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Abstract

Antibodies are a cornerstone of the immune system, playing a pivotal role in identifying and neutralizing infections caused by bacteria,
viruses, and other pathogens. Understanding their structure, and function, can provide insights into both the body’s natural defenses
and the principles behind many therapeutic interventions, including vaccines and antibody-based drugs. The analysis and annotation
of antibody sequences, including the identification of variable, diversity, joining, and constant genes, as well as the delineation of
framework regions and complementarity-determining regions, is essential for understanding their structure and function. Currently
analyzing large volumes of antibody sequences is routine in antibody discovery, requiring fast and accurate tools. While there are
existing tools designed for the annotation and numbering of antibody sequences, they often have limitations such as being restricted to
either nucleotide or amino acid sequences; slow execution times; or reliance on germline databases that are closed, frequently changed,
or have sparse coverage for some species. Here, we present the Rapid Immunoglobulin Overview Tool (RIOT), a novel open-source
solution for antibody numbering that addresses these shortcomings. RIOT handles nucleotide and amino acid sequence processing,
comes integrated with an Open Germline Receptor Database, and is computationally efficient. We hope that the tool will facilitate
rapid annotation of antibody sequencing outputs for the benefit of understanding antibody biology and discovering novel therapeutics.
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Introduction
Antibody diversity and specificity are crucial for the immune
system’s ability to recognize and combat a wide range of
pathogens, leading to effective acquired immunity. Humans
can produce a multitude of unique antibodies through V(D)J
recombination, a process specific to B-cell and T-cell gene
segments [1]. Somatic hypermutation further diversifies these
antibodies, optimizing their affinity for antigens [2]. Antibodies
are highly specific due to the unique antigen-binding sites
formed by the variable regions. This specificity is exploited in
monoclonal antibodies [3], which are identical antibodies from a
single B-cell clone used in medical treatments for diseases such
as cancer or autoimmune disorders. The complexity and diversity
of antibody repertoires, underpinned by the mechanisms of V(D)J
recombination and somatic hypermutation, necessitate sophisti-
cated tools for their analysis and interpretation. Analyzing these
repertoires requires several steps, including accurate germline
allele identification, precise sequence numbering according to the
chosen scheme, and junction analysis. While various tools exist
to address these aspects, many are limited by their specialization

in specific areas, such as sequence numbering, and often restrict
germline assignment to the gene level, lacking the granularity of
allele-level assignment. In contrast, RIOT offers a comprehensive
solution by providing accurate numbering and precise germline
assignment at the allele level. This versatility makes RIOT a
significant landmark in the landscape of antibody annotation
software.

Antibody numbering schemes, such as the Kabat [4], Chothia
[5], Martin [6] and ImMunoGeneTics (IMGT) [7] and others [8,
9], provide a standardized framework for annotating the amino
acid positions in antibody sequences. This standardization
is essential for comparing antibodies, correct delineation of
complementarity-determining regions (CDRs), humanization,
understanding their structure–function relationships, and mul-
tiple other applications. The numbering schemes are not only
fundamental for academic research but also play a crucial role in
the development of monoclonal antibodies for therapeutic use.

The widely recognized methods for antibody numbering
predominantly fall into two categories: those that rely on
sequence alignment in the traditional sense and those based on
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hidden Markov model (HMM) alignments [10]. Both approaches
necessitate a substantial repository of previously annotated
antibody sequences to construct the necessary reference
databases. Sequence-based methods can perform alignments of
input sequences either to pre-annotated antibody sequences or to
germline genes. While the reliance on pre-annotated sequences
yields effective results for recognized patterns, it encounters
limitations with atypical ones.

An example of profile-based numbering, which applies higher
significance to conserved regions, was introduced in AbNum [6].
Here, authors assign framework-derived profile segments to input
sequence segments. Those are then used to determine region
boundaries, and, finally, region sequences are aligned to consen-
sus patterns. While the authors thoroughly investigated the cor-
rectness of the numbering results, the method does not provide
germline assignment.

Sequence-alignment-based numbering methods offer simplic-
ity and accuracy for well-represented sequences but require a
good-quality input germline database. For example, IgBLAST [11],
which aligns input sequences to germline alleles to determine
regions in the input sequence, achieves good germline assignment
accuracy, yet it is computationally expensive and has a limited
number of supported numbering schemes. In contrast, HMM-
based methods provide robustness and adaptability for unseen
sequences at the cost of even higher complexity and computa-
tional expense. To generate HMM profiles used as a reference
database, scheme-gapped pairs of V and J genes can be used
as it was implemented in ANARCI: Antigen receptor Number-
ing And Receptor ClassificatIon. [12]. This approach, however,
yields alignment penalization of unusually long CDRs. By doing
alignment of the input sequence to the profile constructed from
aligned V-J pairs, the alignment score suffers the more there is
a length difference between the sequence and profile due to the
gap penalties. This can result in shorter alignments (which do
not cover the entire query sequence) being preferred and having
better alignment scores than alignments that cover the whole
sequence. This issue is illustrated in Fig. 2, where ANARCI fails
to number correctly due to this limitation.

