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Abstract: We explore camera-based pupil tracking using high-level programming in computing
platforms with end-user discrete and integrated central processing units (CPUs) and graphics
processing units (GPUs), seeking low calculation latencies previously achieved with specialized
hardware and programming (Kowalski et al., [Biomed. Opt. Express 12, 6496 (2021)]. Various
desktop and embedded computers were tested, some with two operating systems, using the
traditional sequential pupil tracking paradigm, in which the processing of the camera image
only starts after it is fully downloaded to the computer. The pupil tracking was demonstrated
using two Scheimpflug optical setups, telecentric in both image and object spaces, with different
optical magnifications and nominal diffraction-limited performance over an ∼18 mm full field
of view illuminated with 940 nm light. Eye images from subjects with different iris and skin
pigmentation captured at this wavelength suggest that the proposed pupil tracking does not suffer
from ethnic bias. The optical axis of the setups is tilted at 45° to facilitate integration with other
instruments without the need for beam splitting. Tracking with ∼0.9-4.4 µm precision and safe
light levels was demonstrated using two complementary metal-oxide-semiconductor cameras
with global shutter, operating at 438 and 1,045 fps with an ∼500× 420 pixel region of interest
(ROI), and at 633 and 1,897 fps with ∼315× 280 pixel ROI. For these image sizes, the desktop
computers achieved calculation times as low as 0.5 ms, while low-cost embedded computers
delivered calculation times in the 0.8-1.3 ms range.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Pupil tracking can be defined as the estimation of the location, size and/or orientation of the pupil
of the eye for monitoring changes in gaze and involuntary fixational movement (rotation and
cyclotorsion) [1–3]. Pupil tracking has multiple applications, including computer graphical user
interface design [4,5], interfacing human and computers [6–8], virtual and augmented reality
[9–14], ophthalmic imaging [15,16] and vision testing [17,18]. Some of these applications
require access to pupil data with minimal latency to take action in response to eye movement,
such as, updating visual stimulation [19], controlling of surgical lasers [20,21], and field of
view steering in retinal imaging [22,23]. Real time tracking and correction of involuntary eye
movement can improve eye care, by mitigating distortion in retinal image captured with scanning
ophthalmoscopes, in particular, for underserved populations, such as, children and subjects with
nystagmus [24], the most extreme form of involuntary eye movement [1,25]. Here we describe a
low latency pupil tracking approach for monitoring and, eventually, correcting physiological and
pathological eye movement.

Pupil tracking using traditional digital cameras, that is, cameras in which their output is an
array of pixel values proportional to the number of detected photons during an exposure period,
consists of three potentially overlapping steps. First, the capture of an image of the front of eye
and its surrounding area, which is then downloaded to a computer for estimating the desired pupil
parameters. A paradigm in which these steps are sequentially executed has been demonstrated
with a variety of optical setups, cameras, computing platforms, and image processing algorithms
(e.g., [26–28]). In an alternative paradigm capable of delivering lower latencies, image processing
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starts before all image pixel values have been downloaded to the computer. Unfortunately, this
paradigm with partially overlapping download and processing cannot be easily implemented
with commercially available cameras, often requiring expensive, highly specialized computing
hardware and computer programming. We previously demonstrated such approach using a
field-programmable gate array (FPGA) and a central processing unit (CPU) to deliver calculation
latencies as low as 0.35 ms [29], with commercial off-the-shelf components totaling >$15,000,
and an FPGA that required complex software development. Here we seek comparable latencies
using the sequential pupil tracking paradigm with an order or magnitude lower cost using end-user
GPUs, while also reducing software complexity by using a high level interpreted programming
language for image processing (Python). The Nvidia (Santa Clara, CA, USA) GPUs used here,
have been widely used in scientific applications, including pupil tracking using CUDA, which
requires manual compiling and more advanced programming expertise than Python [30–32]. The
key innovation here is the optimization of the software for computers with integrated CPU and
GPU with shared RAM, a computer architecture that allows creating image processing pipelines
that take advantage of both types of processors without data copying. The use of Python has the
added benefit that the pupil tracking software can be deployed to multiple computing platforms
without modification or needing a computer-dependent compilation process.

The rest of the manuscript is structured as follows. First, we describe the hardware in two pupil
tracking setups, followed by descriptions of the pupil tracking algorithms and their optimization.
Then, after a short section on the human subject participation, we review the results of various
tests and experiments, concluding with a brief summary.

