference time for 32

tensors with shape of 64 × 3 × 120 × 320 on CPU/GPU.
(CPU: Intel Xeon CPU E5-2620 v4 @ 2.10GHz. GPU: 24

GB TITAN RTX. ITC: Inference Time on CPU. ITG:
Inference Time on GPU.)

Method FLOPs(G) Param(M) ITC (s) ITG (s)

ResNet18 170.16 12.76 11.05 0.85

Ours 170.26 13.36 11.51 0.93

intra-class variation and solve the problems of rotation translation (as indicated in Fig. 10(a))
and uneven illumination (as indicated in Fig. 10(b)) among fingers of the same categories due to
acquisition and other factors. Achieving robust finger vein image enhancement serves as an ideal
approach, exemplified by the success of 3DFD U-net in producing clear 3D vascular images of
the palm, arms, breasts, and feet of human subjects [69]. This is of great significance for the
recognition of finger vein images that are often blurred and contaminated with noise.

{'088/left/ring_6.bmp': '9'}{‘024/left/ring_6.bmp’:‘10’} Real ROI of category ‘10’ Real ROI of category ‘9’

(a) (b)

(c)

(d)

Fig. 10. Two failure cases of the proposed model on SDUMLA. (a) The ROI of the input
image 024/left/ring_6.bmp (left) is wrongly recognized as the category 10, whose real ROI
is shown on its right side. (b) The ROI of the input image 088/left/ring_6.bmp (left) is
wrongly recognized as the category 9, whose real ROI is shown on the right side. (c) All the
six ROIs corresponding to the category of 024/left/ring_6.bmp (left of (a)). (d) All the six
original images corresponding to the six ROIs listed in (c). The red arrows indicate that the
image ring_6.bmp in (d) is the original finger vein image of the ROI in (a) that is wrongly
recognized as the category 10 by the proposed model.

5. Conclusion

In this paper, our primary contributions encompass the design of a novel feature extraction
framework specifically tailored for finger vein images, as well as the introduction of a mask
attention guidance module grounded on finger vein priors. Within the proposed model, our work,
on the one hand, validates the varying degrees of enhancement provided by diverse manual
mask extraction methods for finger vein recognition, and meticulously selects the optimal mask
fusion strategy to effectively guide the model’s feature attention. On the other hand, our work
demonstrates the superiority of the multi-faceted approach over other state-of-the-art algorithms.

A notable drawback of the proposed model lies in its reliance on conventional finger vein
segmentation algorithms. The finger veins extracted by various segmentation algorithms can vary
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significantly. In scenarios where the traditional finger vein segmentation algorithms exhibit poor
generalization, the proposed model may experience performance degradation or even failure.

As future work, we aim to introduce a deep model for finger vein segmentation and further
incorporate the structural information of them into the classification network, with the goal of
achieving more interpretable finger vein recognition.
Funding. Huzhou Science and Technology Program (#2023GZ13).
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