Another sequence-based numbering that addressed the
robustness problem was implemented in AbRSA [13]. In their
approach, authors prepared numbered antibody consensus
sequences of heavy and light chains, where each position in the
consensus sequence is a list of the most popular antibody residues
constructed from the database abYsis [14]. The query sequence is
aligned to the consensus sequence using a modified Needleman–
Wunch algorithm that considers the consensus residue region
when calculating the alignment score. While this approach
correctly assigns lower significance to hypervariable regions, it
is limited by the number of available numbering schemes, and it
does not provide germline assignment.

Further speed improvement with respect to AbRSA was taken
by AntPack [15]. The method is the fastest currently; however,
it only handles amino acids, and germline genes are assigned
using sequence identity rather than obtained by more accurate
alignments.

The available tools either focus purely on the annotation
of amino acids or nucleotide sequences and are dependent
on the underlying database. IMGT and efforts by the Adaptive
Immune Receptor Repertoire (AIRR) community continue to
be the main sources of germline genes [16–19]. Nonetheless,
these undergo frequent updates that can lead to inconsis-
tencies between annotations employing a particular version
of each database. Employing different pieces of software for

annotation and different germlines results in inconsistent
annotations [20]. Standardization of the annotation protocols
across nucleotides/amino acids, as well as the underlying
germline database, would increase consistencies between
analyses.

Here, we present RIOT, software that facilitates consistent
annotation for nucleotide and amino-acid immunoglobulin
sequences with an integrated Open Germline database with
human and mouse sequences. We benchmark RIOT against
leading tools in nucleotide sequence annotation and amino-
acid sequence annotation showing a best-in-class versatility
and a significant decrease in annotation time. We hope that our
software will help in the analysis of antibodies by offering a single
solution for sequence analysis with a standardized reference
germline database.

Materials and methods
Annotation pipeline
Here, we present RIOT—Rapid Immunoglobulin Overview Tool—
sequence-based antibody numbering software that facilitates fast
execution times, accurate germline assignments, and versatile
selection of numbering schemes.

At first, V allele candidates are selected in k-mer matching–
based prefiltering process, and the top 12 matching alleles are
pairwise-aligned using the striped Smith–Waterman algorithm
[21] to the input sequence in forward- and reverse-complemented
directions. The allele with the best e-value is assigned to the
sequence together with the source locus and organism. Then, the
part of the input sequence that was aligned is masked so the J
allele can be identified on the remaining part of the sequence.
Only J alleles that match the assigned organism and locus are
considered. After further masking the part of the sequence that
is aligned to the J allele, the remaining parts of the sequence are
used to identify the C allele and in the case of heavy chains—the
D allele (Fig. 1). For nucleotide sequences on the input, the reading
frame is inferred from V allele alignment, so the input sequence
is translated to the amino acid sequence, which is used to align
the input sequence to the scheme of choice. After numbering,
additional validations are being performed.

Scheme mapping/numbering
In contrast to the majority of numbering tools, RIOT does not
align query sequences to full-length scheme-gapped sequences
or profiles. Rather, it aligns V and J segments of the query
sequence separately, to ungapped (nonscheme-aligned) germline
sequences. Query-germline alignments are then merged with
already-known germline-scheme alignments to produce query-
scheme mapping on corresponding segments. This approach
renders reliable germline assignments and avoids penalization
of unusually long CDRs, which is common in artificial sequences
deposited in patents [22] (Fig. 2).

We argue that alignment to ungapped allele sequences will
yield more accurate germline assignments as we are aligning
input to biologically accurate genes rather than sequences
where artificially introduced gaps can change alignment scores
because of the gap penalties. As a consequence of this, a good-
quality germline database is needed on input to provide reliable
numbering.

We know how germline amino acid sequences map to schemes;
therefore, we are able to efficiently combine query-germline
alignment with germline-scheme alignment to align input to
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Figure 1. Prefiltering: diagonal score–based candidate alleles selection. Representation of diagonal score calculated for single pair of input query and
allele.

the scheme of choice. This mapping process is performed by the
sequence of steps given in Fig. 3.