2. Hardware

Two pupil tracking optical setups with different magnifications were built for use with two
cameras each and various computing platforms, all of which are described next.

2.1. Cameras

Two cameras with complementary metal-oxide-semiconductor (CMOS) sensors and USB3
interfaces were selected to capture monochrome images of the front of the eye. This interface is
available on most current computing platforms and operating systems, therefore not requiring
specialized electronics, such as a frame grabber, which add cost, latency, and complexity. The
cameras were an acA640-750um by Basler AG (Ahrensburg, Germany) with 4.8 µm square
pixels, and a BFS-U3-20S4M-C by Teledyne FLIR (Wilsonville, Oregon, USA) with 4.5 µm
square pixels. These cameras were chosen for their relatively high frame rate, relatively low cost,
and global shutter to avoid distortion due to eye movement.

2.2. Illumination

The front of the eye was incoherently illuminated with two light emitting diodes (LEDs). The
selection of the LED central wavelength was guided by the following considerations: avoiding
interference with psychophysical experiments or vision tests, avoiding potential crosstalk with
the imaging wavelengths of most commercial ophthalmoscopes, minimizing the potential for
retinal damage, reducing ethnic bias, and the availability of LEDs with the desired brightness per
unit of solid angle. The first consideration excludes the visible range (400 to 700 nm), while the
second limits the wavelength range to either between 900 and 1,000 nm or >1,150 nm, as most
widely used optical coherence tomographers operate with central wavelengths around 850 and
1060 nm, and the fluorescent emission of indocyanine green (ICG), used in eye clinics for retinal
fluorescence angiography, extends up to ∼900 nm. Wavelengths longer than 1,150 nm were not
considered due to the high cost of the SWIR cameras that would be required.

We then coarsely try to estimate light safety in the 900 to 1,000 nm range by calculating the
product of the maximum permissible exposure (MPE) as a function of wavelength and the camera
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relative spectral sensitivity, as shown in Fig. 1. The left plot in this figure shows the retinal MPE
for an exposure >10 s to a continuous wave point source focused on the retina, according to the
American National Stanford for safe use of lasers ANSI Z136.1-2014 [33]. The plot in the middle
panel shows the relative quantum efficiency of the camera sensors, which is the same for both
cameras, and the plot on the right shows their product, which tells us that for wavelengths longer
than 900 nm, the shorter the wavelength the better the light safety. This is a coarse estimation
because it ignores the variation of iris reflectivity and back scattering properties across eyes.

Fig. 1. Light safety considerations for pupil tracking in relation to camera sensitivity. The
left plot shows the retinal maximum permissible exposure (MPE) as a function of wavelength
according to the ANSI standard Z136.1-2014, when light from a point source is focused on
the retina for >10 s. The middle plot shows the camera sensor relative quantum efficiency,
and the right plot shows the product of the left and middle plots.

With this information, we chose 940 nm light due to the availability of LEDs with the necessary
brightness, the almost negligible cone photoreceptor stimulation, with the photopic spectral
luminous efficiency function being smaller than 10−6 [34], and despite the ∼ 25% worse safety
than 900 nm. This wavelength also appears to have a low potential for ethnic bias, which
unfortunately, is all too common in the processing and analysis of images from human subjects
(e.g., [35–37]), as illustrated by the images in Fig. 2. These images show little variation with
iris and skin pigmentation and provide consistently high contrast between the iris and the pupil,
unlike visible wavelengths.

Two LEDs (model LED940E, Thorlabs, Newton, NJ, USA) were positioned to the left and right
of the optical axis of the pupil tracker imaging optics and tilted so that their maximal emission
axes pointed to the center of the left and right halves of the field of view. This arrangement creates
a more uniform intensity profile than if a single LED had been used. This off-axis illumination
produces images in which the pupil of the eye appears dark with two vertically aligned corneal or
scleral reflections [38,39].

