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Abstract 
Next-generation sequencing is widely applied to the investigation of pedigree data for gene discovery. However, identifying plausible 
disease-causing variants within a robust statistical framework is challenging. Here, we introduce BICEP: a Bayesian inference tool for 
rare variant causality evaluation in pedigree-based cohorts. BICEP calculates the posterior odds that a genomic variant is causal for 
a phenotype based on the variant cosegregation as well as a priori  evidence such as deleteriousness and functional consequence. 
BICEP can correctly identify causal variants for phenotypes with both Mendelian and complex genetic architectures, outperforming 
existing methodologies. Additionally, BICEP can correctly down-weight common variants that are unlikely to be involved in phenotypic 
liability in the context of a pedigree, even if they have reasonable cosegregation patterns. The output metrics from BICEP allow for the 
quantitative comparison of variant causality within and across pedigrees, which is not possible with existing approaches. 
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Introduction 
The emergence of next-generation sequencing has prompted 
renewed interest in family-based study designs for disease–gene 
prioritization [1–5]. In the absence of other robust approaches 
[6], linkage analysis remains the de facto standard statistical 
methodology in implicating genomic regions in disease or trait 
susceptibility [7]. However, data for many individuals or from 
multiple independent pedigrees are required to achieve sufficient 
statistical power [7, 8]. As an alternative, a simple, nonstatistical, 
identity-by-state (IBS) filtering approach can be used to examine 
variants present in affected individuals but absent in unaffected 
individuals within a pedigree [9–12]. This can be augmented with 
identity-by-descent methods to identify inherited haplotypes 
[13–16], depending on the pedigree structure and number of 
individuals sequenced. Downstream approaches to prioritize 
likely causal variants typically rely on filtering using population-
level metrics such as allele frequency or deleteriousness 
scores [9]. 

These filtering-based strategies are straightforward to imple-
ment but have limitations. Since there is no quantitative measure 
of cosegregation, there is no means to rank results or compare 
information across different pedigree structures. For example, we 
cannot know whether there is more evidence for the cosegrega-
tion of a variant in a large sibship or for the same variant in 
a smaller multigenerational pedigree. The IBS and IBD filtering 
approaches for rare variants typically assume that all affected 
individuals must carry a risk variant, which is potentially an over-
simplification for complex genetic disorders where there may be 

multiple risk variants, reduced penetrance, or the presence of 
phenocopies. There is no obvious way to relax this assumption 
that would be unbiased and consistent across different pedigree 
structures and sizes [17]. Furthermore, the population-level filter-
ing strategy used to prioritize variants, even if guided by empirical 
work, can be subjective and arbitrary. The selection of a strict cut-
off value for filtering eliminates much information about that 
metric and risks removing reasonable candidate variants with 
slightly subthreshold characteristics [18]. 

One tool that aims to address some of these issues is 
pVAAST [19], which provides a unified framework to prioritize 
likely disease-causing variants from next-generation sequencing 
data in a pedigree. pVAAST combines gene-based rare-variant 
association analysis with a novel formulation of linkage analysis. 
However, the tool requires an ancestry-matched set of control 
genomes, and allele frequency mismatches between the control 
and pedigree data sets are known to introduce false positives [20]. 
The distribution of the pVAAST output scores is not specified, so 
while the score may be used as a relative metric, it requires a 
thorough understanding to be correctly interpreted. It is possible 
that the number of observed genotypes differs across variants 
in a gene, and so, the p-values from the pVAAST scores may not 
necessarily be comparable across genes, even within the same 
pedigree. Similarly, the output metrics of a gene may not be 
comparable across two independent pedigrees as they depend 
on the individuals who are sequenced in the pedigrees. 

A Bayesian inference approach represents an alternative 
method to evaluate cosegregating variants in pedigrees that
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addresses the issues detailed above. To classify variants of 
unknown clinical significance for pedigree data, Petersen et al. 
derived a Bayes factor to assess missense variants in BRCA1 and 
BRCA2 genes with a predicted dominant effect on breast and 
colorectal cancer [21]. Their methodology forms the basis for 
another disease-gene prioritization tool PERCH [22]. Mohammadi 
et al. considered a similar approach, extending the model to 
account for individuals in the pedigree who were not sequenced 
[23]. In addition, the authors assumed that the causal variant 
would be rare in the general population, which greatly reduces the 
variant search space making the model computationally feasible. 
While both methods perform comparably [24], they contain 
information about variant cosegregation only, and no measure 
is included regarding how likely the variant is to be causal a priori. 
When variants with reasonable cosegregation metrics have been 
selected, the standard filtering approaches referenced previously 
still apply for prioritizing variants. 