Scheme mapping is inferred from the amino acid alignments
of the query sequence to V and J alleles. In the case of amino
acid sequences on the input, a full allele matching pipeline

(prefiltering and pairwise alignments) is executed against amino
acid sequences. When nucleotides are provided on the input, the
query sequence is matched to V, D, J, and C nucleotide alleles,
and the translated query sequence is further pairwise aligned to
amino acid sequences of V and J alleles identified from nucleotide
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Figure 2. Annotation pipeline: align the query sequence to V alleles (both forward and reverse complemented). Infer the organism, locus, and reading
frame from the best V allele alignment. Mask the query sequence aligned with the V allele. Align the J allele, offsetting the best alignment by the masked
V region. Mask again the query sequence, and align D and C alleles. Translate query sequence to amino acids using the inferred reading frame. Translate
amino acid alignments to a selected numbering scheme (Kabat, Chothia, Martin, or IMGT). The pipeline is identical for nucleotides and amino acids
with the exception of a lack of D/C allele annotation in amino acids.

allele matching. Then, query-germline alignments are merged
with germline-scheme alignments to produce query-scheme
mapping for V- and J-derived fragments of the input sequence. The
merging is executed by following query-germline and germline-
scheme alignment backtraces. This way, produced query-scheme
alignments for V and J segments are then collapsed so that all
consecutive insertions and deletions are converted to matches.
In the next step, V and J query-scheme alignments are merged
together, so full query-target scheme alignment is generated,
which allows to determine region boundaries. To infer the scheme
mapping between V and J alignments, the difference between
scheme legal positions and the length of the actual unaligned
query sequence segment is calculated. If the query fragment
between V and J alignments is longer than the number of legal
scheme positions, the segment alignment consists of the number
of matches that are allowed in the scheme with additional
insertions put in the middle. Similarly, if the query sequence is
shorter, the middle segment consists of matches in count equal
to the length of the sequence, and missing scheme positions
are filled as deletions in the middle. Finally, CDR regions are
renumbered so that they match scheme definitions—insertions

are put after the specified position (or in the middle for the
IMGT scheme) and deletions are put before the specified position.
If there are too many deletions to be put before the specified
position, they are appended after the specified place.

Framework and CDR boundaries are inferred from query
sequence-scheme alignment using the definitions provided
by Andrew Martin (Table 1) (http://www.bioinf.org.uk/abs/info.
html).

Kabat, Chothia, and Martin schemes perform numbering in a
distinct fashion to IMGT by employing indel positions. The indel
positions are anchors for insertions and deletions. Insertions are
placed after the specified indel residue position and deletions
before. Anchor positions for all CDRs are defined in Table 2.

While preparing germline-scheme mappings, we noticed that
some alleles do not comply with scheme definitions by having
additional insertion places not defined by schemes. We decided
to add these insertions; otherwise, such positions would cause
a misalignment of germline sequences. This behavior is consis-
tent with the other numbering tools. We numbered the V allele
sequences with novel insertions with ANARCI and AbRSA, and
both programs added insertions in places not allowed by schemes.

http://www.bioinf.org.uk/abs/info.html
http://www.bioinf.org.uk/abs/info.html
http://www.bioinf.org.uk/abs/info.html
http://www.bioinf.org.uk/abs/info.html
http://www.bioinf.org.uk/abs/info.html
http://www.bioinf.org.uk/abs/info.html
http://www.bioinf.org.uk/abs/info.html
http://www.bioinf.org.uk/abs/info.html
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Figure 3. Example of an issue with alignment to artificially gapped sequences. Alignment to IMGT gapped profiles created from V-J gene pairs leads to
penalization of unusually long CDR (PDB: 4ocr). To address this, RIOT aligns V and J genes separately. The example above was generated using ANARCI
adapted from [23].

Table 1. CDR regions boundaries according to each numbering scheme.

Scheme Chain type CDR1 start CDR1 end CDR2 start CDR2 end CDR3 start CDR3 end

IMGT Heavy/light 27 38 56 65 105 117
Kabat Heavy 31 35 50 65 95 102

Light 24 34 50 56 89 97
Chothia Heavy 26 32 52 56 96 101

Light 26 32 50 52 91 96
Martin Heavy 26 32 52 56 96 101

Light 26 32 50 52 91 96

Table 2. CDR indel positions for Kabat-derived schemes.

Scheme Chain type CDR1 CDR2 CDR3

Kabat Heavy 35 52 100
Light 27 52 95

Chothia Heavy 31 52 100
Light 30 52 95

Martin Heavy 31 52 100
Light 30 52 95

Insertion places inferred from germline sequences are defined in
Table 3.

Allele matching
The allele matching process consists of two steps: prefiltering
used for candidate allele selection and pairwise alignments of the
selected allele candidates against query sequence. The candidate
with the highest e-value is assigned as the matching allele.