The use of two LEDs ensures that their retinal irradiance is spread across two areas, with their
centers separated by ∼25° of visual angle, providing better light safety than a single LED. The
maximum permissible exposure (MPE) for the continuous illumination of the retina, assuming
the worst case scenario where the light entering the fully dilated pupil of the eye could be focused
to a point for longer than 10 s, is 1.16 mW per LED (see Appendix A). When operated at their
nominal 100 mA, each LED delivers ∼0.28 mW to a circular area ∼9 mm in diameter, which is
larger than a pharmacologically dilated human pupil, placed at the eye’s nominal position. If the
operating current is increased beyond 100 mA, the optical power at the eye never exceeds ∼0.63
mW with this output power decreasing by itself over a span of seconds due to LED overheating
which, incidentally, serves as a desirable safety feature. A square metal plate with a circular hole
was placed in front of the pupil tracker, to prevent the eye from accidentally getting close to the
LEDs, as an additional light safety measure.
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Fig. 2. Images captured with visible (top rows) and infrared (bottom row) light, showing
that under 940 nm light there are no major contrast differences due to iris, hair or skin
pigmentation.

2.3. Optical setup

Two optical setups were designed to relay a rectangular area ∼18× 21.6 mm onto the camera
sensor, with two different magnifications. An 18 mm square field of view can contain a pupil
with a diameter of an up to 8 mm within approximately ±25° of gaze changes, provided the head
remains fixed in relation to the pupil tracker. An additional ∼20% larger field of view along
the horizontal axis is necessary for the pupil edge detection algorithm, which operates along
the image horizontal axis and requires a few pixels to the left and right of the pupil edge. The
optical setup was designed to operate at 45° angle of incidence with respect to the subject’s face
to facilitate integration with visual stimuli, vision testing and/or retinal imagers. In order to
keep the entire field of view in focus, the camera sensor was tilted according to Scheimpflug’s
principle [40]. The optics were designed to achieve telecentricity in both object and image space
to mitigate pupil image size changes due to axial head translation and/or camera focusing errors.

In order to facilitate switching between the two desired image magnifications, both optical
setups have the same front portion. This was achieved by simultaneously optimizing both optical
setups using the multi-configuration feature of the ray tracing software OpticStudio (Ansys
Zemax, Kirkland, WA, USA). The ray tracing optimization aimed to minimize the default merit
function (wavefront RMS), modified with custom operands to constrain the total system length
(<300 mm), ensure adequate mechanical clearances, and maintain telecentricity (<0.3°). In the
early design phases, all surface radii of curvature and airspaces were allowed to vary within
constraints to maintain realistic lens shapes. These optimal lenses were then replaced with similar
off-the-shelf lenses while maintaining diffraction limited performance at 940 nm. Once finalized,
the airspaces between elements were adjusted for ease of assembly using off-the-shelf mechanical
lens tubes, resulting in the values shown Table 1. One of the assembled optical setups is shown in
Fig. 3 below, with complete bills of materials and mechanical drawings provided in Appendix B.

An interferometric optical filter that only transmits light in the 925-975 nm range was placed
in the optical setup to ensure that only light from the illumination LEDs reaches the camera
sensor, making the pupil tracking insensitive to room lighting.
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Fig. 3. Complete pupil tracker optical setup: 1) tilted FLIR camera; 2) and 3) interchangeable
and fixed portions of the optical setup, respectively, 4) LED illumination and 5) mechanical
mount to prevent accidental proximity of the eye to the LEDs.

Table 1. – Separation and tilt of optical elements for high frame rate and high
resolution pupil trackers.

Element Part # (manufacturer) Separation (mm) Tilt (°)

Eye 100.0 45.0

Lens 1 AC254-150-B (Thorlabs) 100.5 0.0

Lens 2 LF1822-B (Thorlabs) 40.9 0.0

Bandpass filter 84-792 (Edmund Optics) 36.0 0.0

Iris diaphragm SM1D12C (Thorlabs) 8.7 / 8.0 0.0

Lens 3 LA1433-B / LBF254-075-B (Thorlabs) 3.4 / 22.8 0.0

Lens 4 LA1708-B (Thorlabs) / 49-326 (Edmund Optics) 8.2 / 27.0 0.0

Lens 5 AC127-025-B (Thorlabs) / - 17.8 / - 0.0

Camera See main text 4.6 / 7.2
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The optomechanical components closest to the eye, common to both optical setups, include
two lenses, a fold mirror, an interferometric bandpass filter, and an iris diaphragm (the system’s
aperture stop). Thus, to change magnifications, only the portion of the optical setup closest to
the camera needs to be switched. Nominal optical distortion across the field of view is ∼0.4%,
when ignoring refraction at the ocular surfaces. Only points within ∼1 mm of the field of view
corners (at the eye) are vignetted, resulting in less than ∼35% image intensity reduction, which is
corrected by digital field-flattening of the pupil images.