Here we introduce BICEP, a Bayesian Inference model for 
Causality Evaluation of rare variants in Pedigrees. This method 
provides a quantitative framework to facilitate the ranking of 
rare DNA variants based on their prior evidence of causality and 
their cosegregation with a binary phenotype within a pedigree. 
The underlying assumptions of the Bayesian model are that 
causal variants are population-rare (therefore likely inherited 
from a common ancestor), and that they cosegregate with high 
penetrance and low phenocopy rates. Here, we showcase BICEP 
using pedigree-based whole genome sequencing (WGS) data 
from two real human disease cohorts and a simulated dataset. 
For each pedigree, at least one candidate causal variant has 
been previously identified using traditional approaches or by 
generating synthetic data (see Methods). In each analysis, we 
compare the performance of BICEP to pVAAST in identifying the 
causal variant. For the analyses of the three datasets, the prior 
information for BICEP was generated using protein-coding single-
nucleotide variants (SNVs), although this can be extended to any 
class of DNA variant. 

Materials and Methods 
Overview and assumptions of the Bayesian 
inference model 
A full derivation of the statistical model underlying BICEP is given 
in Supplementary Methods, which we summarize here. For a given 
input variant, our causal model (M1) states that the variant is the 
sole cause of the binary phenotype. The neutral model (M2) states 
that the variant does not contribute to the phenotype. Given the 
pedigree data (D), the posterior odds for causality (PostOC) are 
given by: 

PostOC = 
P (M1| D) 
P (M2|D) 

=
(
P (D|M1) P (M1) 

P(D)

) (
P(D) 

P (D|M2) P (M2)

)

=
(
P (M1) 
P (M2)

)
︸ ︷︷ ︸

PriorOC

(
P (D|M1) 
P (D|M2)

)
︸ ︷︷ ︸

BF 

(1) 

Following Mohammadi et al., we assume that the variant coseg-
regates with the phenotype and is rare, therefore likely origi-
nating from a founder within the pedigree (whether sequenced 
or not) and unlikely to be carried by marry-in individuals [23]. 
We note that the term ‘marry-in’ used here is antiquated as we 
consider biological relationships, not sociological ones, but we 
retain the term here in the absence of an established alternative. 

We further assume that a causal variant has a dominant effect 
on the phenotype and that, for a neutral variant, the phenotypes 
are independent of all genotypes and are determined by the 
population incidence rate. The data in our model consist of the 
observed genotypes (GO) and the known binary phenotypes of 
the pedigree members  (pF). Where the phenotype status of an 
individual is unknown, they are assumed to be unaffected. The 
parameters of our model are the unobserved genotypes (GU), the 
in-pedigree penetrance (β), the in-pedigree phenocopy rate (ϕ), 
the population incidence rate (α), and the proband (p). Here, the 
proband refers to an affected variant carrier in the pedigree (see 
Supplementary Methods). 

Prior odds 
We used a logistic regression model to construct the prior odds 
that a protein-coding variant is causal (for full details, see 
Supplementary Methods). As prior regression data, pathogenic 
and benign variants were extracted from the ClinVar database 
[25]. We fitted two regression models separately based on 
variant type: missense variants, and nonmissense SNVs. As 
predictors for the regression models, we used the variant 
functional consequence and the maximal allele frequency across 
all genomic ancestry clusters from gnomAD [26], using v2.1.1 
(exome) for data aligned to GRCh37 and v4.1 (joint) for data 
aligned to GRCh38. For the missense model, we also used the 
following deleteriousness metrics: Missense badness, PolyPhen2, 
Constraint (MPC) [27], Sorting Intolerant From Tolerant (SIFT) 
[28], Polymorphism Phenotyping v2 (PolyPhen2) [29], Rare Exome 
Variant Ensemble Learning (REVEL) [30], and Functional Analysis 
Through Hidden Markov Models (FATHMM) [31]. Combined 
Annotation Dependent Depletion (CADD) deleteriousness scores 
[32] were included for the nonmissense SNV model. 

For the schizophrenia pedigrees, we aimed to generate a 
prior that reflected the prioritization strategy implemented in 
the SCHEMA analysis and our own previous analyses of these 
pedigrees [33, 34]. To this end, in the ‘nonmissense SNV’ regression 
model, we used allele frequency and functional consequence as 
predictors, and, for the ‘missense’ model, we used allele frequency 
and the MPC score. The SCHEMA analysis focused on constrained 
genes, as determined by the pLI scores [35]. Therefore, the output 
of BICEP and pVAAST was manually filtered to retain variants in 
genes with pLI > 0.9. 