In 2017, Martin Steinegger and Johannes Söding demonstrated
significant speed improvements in sequence search over Basic
Local Alignment Search Tool (BLAST) [24] by introducing diagonal
based “prefiltering” step before the alignment in their Mmseqs2
pipeline [25]. In this work, we implemented this concept for the
purpose of fast V, D, J, and C allele matching.

Prefiltering is a crucial step in the RIOT allele matching pipeline
that helps reduce the computational time and resources required

for the alignment process. In this step, an index table for target
sequences is created. For each k-mer occurring in the target
gene sequence, one can look up the target’s identifiers and k-
mer positions. These k-mers are then used to identify the best
matching allele candidates to the query sequences by calculating
diagonal scores. If we construct a coordinate plane in which we
denote the x-axis as the position in the query sequence and the y-
axis as the position in the target allele, all k-mer matches between
the input sequence and target allele can be represented as short
diagonal segments starting at coordinates (query position, target
position). Consecutive segments can be directly connected to form
contiguous sequences of consecutive matching positions. If there
is an insertion in the query sequence with respect to the allele
sequence, it will be represented as a segment shifted along the
x-axis. Similarly, a deletion will be represented as a shift along
the y-axis. Segments with a difference between x and y positions
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Table 3. Novel germline-inferred insertion positions in Kabat-like numbering schemes.

Chain type Position Schemes Example

Light 66 Kabat, Chothia IGLV6–57∗01, IGLV5–39∗01,
IGLV5–45∗01

Light 52 Kabat, Chothia IGLV5–45∗01, IGLV4–60∗03
Light 68 Martin IGLV6–57∗03, IGLV5–39∗01

Figure 4. Applying numbering schemes: query amino acid sequence is aligned to germlines to obtain query-germline alignments. This mapping is
merged with known germline-scheme mapping for the scheme of choice. This way query-scheme mappings are obtained for V and J segments, which
are subsequently joined to create query-scheme mapping covering the whole input sequence. We use “unfolded” CIGAR as the pairwise alignment
notation, where “M” denotes positional match between query and target sequence and “I” and “D” denote insertion and deletion on query, respectively.

in consecutive matches greater than the threshold are discarded.
Finally, the number of matching residues serves as a coverage (or
diagonal) score, which is used further to select the best matching
candidates (Fig. 4). By setting a threshold on this score, RIOT filters
out sequence pairs that are unlikely to share significant similarity,
retaining only the most promising candidates for further pro-
cessing. This prefiltering step dramatically reduces the number
of sequence pairs that need to be considered in the subsequent,
more computationally intensive pairwise alignment.

Prefiltering can be fine-tuned on the number of best matches
returned, the size of k-mers for the index, distance threshold,
and sampling threshold. While the sampling threshold and k-
mer size impact the number of k-mer comparisons, which has a
direct influence on prefiltering performance, when it comes to the
number of best matches returned—prefiltering execution time
does not change itself but this alters the number of pairwise align-
ments performed downstream. As consecutive k-mer matches
constitute diagonal construction, the distance threshold is the
maximum relative offset between query and target positions for k-
mer to be included in the diagonal. Finally, the sampling threshold
determines the offset between consecutive k-mers from the query
sequence.

RIOT prefiltering parameters were fine-tuned using a grid
search for each allele with the goal of minimizing the number
of consecutive alignments while preserving germline alignment
accuracy on a sample dataset of human sequences. Ground truth
allele assignments were obtained by aligning input sequences
to all germline sequences in the database and the alignment
with the lowest e-value was selected as the correct germline. All
RIOT prefiltering parameters used are summarized in Table 4.
To further speed up the allele candidate selection, we used the
ahash library (https://docs.rs/ahash/latest/ahash/) for rapid hash
calculations of k-mers in index lookups.

After the prefiltering step in the RIOT allele matching pipeline,
the remaining candidate sequence pairs proceed to the pairwise
alignment stage. This step employs the single instruction multiple
data (SIMD)-optimized Smith–Waterman algorithm [21] for the
selected query–target sequence pairs. The alignment information
is stored as a CIGAR (Compact Idiosyncratic Gapped Alignment
Report) string, which is a concise representation of the consecu-
tive mapping operations (match, mismatch, insertion, and dele-
tion) and their counts. Finally, alignment scores are calculated,
such as sequence identity or e-value. Resulting alignments are
sorted by e-value, so it is easy to pick the best one in the last step.

https://docs.rs/ahash/latest/ahash/
https://docs.rs/ahash/latest/ahash/
https://docs.rs/ahash/latest/ahash/
https://docs.rs/ahash/latest/ahash/
https://docs.rs/ahash/latest/ahash/
https://docs.rs/ahash/latest/ahash/
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Table 4. Prefiltering parameters for alleles. Top N is the number of sequences passing prefiltering to subsequent pairwise alignments.
K-mer size determines the length of k-mers used in the prefiltering index. Distance threshold is the maximum relative offset in query
and target positions between consecutive k-mer matches. Modulo N is the sampling threshold determined by offset between
consecutive k-mers in the query sequence.