2.4. Computing processing units

The pupil tracking algorithms were tested on four different computing platforms. Two desktops
with discrete CPU and GPU, the first of which has an i9-13900 CPU by Intel (Santa Clara, CA,
USA) with 128 GB of DDR5 random access memory (RAM) operating at 2,400 MHz, and an
RTX A2000 GPU by Nvidia with 16 GB of RAM. The second desktop computer had a Ryzen
7 5800X CPU by AMD (Santa Clara, CA, USA) with 16GB of DDR4 RAM operating and an
RTX 3070 Nvidia GPU with 8 GB of RAM. Both desktop computers were evaluated with the
operating system Windows 11 (Microsoft, Santa Clara, CA, USA), and the AMD computer was
also evaluated with Ubuntu Linux 22.04. Two Nvidia computers with integrated CPU and GPU
that share RAM were also evaluated, seeking to reduce pupil tracking calculation latency by
minimizing data copying. These computers were an AGX Xavier with an ARM Carmel CPU
(v8.2) and a Volta GPU, and a Jetson Orin Nano with an ARM Cortex-A78AE CPU (v8.2), and
an Ampere GPU. These devices, which cost ∼$1,000 and $500, respectively, were evaluated
using Ubuntu Linux 20.04 (Nvidia Jetpack 5.1) in the AGX Xavier and 22.04 (Nvidia Jetpack
6.0) in the Orin Nano.

3. Algorithms

The algorithms used here were conceived to detect the pupil of an eye in a field of view that
does not include facial features beyond the eyelashes and eyebrows, as well as to cope with the
pupil partially blocked by eyelids and eyelashes. The pupil position, size and orientation were
determined by fitting an ellipse to the spatial coordinates of pixels considered to be at the pupil
edge, using a previously described sequence of algorithms [29].

The sequence of algorithms executed in CPU or CPU-GPU is depicted in Fig. 4. The first
algorithms mitigate camera sensor fixed pattern noise through background subtraction, correct for
non-uniform illumination and vignetting through field flattening, reduce spurious edges through
1-dimensional (horizontal) filtering, and converted to a binary image through thresholding. Left
pupil edge candidates are then found based on having a user-defined number of dark values to
their left and a number of user-defined bright pixels to their right, while the reverse condition is
used to find right pupil edges. After discarding left pupil edges without a matching right edge
and vice versa, outlying pupil edge candidate pairs are also discarded based on a median fit to the
more vertical of the two ellipse axes [29]. After repeating the median fit discarding a second
time, an additional discarding of outliers is performed through clustering, before the least-squares
ellipse fitting of the remaining pupil edge candidates.

No attempt was made to convert pupil coordinates to gaze angle, as this has been extensively
addressed in the literature [41,42]. This conversion only requires a handful of multiplications
with negligible execution time when compared with the hundreds of thousands required for pupil
tracking itself.

All algorithms were implemented in Python 3.11, with the optimizations described next to
reduce calculation time. The only code that was written in C++ was for acquiring camera images
and passing them to the Python interpreter as Numpy arrays.
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Fig. 4. Pupil tracking data processing flow through evaluated computing platforms. Note the
algorithms executed in GPU have been implemented in only two kernels for faster execution.
These diagrams can be compared with that on an FPGA-CPU pupil tracker (Fig. 2 of [29]).

3.1. CPU optimization

All mathematical operations executed in CPU were formulated, when possible, as element-by-
element matrix operations to exploit optimizations in the mathematical software Numpy. All
algorithms were evaluated with and without Numba decorators. Numba is a just-in-time (JIT)
compiler that translates a subset of Python and Numpy functions into machine code [43]. All
data buffers with fixed size were reused to reduce the need for dynamic memory allocation.
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3.2. GPU optimization