Bayes factor 
To calculate the likelihood of the causal model, we marginalize 
over the parameters, which results in the following: 

P(D|M1) =
∑

p

∑
GU

�
P

(
pF|GF, p, β, ϕ, M1

)
︸ ︷︷ ︸

phenotypes 

P
(
GF|p

)
︸ ︷︷ ︸

inheritance 

P
(
p, β, ϕ|M1

)
︸ ︷︷ ︸

parameters 

dβdϕ 

(2) 

The assumption of a dominant effect means that an individual’s 
phenotype is determined solely by whether they carry the variant. 
Therefore, the ‘phenotypes’ term in Equation (2) becomes a 
product of the penetrance values and phenocopy rates. If k1, k2 are 
the number of affected and unaffected variant carriers and l1, l2 

are the number of affected and unaffected variant noncarriers, 
then: 

P
(
PF|GF, p, β, ϕ, M1

) = 
n∏

i=1 

P (Pi|Gi, β, ϕ, M1) =βk1 (1 − β)
k2 ϕl1 (1 − ϕ)

l2 
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The calculation of the likelihood of the neutral model is similar 
to that of the causal model and results in the following: 

P (D|M2) =
∑

p

∑
GU

∫
P

(
pF|GF, p, α, M2

)
︸ ︷︷ ︸

phenotypes 

P
(
GF|p

)
︸ ︷︷ ︸

inheritance 

P
(
p, α|M2

)
︸ ︷︷ ︸

parameters 

dα (3) 

The main difference from the causal model in Equation (2) is  
that instead of the penetrance and phenocopy terms, this model 
depends on the population incidence α. Also, the ‘phenotypes’ 
term in Equation (3) is simplified since the genotypes are inde-
pendent of the phenotypes. We can calculate this term as: 

P
(
PF|GF, p, α, M2

) = 
n∏

i=1 

P (Pi|Gi, α, M2) = αk1+l1 (1 − α)k2+l2 

Evaluation data 
We selected three WGS datasets to evaluate BICEP (details in 
Supplementary Methods). The first is a large pedigree presenting 
with an autosomal dominant congenital heart defects phenotype, 
for which WGS data have been generated [19, 36]. The second is 
a collection of three multiplex schizophrenia-affected pedigrees 
that had been previously analysed using an IBS filtering approach 
[33]. The third is a collection of synthetic phenotypes based on the 
three-generational CEPH1463 pedigree, for which WGS data have 
been generated [37]. While BICEP can account for variant miss-
ingness, this can often be an indicator of sequencing artefacts or 
low-quality data (see Supplementary Methods). Since the sample 
sizes in some of the pedigrees were modest, we removed variants 
with any missingness. 

As a comparison to BICEP, we examined the output of pVAAST 
v2.2.0 for each pedigree (details in Supplementary Methods). We 
also considered PERCH [22] as a comparison tool but were unable 
to resolve issues with the implementation during a preliminary 
evaluation (see Supplementary Note 2). Since the schizophrenia 
data were aligned to GRCh38 and pVAAST cannot process data 
on this build, we removed variants at unstable positions [38] and  
converted the quality-controlled data to GRCh37 using liftOver 
[39] prior to applying pVAAST. All other datasets were generated 
on build GRCh37. Note that BICEP ranks each individual variant, 
whereas pVAAST aggregates the variant-level information to a 
gene-based score that is used for ranking. 

Implementation 
BICEP was implemented in Python 3. The software was evaluated 
on a Scientific Linux server with 20 Intel Xeon 2.20GHz central 
processing units (CPUs) and 32GB of memory. As input, BICEP 
requires a variant call format (VCF) file with the jointly genotyped 
genomic data of individuals sequenced in the pedigree and a FAM 
file describing the pedigree structure. To generate the prior, we 
used a VCF file of ClinVar variants that was annotated with the 
variant effect predictor from Ensembl [40]. Pre-annotated ClinVar 
VCF files are supplied with the BICEP source code for convenience. 

Results 
Bayesian Inference model for Causality 
Evaluation of rare variants in Pedigrees overview 
For each input variant, BICEP uses a Bayesian inference model 
to evaluate if the variant is causal for a binary phenotype in 
the pedigree (Fig. 1). The posterior odds for causality (PostOC), 

which is used to rank the variants, is calculated as the product 
of the prior odds for causality (PriorOC) and the Bayes factor (BF) 
(see Methods, Equation (1), and Fig. 1). The PriorOC represents 
the odds of the variant being causal a priori and is generated 
using a logistic regression model fitted on data independent 
of the pedigree variants. Here, we used benign and pathogenic 
protein-coding SNVs from the ClinVar database [25] for our prior 
regression data, but the regression models can be fitted on data 
from a variety of sources/analyses (see Discussion). Variant allele 
frequency, functional consequence, and deleteriousness metrics 
were used as predictors for this logistic regression model. Indels 
and noncoding SNVs were not evaluated due to insufficient data 
in ClinVar. 