Gene Locus Top N K-mer size Distance threshold Modulo N

V All 12 9 13 2
D IGH 5 5 3 1
J IGH 5 5 3 2
J IGK 5 5 7 2
J IGL 5 5 5 1
C IGH 5 5 5 2
C IGK 1 5 3 1
C IGL 5 3 5 1

Table 5. Pairwise alignment parameters.

Sequence type Score Gap open penalty Gap extend penalty

Nucleotides Match: 1; Mismatch: −1 4 1
Amino acids BLOSUM62 11 1

Table 6. OGRDB-derived internal germline database in RIOT. Allele abundance is given for each locus in human and mouse databases.

Organism Segment H K L

Human V 190 62 75
D 31 – –
J 7 7 9
C 9 1 5

Mouse V 643 459 7
D 19 – –
J 6 11 7

Alignment parameters used in RIOT are the same as defaults in
IgBLAST. We found them to produce accurate alignments and, at
the same time, similar to what the user base is accustomed to.
They are summarized in Table 5.

Germline database
The Open Germline Receptor Database (OGRDB) [17] is used as
a primary source of germline alleles in RIOT. It is a reference
database for inferred immune receptor genes that addresses the
need for comprehensive germline allele reference sets to interpret
AIRR-seq data accurately. Current reference sets are incomplete
and under-representative of human and animal population diver-
sity [26]. OGRDB provides V, D, and J allele sequences for humans
and mice with supporting evidence. Mouse sequences from all
strains were put into a single database and deduplicated. This
approach was optimized for the accuracy of the numbering and
the scenario where no organism is provided on the input. Since
germlines of distinct mouse strains may be redundant (have the
same sequence), it may happen that RIOT will provide annota-
tions that are not biologically plausible (e.g. it will mix germlines
from two distinct mouse strains). For this reason, we have pro-
vided an example of how to use RIOT with a custom database
for a specific mouse strain. Human C genes were obtained from
National Center for Biotechnology Information (NCBI) [27] and
are reused for all species. Allele abundance for gene sequences
is presented in Table 6.

Output format
RIOT outputs its annotations in extended AIRR rearrangement for-
mat (https://docs.airr-community.org/en/stable/datarep/rearran
gements.html). Additional columns that were added are defined
in Table 7.

Availability
RIOT is open-sourced via the following repository: https://github.
com/NaturalAntibody/riot_na and is free to use for noncommer-
cial use by noncommercial organizations. An online user interface
that allows users to annotate a single sequence is available
at: https://riot.naturalantibody.com/. Examples that showcase
how to use RIOT and how to build a custom germline database
for RIOT are linked in the README file located in the github
repository.

Results
Feature comparisons of existing tools
We compared RIOT to other tools in two dimensions: supported
numbering schemes (Table 8) and annotation possibilities
(Table 8).

Considering the supported numbering schemes, RIOT falls
behind ANARCI by not supporting the Aho numbering scheme.
This was a conscious choice since there are multiple numbering
systems, not all listed here, and we chose to implement only

https://docs.airr-community.org/en/stable/datarep/rearrangements.html
https://github.com/NaturalAntibody/riot_na
https://github.com/NaturalAntibody/riot_na
https://github.com/NaturalAntibody/riot_na
https://github.com/NaturalAntibody/riot_na
https://github.com/NaturalAntibody/riot_na
https://github.com/NaturalAntibody/riot_na
https://riot.naturalantibody.com/
https://riot.naturalantibody.com/
https://riot.naturalantibody.com/
https://riot.naturalantibody.com/
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Table 7. Additional columns in RIOT output.

Name Type Definition

scheme string Numbering scheme applied in annotation.
v_frame enum [0,1,2] V frame offset from v_alignment_start.
j_frame enum [0,1,2] J frame offset from j_alignment_start.
scheme_residue_mapping json string Numbering of sequence_alignment_aa.
positional_scheme_mapping json string Scheme mapping from sequence_aa (0-based).
additional_validataion_flags json string JSON string containing validation flags.

Table 8. Comparison of supported numbering schemes in existing tools.