Only the naturally parallelizable algorithms were implemented and optimized for execution in
GPU, including those that operate independently on single pixels (background subtraction, field
flattening, thresholding), or on a pixel and its neighbors (filtering and edge detection). These
algorithms were first implemented using CuPy, a library for GPU-accelerated mathematical
computing with Python, which can be thought of as limited version of Numpy for GPUs. While
having each operation contained within a separate CuPy kernel (i.e., a function that is executed
simultaneously in multiple parallel threads) is the preferred approach for code clarity and code
modularity, it is not always optimal in terms of execution time. This is because the launching of
CuPy kernels requires performing some initial tasks, including input type checking and retrieval
of the compiled kernel for the appropriate input data types. Because in the pupil tracking, the
data types do not change over time, type checking is avoided by keeping handles to the necessary
kernels. Additional kernel launching time is saved by consolidating the background subtraction,
field flattening, filtering and thresholding into a single kernel. Although not guaranteed, this
consolidation might also (non-deterministically) save some time by reducing the internally
required synchronizations and data fetching from RAM into GPU.

3.3. CPU-GPU integration

Some computing platforms, such as those by Nvidia used here, have CPUs and GPUs integrated
through physically shared RAM, which allows the bidirectional transfer of data between these
processors without the need for copying. This was implemented by keeping raw images, processed
images, background data, field flattening data and pupil edge candidates in pinned memory with
pointers wrapped for both NumPy and CuPy arrays.

4. Human subjects

Nine adult subjects (5 male, 4 female) with no known ocular anterior segment pathology were
recruited for this study, after obtaining informed written consent following the tenets of the
Declaration of Helsinki and under a protocol approved by the institutional review board of
Stanford University. The subjects were aligned and stabilized in front of the pupil tracker using a
chin and forehead rest combination that is common in ophthalmic instruments.

5. Tests and results

5.1. Feasibility and repeatability

The four combinations of cameras and optical setups with different magnification were tested
to evaluate whether pupil tracking could be achieved when capturing and streaming images at
their maximum frame rate with safe light levels, and if so, with which precision (repeatability).
Sequences of at least 600 images of a piece of paper with a 6 mm diameter black circle as a
model pupil were recorded, together with the parameters of the fitted ellipses. These sequences
were captured using three camera gains to test whether the electronic amplification of detected
photon-electrons is beneficial or detrimental for pupil tracking, as we have previously shown that
it is not necessary to use 256 grey levels for reliably tracking the pupil of the eye [29].

Both cameras were used in free run mode and set to their fast data readout mode, with the
frame rates, gain and regions of interest shown in Fig. 5, together with the first image of each
sequence. The text in the images also shows their approximate grey level range and the standard
deviation of the estimated ellipse center. Under all experimental conditions, the pupil tracking
precision is better (smaller) than 4.5 µm at the eye, which is approximately 1.4 arcmin of visual
angle, confirming that precise pupil tracking can be achieved with safe light levels. The precision
measured here is poorer than that shown in our previous work [29], due mostly to the use of
cameras with different sensors, rather than the algorithms or the precision of the computing
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Fig. 5. Pupil tracker images (contrast-stretched for display purposes) of a piece of paper
with a printed black circle (6 mm in diameter), captured with all four combinations of optical
setups and cameras using less than 0.25 mW/LED through an 8 mm pupil, which is below
the 1.16 mW/LED maximum permissible exposure assuming that the light from each LED is
focused on the retina to a point, for over 10 s. The term gain here refers to the camera analog
to digital converters, that has been normalized to between 0 and 1. “Gray levels” refers to
the range of grey levels used by the pixels in the images, which have been contrasted here for
display purposes. The Greek letter sigma denotes fitted ellipse center standard deviation
along horizontal (x) and vertical (y) axis.
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Table 2. Pupil tracking algorithm timing across various computing platforms, operating systems
and algorithm optimizations.

platform. Unfortunately, the previous cameras were not available with USB3 interface, and
the ones used here represented a compromise between high frame rate, cost and sensitivity.
Importantly, the small variation of precision with camera gain indicates that this parameter does
not need to be fine-tuned, thus simplifying the pupil tracking operation.

5.2. Calculation timing

The pupil tracking algorithms were executed with the processor clocks set to their maximum
value to both achieve minimum calculation times and minimize non-determinism. All algorithms
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were executed at least once before recording timing, to exclude the just-in-time compilation that
takes place when Python, Numba or CuPy code is executed for the first time. The timing values,
reported in Table 2, are averages across a minimum of 1,000 repetitions. Non-determinism in
Linux was mitigated by allocating the pupil tracking application to pre-selected CPU cores from
which the operating system was excluded.