We evaluated the predictive ability of the prior by splitting 
the prior regression data into training and hold-out test subsets 
(see Supplementary Methods). We found that the prior had strong 
predictive performance on the hold-out test data, although this 
varied depending on the predictors chosen for the regression 
models (see Supplementary Fig. 1). We also generated logPriorOC 
values for variants of unknown significance (VUS) from ClinVar 
to further investigate the prior model. The benign variants from 
the hold-out test data had broadly negative logPriorOC values, 
and the pathogenic variants had mostly positive logPriorOC scores 
(Supplementary Fig. 2). The VUS had mixed logPriorOC values, 
lying between the benign and pathogenic values. 

The BF compares the probability of the cosegregation pattern 
of a variant if it were causal versus if it had no effect on the phe-
notype. The underlying model for the BF is adapted from Moham-
madi et al. and assumes that the variant has a dominant effect on 
the phenotype and is rare in the general population [23]. As rare 
variants are less likely to be carried by marry-in individuals com-
pared to common variants, a rare causal variant is expected to be 
inherited identically by descent. Note, however, that a variant’s 
allele frequency is not explicitly used in the BF calculation but is 
rather incorporated through the prior. Using the BF, we can now 
directly compare evidence of cosegregation for variants in the 
same pedigree or across multiple pedigrees. We can also compare 
the BF of a variant to the maximum achievable BF based on the 
samples sequenced, which corresponds to perfect cosegregation 
with complete penetrance and no phenocopies (represented by 
the dashed horizontal line in the BF plots, see Fig. 1). 

For convenience, we consider the three BICEP metrics (Pri-
orOC, BF, and PostOC) on the base 10 logarithmic scale (denoted 
logPriorOC, logBF, and logPostOC respectively). The logPostOC is 
easily interpretable, with positive values indicating evidence for 
causality and negative values indicating evidence against it. 

Mendelian congenital heart defects pedigree 
Garg et al. described a large pedigree harbouring an auto-
somal dominant congenital heart defects phenotype (see 
Supplementary Fig. 3) and identified the G296S missense variant 
in GATA4 as the causal variant [36]. We applied BICEP to WGS 
data for this pedigree (see Methods), and the same GATA4 
variant ranked first out of the 32 010 protein-coding variants 
investigated (Fig. 2). The logPostOC score of 8.05 for the GATA4 
variant indicates that it is 108.05 times more likely to be causal 
than neutral for the congenital heart defects in this pedigree. 
Of note, the GATA4 variant was the only variant that perfectly 
cosegregated with the congenital heart defects phenotype and 
also had a positive logPriorOC (Fig. 2). The variant that ranked 
second had a logPostOC of 4.59, indicating that it had almost 
3000 times less evidence for causality than the GATA4 variant 
(108.05−4.59 ≈ 2,884). Hu et al. analysed this pedigree using pVAAST

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae624#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae624#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae624#supplementary-data
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Figure 1. Schematic representation of BICEP. The prior odds of causality (PriorOC) are generated from genomic annotation information, independent of 
the pedigree data. The BF is generated based on the sequencing data, the pedigree structure, and the phenotypes. These are then considered on the base 
10 logarithmic scale (logPriorOC and logBF) and summed to give the posterior odds of causality on the base 10 logarithmic scale (logPostOC). The dashed 
lines in the BF and logBF plots indicate the maximum achievable value for the pedigree (i.e. perfect cosegregation with the phenotype with complete 
penetrance and no phenocopies). 

and found that GATA4 ranked first among all genes evaluated, 
with the G296S missense variant listed by pVAAST as the likely 
disease-causing variant [ 19]. 

Schizophrenia-associated pedigrees 
To examine the performance of BICEP on a complex genetic dis-
order, we considered three pedigrees enriched for schizophrenia 
(see Supplementary Fig. 4). These pedigrees have been examined 
previously using a strict IBS-filtering approach, where ultrarare, 
deleterious SNVs with strong cosegregation patterns were priori-
tized [33]. This method identified three such variants, one private 
to each of the pedigrees. Here, we aimed to identify plausible 
variants that would have been missed by the previous analysis 
as well as those identified by the IBS-filtering approach. To tailor 
our analysis for this phenotype (see Methods), we generated a 
prior based on the prioritization strategy used by the schizophre-
nia exome meta-analysis (SCHEMA) consortium analysis of rare, 
protein-coding variants [34]. For consistency with the SCHEMA 
analysis, we considered variants in constrained genes only [35]. 
The output metrics from BICEP for the top five variants in each 
pedigree are shown in Fig. 3 (see also Supplementary Fig. 5) and  
are detailed in Table 1. In contrast to the congenital heart defects 
pedigree, the top results do not necessarily perfectly cosegregate 
with illness, which is consistent with the complex genetic archi-
tecture of schizophrenia. 