AntPack AbNum AbRSA ANARCI RIOT IgBLAST

Kabat Yes Yes Yes Yes Yes Yes∗
Chothia No Yes Yes Yes Yes No
Martin Yes Yes No Yes Yes No
IMGT Yes No Yes Yes Yes Yes∗
Aho No No No Yes No No

∗IgBlast does not provide residue-level annotations like all other tools.

Table 9. Comparison of supported features of existing antibody numbering tools.

AntPack AbNum AbRSA ANARCI RIOT IgBLAST

Nucleotide annotation No No No No Yes Yes
Amino acid annotation Yes Yes Yes Yes Yes Yes∗
Germline assignment Yes No No Yes Yes Yes
Isotype assignment No No No No Yes Yes
AIRR format output No No No No Yes Yes

∗IgBlast only has limited functionality regarding amino acid annotation as it only aligns V-genes.

those that are commonly used within the industry and academic
community. While IgBLAST supports Kabat and IMGT in its
annotations, it does not provide residue-level annotations.

Regarding annotation features, we list the ability to handle
nucleotide or amino acid formats, germline assignment, isotype
assignment, and compatibility with the AIRR format (Table 9).
From all presented tools, only RIOT and IgBLAST check all boxes
in compared features. IgBLAST support for amino acids is limited
as it is able to align only V genes.

Germline assignment accuracy and speed
To assess the performance of RIOT, we compared it to the lead-
ing annotation tools available: IgBLAST, ANARCI, and AntPack.
Neither AbNum nor AbRSA were included in the comparisons
as they do not provide germline assignment functionality. We
constructed two benchmarking datasets: containing nucleotide
and amino acid sequences to benchmark IgBLAST and ANARCI +
AntPack, respectively. The nucleotide sequence dataset was con-
structed by downsampling the AbNGS [28] dataset, and the amino
acid sequence dataset was derived from therapeutics sequences
curated from INN entries [29]. All tools tested were configured
to use the same germline database: in the case of IgBLAST, we
provided the OGRDB germline database as an input, and, for
ANARCI, we constructed HMM profiles from V-J gene pairs gapped
to IMGT. The IMGT-gapped OGRDB germlines were also provided
to AntPack for consistency. In all cases, we assessed the accuracy
of assigning germlines as well as wall-clock running time.

To construct ground-truth datasets in both cases, each test-
set sequence was aligned to all of the germline allele sequences
using the striped Smith–Waterman algorithm, and the allele with

the lowest e-value score was assigned as a ground truth. We
evaluated the germline assignment accuracy on the level of genes
and alleles. As each experiment was performed 10 times on an
8-core machine, execution wall clock time was measured, and
the mean value from 10 distinct runs was used to compare the
performance.

IgBLAST achieves comparable germline assignment accuracy
to RIOT (Table 10). Our software, however, achieves significant
speed improvement over IgBLAST, being more than four times
faster. We have tuned the parameters for the sample next-
generation sequencing (NGS) sequence dataset; however, when
working with highly mutated sequences or sparse germline
databases, optimal execution parameters could be different and
therefore could be adjusted using grid search, as described in the
Allele Matching section.

The therapeutics-derived dataset was used to measure the
germline assignment accuracy for amino acid–based annotation
using ANARCI and AntPack. Because of its small size, the exe-
cution time measurements were not reliable. Therefore, to mea-
sure the processing efficiency, we constructed another amino
acid dataset by translating NGS sequences. Germline amino acid
sequences were deduplicated as there may be multiple distinct
alleles with the same translation sequence.

RIOT outperforms ANARCI on all metrics (Table 11). As we
investigated, the surprisingly low germline assignment accuracy
of ANARCI could be attributed to its germline assignment method:
iterating over the alignment to select the gene with the highest
sequence identity. We advocate for assigning genes using e-values
from alignments as we believe that this renders more biologically
meaningful results rather than sequence identity alone. Since
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Table 10. Comparison of gene assignment accuracy and execution time for IgBLAST and RIOT. Execution time reported is wall-clock
from execution on an 8-core machine.

RIOT IgBLAST Dataset

Gene V 99.85% 99.88% NGS sample stratified by
bioproject (362 180
sequences) Homo sapiens

J 99.91% 98.84%
Allele V 99.83% 99.73%

J 99.91% 98.80%
Execution time 8 cores 00:04:26 00:18:02

Table 11. Comparison of gene assignment accuracy and execution time for ANARCI, AntPack and RIOT. Execution time reported is
wall-clock from execution on an 8-core machine. ∗AntPack assigns genes only in the IMGT scheme - assignments in other schemes
require double numbering. Time measurements show the numbering to the IMGT scheme.