A first examination of Table 2 reveals that most of the pupil tracking calculation time (>77%)
is taken by the image processing and pupil edge detection algorithms, which execute 5-38 times
faster in GPU than in CPU. In CPU, these algorithms execute faster using Python/Numpy than
their Numba counterparts, while the edge outlier discarding, and ellipse fitting algorithms are 2-6
times faster with Numba. Therefore, CPU-only pupil tracking can achieve minimal calculation
times by using Python/Numpy implementations for image processing and edge finding, and
Numba implementations for the remaining algorithms. In computing platforms with both CPU
and GPU, then CuPy and Numba implementations provide the lowest calculation latencies. The
more powerful desktop CPUs and discrete GPUs can perform pupil tracking in as little as 0.5 ms,
while the embedded units require 0.8-1.3 ms.

Interestingly, the AMD CPU, whether complemented by a GPU or not, deliver faster calculation
times (>30%) using the Linux operating system, compared to Windows. Also, the more powerful
desktop CPUs evaluated here delivered 2-3 times faster calculation times than the integrated
ones, which is expected given their larger number of processor cores and faster internal clocks.

6. Summary

Camera-based pupil tracking was explored in computing platforms with both discrete and
integrated CPUs and GPUs, seeking low calculation latencies. The implementation of the
algorithms used for pupil tracking, originally developed for real-time FPGA processing of data
streamed from a camera, were optimized for CPU, discrete CPU-GPU combination, and a new
end-user integrated CPU-GPU computing platform using a high level interpreted programming
language.

Two telecentric Scheimpflug optical setups were designed and built with commercial of-the-
shelf optical and mechanical components for imaging the front of the eye using 940 nm light. It
was shown that, at this wavelength, image contrast does not vary substantially with iris and skin
pigmentation, indicating low potential for pupil tracking ethnic biases, when compared to visible
light.

The algorithms used for this work were implemented in Python and only compiled by the
Python or Numba just-in-time compilers at first execution. This makes the proposed pupil
tracking software platform-independent, only limited by the availability of Numpy, Numba, CuPy
and camera drivers for the desired computer platform and operating system. The only code that
was written in C++ and compiled was the camera software, which returns the images as Numpy
matrices.

Pupil tracking with a test target and safe light levels was demonstrated using two different
CMOS cameras with USB3 interface and global shutter, operating at 438 and 1,045 fps when
using an ∼500× 420 pix ROI, and at 633 and 1,897 fps when using an ∼315× 280 pix ROI.
Despite the images of the target spanning only a fraction of the 8-bit image depth, the tracking
precision for a 6 mm diameter model pupil was lower than 4.5 µm at the eye, reaching values as
low as 0.9 µm depending on camera exposure.

Timing across various computing platforms showed that powerful desktop CPUs delivered
calculation times as low as 0.5 ms, while the embedded units require 0.8-1.3 ms, which is
reasonable given that the former have a larger number of processor cores (both in the CPUs and
GPUs) and faster internal clocks. The relatively low calculation times on the embedded units,
however, shows promise not only for pupil tracking, but also for other ophthalmic instrumentation
given their relatively low cost, small dimensions and low power consumption. The timing
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data indicates that most of the pupil tracking calculation time is taken by the image processing
and pupil edge detection algorithms, which execute many times faster in GPU than in CPU,
confirming the value of the CPU-GPU combination for pupil tracking. An important timing
observation was that the exact same computer can deliver substantially different pupil tracking
calculation times (30%) depending on which operating system is used.

The programming required for this work illustrates how high-level mathematical libraries such
as CuPy, can facilitate taking advantage of the highly parallel GPU architecture with minimal
understanding of low-level hardware operation. Similarly, just-in-time compilers such as Numba
allow optimization of non-parallelizable algorithms with minimal programming.

In summary, the CPU-GPU approach demonstrated here is well suited for tracking the pupil
with precision comparable and/or better than that of current pupil trackers and with comparable
or lower latency [29]. The precision and low latency achieved make the device suitable for
improving eye care through real-time eye movement compensation in retinal imaging, retinal
functional testing, retinal laser treatment and refractive surgery, in particular, in subjects with eye
movement disorders, such as, nystagmus.