The top two ranked variants in pedigree K1494 have sim-
ilar logPostOC scores but for different reasons. Although the 
highest-ranking variant, a SIPA1L1 missense variant, perfectly 
cosegregates with schizophrenia, it is only moderately deleterious. 
In contrast, the variant that ranks second, a GSK3A missense 
variant, is highly deleterious but has a reduced cosegregation 
pattern with schizophrenia. The third-ranked variant, in FBRS, 
also perfectly cosegregates but is much less deleterious than the 

variant in SIPA1L1. Given this, the top two ranked variants are the 
most plausible contributors to schizophrenia susceptibility in this 
pedigree and are potential candidates for further experimental 
validation. 

In pedigree K1524, the top-ranked variant is a highly deleteri-
ous missense variant in SLC25A28, which has a reduced coseg-
regation pattern with schizophrenia. However, variants ranked 
second to fourth had perfect cosegregation and reasonable log-
PriorOC scores. Of note, the second-ranked variant is an ultra-
rare missense variant in TTBK1, with a logPostOC score similar 
to the first-ranked variant in SLC25A28 (see Table 1). An ultrarare, 
pathogenic, de novo missense variant in TTBK1 listed in ClinVar 
has been reported in childhood-onset schizophrenia [41]. The 
variant in TTBK1 identified by BICEP was missed by the previ-
ous IBS-filtering approach as it was not considered sufficiently 
deleterious [33]. 

In pedigree K1546, the highest-ranked variant is an ultrarare 
stop-gain variant in SFPQ and, as such, has a large logPriorOC 
score (see Table 1). However, the evidence for cosegregation (i.e. 
logBF score) is not compelling, as the variant is carried by only 
one of the five affected members of the pedigree. In contrast, 
the second highest–ranked variant in this pedigree is a highly 
deleterious missense variant in ATP2B2, carried by four of the five 
affected members of the pedigree and absent from unaffected 
members (see Table 1). This result is supported by the previous 
IBS filtering analysis on the same data [33] and the SCHEMA 
analysis, which reported a nominal excess of ultrarare, deleteri-
ous, missense variants in ATP2B2 [34]. No variant ranked in the 
top 50 achieved the maximum logBF (see Supplementary Fig. 5c). 
The highest-ranking variant with perfect cosegregation has a 
negative logPriorOC, a negative logPostOC, and ranks 591st over-
all (not shown). Therefore, the ATP2B2 missense variant is the 
most plausible variant to contribute to the increased liability for 
schizophrenia in this pedigree.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae624#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae624#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae624#supplementary-data


BICEP | 5

Figure 2. BICEP applied to the cardiac pedigree. The top 50 variants out of 32 010 ranked by the logPostOC (top panel) from BICEP in the congenital heart 
defect pedigree. The causal G296S missense variant in GATA4 is shaded and ranked first overall. Also shown for each variant are the logPriorOC (bottom 
panel) and the logBF (middle panel). The horizontal dashed line in the logBF plot represents the maximum achievable logBF in the pedigree. 

Table 1. Results for BICEP applied to the three schizophrenia pedigrees. 

Ped BICEP 
rank 

CHR:POS:REF:ALT Gene Functional 
consequence 

gnomAD 
AF 

MPC log 
PriorOC 

AFF UN log 
BF 

log 
PostOC 

pVAAST 
rank 

K1494 1 chr14:71724684:A:G SIPA1L1 Missense 3.0 × 10−5 1.26 0.813 4 / 4 0 / 1 1.026∗ 1.839 1 / 5  
2 chr19:42232651:A:G GSK3A Missense 1.5 × 10−5 2.39 1.480 3 / 4 0 / 1 0.313 1.793 N/A 
3 chr16:30669556:G:A FBRS Missense 1.3 × 10−5 0.34 0.294 4 / 4 0 / 1 1.026∗ 1.320 3 / 5  
4 chr15:87929240:A:G NTRK3 Missense 1.0 × 10−5 1.49 0.964 3 / 4 0 / 1 0.313 1.277 N/A 
5 chr22:18083561:C:T PEX26 Missense 1.0 × 10−4 0.68 0.410 3 / 4 0 / 1 0.708 1.118 N/A 