RIOT ANARCI AntPack Dataset

Gene V 96.94% 65.42% 80.04 Therapeutics heavy and light separate
(1274 sequences) V genes, Homo sapiensJ 97.72% 78.94% 77.99%

Allele V 96.86% 62.17% 76.35%
J 97.65% 78.60% 77.77%

Execution time 8 cores 00:02:40 00:18:01 00:00:32 362 180 random sequences from AbNGS

AntPack has a similar germline annotation scheme as ANARCI,
it is outperformed by RIOT on this count. Nevertheless, AntPack
achieves a significantly lower run-time of 32 s versus 2 min and
40 s in RIOT.

Numbering accuracy
In order to evaluate the numbering accuracy, a therapeutics
amino acids sequence dataset was used. All sequences were
numbered with AbNum, AbRSA, ANARCI, AntPack, and RIOT to
numbering schemes given in Table 8. Numberings were converted
to a common format so that all numbering results have unified
insertion notation. Finally, the results from all tools were aligned
together, so nonconsensus sequences could be identified. AbRSA
numbering results were excluded from comparisons as it caused
most conflicts (CDR numbering does not comply with scheme
definitions).

IMGT—ANARCI, AntPack, and Rapid
Immunoglobulin Overview Tool comparison
Out of all therapeutics-derived variable regions, there were only 23
cases where tools rendered conflicting numberings. Upon exam-
ination of the conflicting numberings, we observed that some
of the differences can be attributed to different CDR smoothing
heuristics between programs. Additionally, the numbering differs
in the sequences that are radically distant from germlines, and,
with examined examples, we were unable to determine which tool
is more correct or less wrong.

While renumbering CDRs, ANARCI reorganizes residues from
the loop, with two flanking positions on each side. IMGT def-
initions of CDR boundaries are used for this regardless of the
selected numbering scheme. In contrast to this, RIOT renumbers
CDR residues without flanking positions, from the target scheme
loop definition. In edge-case scenarios, this leads to different
region assignments of the residues. For example, with the absence
of highly conserved tryptophan on IMGT 118, with a deletion
on input sequence according to query-germline alignment, RIOT
will show missing residue and FWR4 will start on position 119,
where ANARCI smoothing logic will “pull” the nearest residue
from CDR and place it at position 118. Furthermore, the smoothing
logic applied by ANARCI in IMGT space that is translated further

to the user-selected schemes can lead to issues in Kabat-like
schemes.

Kabat/Chothia/Martin—AbNum, ANARCI,
AntPack, and Rapid Immunoglobulin Overview
Tool compared
Of all therapeutic sequences, there were ∼200 conflicts in num-
berings. The majority of conflicts could be attributed to differ-
ences in CDR numbering heuristics or AbNum assigning the last
residues of light chains to 106A instead of 107 in contrast to the
remaining tools.

AbNum has two distinct heuristics for CDR numbering in
Kabat-derived schemes. For example, if present, deletions in CDR3
are placed to the left of the scheme-defined position for insertions
(as defined in Table 2). On the other hand, deletions in CDR1 are
placed to the right of the insertion position. Such an approach
was introduced in AbNum as an arbitrary design decision inferred
from observed CDR sequence lengths. Reliance on observed com-
monly incomplete data can lead to nongeneralizable solutions (as
in the case of the whole Kabat scheme); therefore, RIOT unifies
CDR numbering heuristics so that all CDRs are numbered in the
same way—if present—deletions are placed to the left of scheme-
defined indel position. We believe such an approach improves the
interpretability of the results.

After ignoring differences created as a result of either of the
above reasons, a number of conflicting numberings remained.
Some of them could be attributed to the fact that in some rare
cases, ANARCI truncates the middle of the input sequence for
Kabat-like schemes. Furthermore, ANARCI fails to number the
sequence when there is a deletion on the J gene segment. On
the other hand, AbNum fails to number some of the sequences.
Finally, as it was in the case of IMGT, sequences that differ
drastically from germlines can have different numberings.

Discussion
Here, we introduced RIOT, software for high-throughput anno-
tation of nucleotide and amino acid sequences of immunoglob-
ulins with comprehensive germline databases for humans and
mice derived from OGRDB [17]. Our evaluations show that RIOT
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outperforms the leading nucleotide-sequence annotation tool,
IgBLAST in performance, and the amino-acid sequence annota-
tion tool, ANARCI in both performance and germline assignment
accuracy. Though not as fast as the current leading numbering
solution, AntPack, it offers a much wider functionality and precise
germline annotations being within the range of its speed.