Appendix A: light safety calculations

The pupil tracker illumination reaches the iris of the eye, the sclera, the cornea, the crystalline
lens, the retina and the skin around the eye. Therefore, maximum permissible exposures (MPEs)
for these tissues were calculated using the American National Stanford for safe use of lasers
ANSI Z136.1-2014 [33], assuming exposures to a continuous wave 940 nm light source for longer
than 10 s.

According to this standard, the iris of the eye, the sclera and the skin around the eye are all
considered skin, which for a 940 nm light has an MPE given by 0.2× 100.002(940−700) W/cm2

(∼0.6 W/cm2). When the eye is at the nominal 100 mm from the pupil tracker, the illuminating
LEDs deliver ∼0.5 mW/cm2 (measured), which is ∼1,000 times lower than the skin MPE. For the
cornea and crystalline lens, 0.5 mW/cm2 is ∼8,000 times below the MPE, which is 4.0 W/cm2.

For the retina MPE calculation, we assumed the use of a head restrain, such as a bite bar or
chin/forehead rest, intentional fixation, and light focused to a point. In reality, the LED light will
only come to a focus on the retina whenever the refractive error of the eye is the inverse of the
distance between the LED and the eye (10 D), and thus, for the vast majority of eyes, the LED
light would be spread over an area substantially larger than what the standard considers a point (a
circle 1.5 mrad of visual angle in diameter). Also, the LED emitting area is not a point, and thus,
this alone will spread the LED light over an area larger than that assumed by the standard for a
point source. For the conservative conditions assumed here, the retinal MPE is 100.002(940−700)

mW/cm2 times the area of a pupil 0.7 cm in diameter, which is 1.16 mW per LED, because when
focused on the retina they would create images separated by ∼25° of visual angle.

Appendix B: bills of materials and mechanical drawings

Imaging setup

Two imaging setups, with a common portion, relay an image of the eye onto a camera sensor,
each with a different optical magnification. The assemblies and their components are shown in
Fig. 6 and Fig. 7 below.

Camera mount

The pupil tracking cameras were secured by two 3D printed plates that clamped the front and
back of the camera through three 8-32 or M4 screws and nuts. The clamped camera was attached
and centered with respect to the optical setup by using four metal rods (Thorlabs, 6 mm cage
system). Design file 1 and Design file 2 are the CAD drawings for mounted both cameras tilted
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Fig. 6. Imaging portion of the high magnification pupil tracker setup and its components.
Note the distances listed in the drawing can be measured with a caliper during the assembly
process.

by 4.6°, for the high frame rate optical setup, while Design file 3 and Design file 4 are for the
camera tilted by 7.24°, for the high magnification setup.

Illumination

The LEDs were mounted on the optical setup using a custom 3D-printed mount (see Fig. 8) that
is clamped onto a Thorlabs SM1 lens tube by tightening an M4 or 8-32 screw opposite to a nut.
The two LEDs were soldered in parallel to a Thorlabs cable (CAB-LEDD1) and plugged to a
Thorlabs LEDD1B T-cube power supply, set to a maximum 200 mA current and continuous
wave (CW) operation. In this way, each LED receives a maximum electrical current of ∼100 mA,
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Fig. 7. High frame rate pupil tracker optical setup and its components. Note the distances
listed in the drawing can be measured with a caliper during the assembly process.

which is the nominal operating current. CAD assembly file for the LED mount and its cover is
provided in Design file 5 and Design file 6.

Centering and focusing aid

A custom 3D-printed aid was designed and made to center and focus the pupil tracking camera.
This aid, shown in Fig. 9 (Design file 7 and Design file 8), consists of a flat target with a crosshair
and an 18 by 18 mm square to facilitate camera focusing and centration, as well as field of view
calibration. The target mount is a tube cut along its axis of symmetry to allow for the pupil
tracking LED light to reach the target, while holding it at the nominal distance and centered
with respect to the optical axis. Figure 10 below shows how this centering and focusing aid is
mounted on the optical setup.
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Fig. 8. Custom 3D-printed LED mount with cable cover and clamp for securing around
Thorlabs SM1 lens tubes.

 
Fig. 9. Custom 3D-printed centering and focusing aid consisting of an 18 mm square target
with a crosshair and a mount to place at the nominal distance from the pupil tracking optical
setup.

Fig. 10. Centering and focusing aid consisting of a target (light grey) and a mount (purple),
which slides on the optical setup and is oriented using two metal alignment rods. This aid is
directly adjacent to the LED mount (orange) with a back cable cover (green).
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