K1524 1 chr10:99610923:T:C SLC25A28 Missense 1.1 × 10−5 2.11 1.324 3 / 4 N/A 0.206 1.530 N/A 
2 chr6:43257902:C:T TTBK1 Missense 4.4 × 10−5 1.04 0.672 4 / 4 N/A 0.781∗ 1.453 4 / 9  
3 chr20:51674280:T:C ATP9A Missense 1.3 × 10−5 0.93 0.637 4 / 4 N/A 0.781∗ 1.418 6 / 9  
4 chr7:5313814:A:T TNRC18 Missense 3.7 × 10−5 0.87 0.580 4 / 4 N/A 0.781∗ 1.361 7 / 9  
5 chr10:75398805:G:A ZNF503 Missense 9.8 × 10−6 1.51 0.972 3 / 4 N/A 0.206 1.178 N/A 

K1546 1 chr1:35189207:G:A SFPQ Stop gain 0.0 × 100 - 2.573 1 / 5 0 / 3 0.153 2.726 N/A 
2 chr3:10360021:G:A ATP2B2 Missense 1.6 × 10−5 2.23 1.387 4 / 5 0 / 3 0.798 2.185 4 / 13  
3 chr19:41986225:T:G ATP1A3 Missense 0.0 × 100 3.09 1.904 1 / 5 0 / 3 0.010 1.914 N/A 
4 chr19:41986226:A:G ATP1A3 Missense 0.0 × 100 2.91 1.797 1 / 5 0 / 3 0.010 1.807 N/A 
5 chr15:77614763:G:A LINGO1 Missense 1.1 × 10−5 1.92 1.210 2 / 5 0 / 3 0.431 1.641 N/A 

Shown are the output metrics for the top five variants ranked by BICEP in each of the three schizophrenia pedigrees: K1494, K1524, and K1546. Note that the 
MPC deleteriousness metric is only defined for missense variants [27]. Genes harbouring previously prioritised variants [36 ] are shown in bold (see also 
Figure 3 ). AFF represents the number of affected carriers out of all affected samples. UN represents the number of unaffected carriers out of all unaffected 
samples (N/A here indicates that there are no unaffected samples in this pedigree). The maximum logBF per pedigree is denoted with an asterisk 
(corresponding to dashed lines in logBF plots in Figure 3 ). The pVAAST rankings of the genes out of all constrained genes passing Bonferroni correction are also 
shown (N/A here indicates that the gene was not ranked by pVAAST). CHR: chromosome; POS: position (GRCh38); REF: reference allele; ALT: alternate allele; AF: 
allele frequency. 

We applied pVAAST to each of the three pedigrees sepa-
rately after preprocessing the WGS data (see Methods and 
Supplementary Methods). pVAAST prioritized 5, 9, and 13 
constrained genes in pedigrees K1494, K1524, and K1546 respec-
tively (see Supplementary Table 1). However, not all variants 
could be evaluated (9 of the 15 genes harbouring variants in 
Table 1). From the previous IBS-filtering approach [33], both 

SLC25A28 and GSK3A also could not be scored. ATP2B2 received 
a nonzero pVAAST score and ranked fourth across the 13 
constrained genes that had a significant output score (Table 1 and 
Supplementary Table 1). 

In our previous analysis of these pedigrees [33], we were unable 
to quantify the evidence for causality with schizophrenia. A major 
advantage of BICEP is that it can be used to compare results

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae624#supplementary-data


6 | Ormond et al.

Figure 3. BICEP applied to the three schizophrenia pedigrees. The output metrics for the top five variants ranked by the logPostOC from BICEP in each 
of the three schizophrenia pedigrees (K1494, K1524, K1546). The three pedigree-private variants previously prioritized using the IBS-filtering approach 
[33] are shaded in each pedigree. The horizontal dashed line represents the maximum achievable logBF in each pedigree. 

across pedigrees. Of the variants identified by BICEP above that 
merit further investigation (which include the three variants from 
the previous analysis), the ATP2B2 variant has the most evi-
dence for causality (see Table 1). Among the top five ranked 
variants in pedigree K1494, variants in GSK3A, NTRK3, and  PEX26 
were carried by three of the four affected samples and absent 
from the marry-in sample (see Table 1). The previous filtering 
analysis could not differentiate between these based on coseg-
regation alone, as it did not take the pedigree structure into 
account. However, the logBF indicates that the PEX26 variant 
has better cosegregation with schizophrenia than the other two 
variants. 

Synthetic Mendelian phenotype 
In any pedigree analysis, by random chance, we expect to observe 
common variants perfectly cosegregating with the phenotype. For 
phenotypes driven by rare, deleterious variants, these common 
variants should not rank highly. To this end, we used the three-
generational CEPH1463 pedigree (see Supplementary Fig. 6) to  
generate synthetic phenotypes to investigate BICEP’s ability 
to correctly discriminate between rare and common variants 

with perfect cosegregation. We used a simple filtering approach 
to identify 21 deleterious, protein-altering variants that had a 
Mendelian dominant inheritance pattern (see Supplementary 
Methods). These included 6 rare variants (allele frequency < 1%), 
2 low-frequency variants (1% ≤ allele frequency < 5%), and 13 
common variants (allele frequency ≥ 5%). We created a collection 
of synthetic phenotypes by assuming that carriers are affected, 
and noncarriers are unaffected. We applied BICEP and pVAAST 
to each of the synthetic phenotypes individually, and the 
respective output metrics from both tools on the independent 
pseudo-causal variants are shown in Fig. 4 and detailed in 
Supplementary Table 2. 