In large-scale NGS studies, processing speed is crucial due to
the massive volume of data generated [15, 28] that then needs
to be effectively analyzed [30]. Efficient processing allows for
quicker analysis, enabling researchers to handle larger datasets
and accelerate the pace of scientific discovery. With a typical
processing pipeline consisting of both IgBLAST and ANARCI, RIOT
significantly enhances this aspect by offering a performance that
is approximately eight times faster, by virtue of using a single
tool rather than both of them. This improvement in speed is
particularly beneficial in large-scale studies, where the ability to
rapidly process and analyze data can lead to faster insights into
immune responses and disease mechanisms.

Accurate germline assignment is essential in immunoglobulin
analysis as it impacts the reliability of research findings. The
accuracy with which immunoglobulin sequences are mapped to
their corresponding germline genes affects the interpretation of B-
cell development and thus affinity maturation. Precise germline
assignment is crucial for understanding immune system behav-
ior, developing effective vaccines, and designing therapies for
autoimmune diseases and infections. Lineage tree reconstruc-
tion is crucial in the analysis of NGS outputs from Phage Dis-
play or immunization that are employed in antibody-based drug
discovery [31]. It is essential to recognize that while accurate
germline assignment is crucial, it cannot always be achieved
by sequence analysis. This limitation arises because multiple
alleles can share the same sequence (which is more evident in
amino acid sequences with synonymous codons) and because of
insertions and deletions in junction regions during V(D)J recom-
bination, which assembles the variable region by joining V, D,
and J germline genes. Moreover, the recombination process can
result in noncanonical recombination events, such as tandem-
fused D genes, making it harder to trace back to the original
germline genes. Another major challenge is the extensive somatic
hypermutation process that introduces point mutations into the
variable region genes, creating de novo “foreign” sequences that
can significantly diverge from their germline counterparts.

The processing speed of modern numbering tools is a result of
using fast sequence aligners and reducing the number of align-
ments being performed. The fastest solution, AntPack, achieves
its performance by doing just three alignments to consensus
sequences (H,K,L), by compromising germline assignment accu-
racy. We advocate for assigning germlines through alignment as
we think it renders the most biologically accurate results that
might be crucial applications such as germlining-based human-
ization or lineage tree reconstruction.

While RIOT offers significant advancements in processing
speed and efficiency, it is important to recognize its potential
limitations. RIOT may produce unexpected results when the
genes of the query sequence significantly differ from the closest
allele in the RIOT database. This discrepancy can lead to incorrect
germline assignments, potentially affecting the accuracy of the
analysis. Moreover, RIOT may encounter difficulties in cases
of frame-shifting modifications. These modifications alter the
translation of the J gene–derived sequence segment, making
it challenging to accurately determine the boundaries of the
framework region.

Though RIOT can offer improvements over IgBLAST and
ANARCI for immunoglobulins, it does not address T-cell receptors

like the two pieces of software. By making the software available,
we hope that the findings related to immunoglobulins can also
be applied to T-cell receptors, advancing the biological study of
these molecules as well as their therapeutic applications.

The integrity of germline databases is pivotal to the accuracy
and reliability of annotation tools such as RIOT. The ongoing
effort to build and maintain comprehensive reference germline
databases is critically important [18, 32]. Despite their critical
importance, these databases often suffer from gaps in cover-
age, which can significantly hinder the performance of even the
most sophisticated annotation software. The continuous effort
to update and expand these databases is essential to capture
the vast genetic diversity across different populations [26]. How-
ever, this endeavor presents a dilemma: whether to maintain
a dynamic, constantly updated database or to freeze a version
for consistency. On one hand, keeping the database updated
ensures that it reflects the latest understanding of germline
genetics, providing more accurate annotations. This approach is
particularly beneficial for research focused on novel or rapidly
evolving immunological phenomena. On the other hand, freezing
a database version guarantees consistency across annotations,
which is crucial for large-scale databases where comparability
between records is paramount. This consistency is essential for
longitudinal studies and for ensuring that annotations remain
comparable across consecutive runs. The choice between these
two approaches is fundamentally a matter of priorities.

In conclusion, RIOT introduces significant improvements in the
analysis of immunoglobulin sequences, particularly in terms of
processing speed and integration of functionalities. We believe
that RIOT will significantly aid in the analysis of immunoglobulins
by providing a unified platform for comparing sequences against
a reference germline database.

Key Points

• Annotation of immunoglobulin sequences is crucial in
large-scale repertoire analysis as well as monoclonal
antibody therapy development.

• Annotation should be performed using a deterministic
algorithm and a versioned germline database to ensure
reliable reproducibility.

• Our novel tool, RIOT, incorporates both amino acid and
nucleotide input annotations.

• Annotations are fast with respect to established tools,
and they are performed using a single germline database
reference.
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