For BICEP, each pseudo-causal variant achieved the maximum 
logBF, as expected. In Fig. 4A, we see that the rare pseudo-causal 
variants all show evidence for causality with a positive logPostOC. 
The rare pseudo-causal variants (with the exception of the SMYD1 
variant) were ranked in the top two variants scored by BICEP for 
their respective synthetic phenotype. Although the SMYD1 variant 
is rare and predicted deleterious by CADD, the other deleteri-
ousness metrics used in the regression model for the logPriorOC 
are low (see Supplementary Table 2). These metrics indicate that

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae624#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae624#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae624#supplementary-data
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Figure 4. BICEP and pVAAST applied to the CEPH 1463 pedigree with 
the synthetic phenotypes. Output scores for the pseudo-causal variants, 
including (A) the logPostOC from BICEP and (B) the gene-based composite 
likelihood ratio test score from pVAAST. For ease of presentation, the 
logPostOC scores were capped below at −2, indicated with an asterisk. 
Variants are coloured by their allele frequency (AF): Common (AF ≥ 5%), 
low frequency (1% ≤ AF < 5%), and rare (AF < 1%). Genes are ordered 
according to genomic position. 

the variant is not considered deleterious, which results in the 
negative logPriorOC and a modest logPostOC. As expected, all 
common pseudo-causal variants showed evidence against causal-
ity, despite their perfect cosegregation. The two low-frequency 
pseudo-causal variants showed mixed evidence for causality. The 
OR1J1 variant was a deleterious stop-gain variant that received 
a positive logPostOC, whereas the TSACC missense variant was 
modestly deleterious and so received a negative logPostOC. 

For pVAAST, the gene harbouring each pseudo-causal vari-
ant was ranked at least fifth across all genes evaluated for the 
respective synthetic phenotype (see Supplementary Table 2). For 
each gene, the pseudo-causal variant was listed as one of the 
likely disease-causing variants, having achieved the maximum 
LOD score. However, pVAAST was unable to differentiate between 
rare and common pseudo-causal variants (Fig. 4B). For 9 of the 
14 common pseudo-causal variants, the gene carrying the variant 
was ranked first overall. 

Discussion 
Here, we introduce BICEP, a novel Bayesian framework to evalu-
ate rare variant causality in pedigree-based cohorts (see Fig. 1). 
We have extended previous Bayesian models to measure vari-
ant cosegregation with a binary phenotype [23] by incorporating 
prior information derived from genomic annotation data. The 
logPostOC output score is straightforward to interpret and can 
be used as a stand-alone measure for variant causality or as a 
relative measure to compare variants within or across pedigrees. 
The logBF explicitly incorporates penetrance and phenocopy rates 

in its derivation. This is useful for complex genetic traits where 
we may not always expect variants with perfect cosegregation, 
as with the schizophrenia-affected pedigrees. Users can interpret 
the output in the context of the genetic architecture underlying 
the selected phenotype. For example, if a user wishes to identify 
a variant likely responsible for the phenotype throughout the 
pedigree, they might ignore variants that ranked highly due to a 
large logPriorOC but with a modest logBF. 

BICEP has several advantages over non-statistical methods 
such as filtering approaches. The output metrics provide quanti-
tative measures that can be used to compare information across 
pedigrees. For example, using the logPostOC for the three pre-
viously prioritized variants in the schizophrenia pedigrees (see 
Table 1), we can definitively say that the ATP2B2 variant has 
the most evidence of causality for schizophrenia. Additionally, 
BICEP identified a rare missense variant in TTBK1 that perfectly 
cosegregated with schizophrenia in pedigree K1524 (see Table 1). 
An ultrarare pathogenic variant in TTBK1 has been reported in the 
ClinVar database for childhood-onset schizophrenia [25, 41], indi-
cating that this gene is relevant for follow-up investigation. This 
variant identified by BICEP was missed by the previous analysis 
due to the use of strict cut-off thresholds, highlighting the benefits 
of the more sophisticated prioritization strategy proposed here. 

This analysis focused on protein-coding SNVs due to limita-
tions of the prior regression data from ClinVar used to calculate 
the logPriorOC. BICEP can easily be extended to other classes 
of genomic variants such as indels, noncoding variants, or copy 
number variants through the use of appropriate prior regression 
data. We used deleteriousness scores and functional consequence 
as predictors for the prior regression models, but BICEP allows for 
the selection of any genomic annotation to tailor the prior for the 
selected phenotype and its expected genomic architecture. As an 
example of this, we selected specific metrics used by the SCHEMA 
analysis to prioritize rare, damaging variants likely implicated in 
schizophrenia (see Fig. 3). Alternatively, the user can provide other 
annotated prior regression data where appropriate if it better suits 
the phenotype. The logPriorOC accurately distinguishes between 
hold-out benign and pathogenic variants, although the perfor-
mance depends on the predictors selected (Supplementary Fig. 1). 
The logPriorOC gives a mixed distribution of values for VUS, 
which is consistent with their lack of sufficient evidence for or 
against pathogenicity (Supplementary Fig. 2). We showed that 
by requiring allele frequency as a predictor in the prior, BICEP 
will naturally prioritize rare variants over common variants, even 
those with strong cosegregation patterns (see Fig. 4A). However, 
rare variants must also be deleterious to receive a large logPriorOC 
score (see Supplementary Table 2 and Supplementary Fig. 7). 

We compared the performance of BICEP to pVAAST, a tool that 
aims to perform disease–gene prioritization for similar pedigree-
based data. pVAAST correctly identified some of the previously 
prioritized variants but was unable to score others, although the 
reason behind this is unclear. Additionally, pVAAST was unable 
to distinguish between common and rare variants that perfectly 
cosegregated with the synthetic phenotypes (see Fig. 4B). This is a 
major issue for phenotypes where there is selection against rare, 
deleterious variants, as common variants can perfectly cosegre-
gate by random chance. For pVAAST, users can remove variants 
based on their allele frequencies [20], although this process suf-
fers from the usual limitation of selecting a strict cut-off threshold 
for allele frequency filtering. 

While BICEP performs well in the cohorts described here, there 
are some scenarios for which further development is required. As 
is often the case with standard genome-wide analytical methods,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae624#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae624#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae624#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae624#supplementary-data
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sex and mitochondrial chromosomes were not included since 
generating a prior for such variants is challenging. We expect 
that as appropriate prior regression data become available, 
the current implementation of BICEP could easily be adapted. 
The BF presented here does not account for the age of the 
pedigree individuals, which may be limiting for age-dependent 
phenotypes [21, 23]. BICEP has a reasonable runtime on the 
pedigrees described here (see Supplementary Table 3). However, 
increasing the number of nonsequenced individuals in the 
pedigree is expected to exponentially increase the runtime since 
BICEP iterates over all unknown genotypes. Genotype missingness 
decreases the logBF values on average, and the position of the indi-
viduals with missing data in the pedigree structure can result in 
more pronounced decreases (see Supplementary Section 2.1 and 
Supplementary Figs 8 and 9). The logBF calculation is simplified by 
assuming no consanguinity in the pedigree, and, therefore, BICEP 
cannot be used to investigate such complex pedigree structures. 
This work focuses on binary traits only, but the BICEP framework 
could be extended to continuous or multiclass traits by modifying 
the BF and obtaining appropriate prior regression data. Finally, 
BICEP currently evaluates variants independently for causality, 
but aggregating variant evidence at the gene level or across gene 
networks could be beneficial for a two-hit or multihit model. This 
would also facilitate comparing evidence across pedigrees since 
we may not always expect independent pedigrees to share the 
same rare causal variant, especially for complex genetic traits. 

Conclusions 
BICEP can be used to discover plausible disease-causing vari-
ants for phenotypes with both Mendelian and complex genetic 
architectures, including variants that would have been missed by 
traditional approaches. The output metrics can be used to com-
pare variant causality both within and across pedigree datasets. 
Furthermore, as these metrics are based on Bayesian inference, 
they provide a quantitative method to rank variants in terms of 
causality. While we showcase BICEP using protein-coding SNVs 
here, the model can easily be extended to other classes of rare 
genomic variation. Given the increased interest in the analysis 
of pedigree-based genomic data, BICEP addresses the need for 
a rigorous statistical approach to prioritizing variants using this 
type of data. 

Key Points 
• This work details a novel Bayesian tool to quantify the 

evidence that a DNA variant is causal for a genomic trait 
from pedigree-based data. 

• BICEP correctly identifies established causal variants 
found by traditional methods as well as identifying 
plausible causal variants missed by overly conservative 
filtering strategies. 

• The output metrics from BICEP can be used to compare 
the evidence for causality within and across pedigree 
cohorts, which is not possible using traditional prioriti-
zation approaches or existing tools. 

Supplementary data 
Supplementary data are available at Briefings in Bioinformatics 
online. 
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