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Abstract

Spatial transcriptomics (ST technology allows for the detection of cellular transcriptome information while preserving the spatial
location of cells. This capability enables researchers to better understand the cellular heterogeneity, spatial organization, and functional
interactions in complex biological systems. However, current technological methods are limited by low resolution, which reduces the
accuracy of gene expression levels. Here, we propose scstGCN, a multimodal information fusion method based on Vision Transformer
and Graph Convolutional Network that integrates histological images, spot-based ST data and spatial location information to infer
super-resolution gene expression profiles at single-cell level. We evaluated the accuracy of the super-resolution gene expression
profiles generated on diverse tissue ST datasets with disease and healthy by scstGCN along with their performance in identifying
spatial patterns, conducting functional enrichment analysis, and tissue annotation. The results show that scstGCN can predict super-
resolution gene expression accurately and aid researchers in discovering biologically meaningful differentially expressed genes and
pathways. Additionally, scstGCN can segment and annotate tissues at a finer granularity, with results demonstrating strong consistency
with coarse manual annotations. Our source code and all used datasets are available at https://github.com/wenwenmin/scstGCN and
https://zenodo.org/records/12800375.
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Introduction
In biology, the spatiotemporal specificity of gene expression
dictates that integrating cellular spatial location information is
essential for a better understanding of the specific functions
of cells within tissues [1]. Neglecting the spatial information of
cells may lead to inadequate understanding of gene expression
patterns and spatial distribution. However, the spatial location
information of tissue cells cannot be retained in single-cell
sequencing experiments due to technical limitations [2, 3]. With
the innovation of spatial transcriptomics (ST) technology, it
has become possible to detect the quantity of gene transcripts
within tissues while retaining spatial location information [4].
Many ST techniques have been developed to reveal the spatial
heterogeneity of cells and genes and their distribution patterns
in tissue space [5]. Therefore, ST technologies have been used in
research on the development of tissues and organs [6], neurology
[7], and tumor heterogeneity [8].

At present, the main ST techniques can be divided into two cat-
egories: (1) imaging-based techniques, including in situ hybridiza-
tion and in situ sequencing [9]. In situ sequencing-based approach
is to reverse-transcribe RNA in a cell by targeting probes, followed

by sequencing using a DNA ligase-based sequencing approach,
such as FISSEQ [9] and STARmap [10]. In situ hybridization is
another imaging-based method that uses fluorescently labeled
nucleic acid probes to determine the spatial location and abun-
dance of DNA and RNA in tissues and cells, typically MerFISH [11,
12] and seqFISH [13]. (2) next-generation sequencing (NGS)-based
approaches, works by fixing oligonucleotide sequences carrying
spatial barcodes to a chip at a specific resolution, tissue sections
were then affixed to the chip for cell lysis and RNA construction
Library sequencing [14], such as ST and 10X Genomics Visium.
However, each of these technologies has its drawbacks. Imaging-
based technologies can provide higher resolution and sensitivity,
but have lower throughput, a large number of transcriptomes can
not be detected. In principle, NGS-based technologies can detect a
complete tissue atlas and capture all transcriptome information,
but it is limited by lower spatial resolution to more accurately
study detailed gene expression patterns. 10X Visium is currently
the most widely used ST technology. However, on the 10X Visium
platform, the center-to-center distance between spots is 100 μm
and the spots with a diameter of 55 μm may contain 5 to 30 cells.
Even on the older ST platform, which has 100 μm spot diameter
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with 200 μm center-to-center distance, the number of cells within
a spot may up to 200. Therefore, although the availability of many
ST platforms, none of them provide a comprehensive solution that
balances resolution and sequencing depth.

Recently, some tools have been developed to address the var-
ious shortcomings of ST technology using deep learning-based
methods. For example, some spatial clustering methods have
been developed to help identify spatial domains, such as AVGN
[15], STAGATE [16], and STMask [17], using graph neural networks
as the main framework to accurately capture spatial domain
information. In addition, a few ST data imputation techniques,
like SpatialScope [18] and SpaDiT [19], have been designed to
improve the low sensitivity of ST data. Furthermore, spot-level
gene expression prediction methods, such as BLEEP [20] and mclS-
TExp [21], aim to predict spot-based spatial gene expression from
histology images to eliminate the cost-prohibitive of ST field.

In ST technology studies, enhancing the resolution of spatial
gene expression is a core task. Low spatial resolution and incom-
plete tissue coverage may hinder researchers from identifying
gene expression patterns and deeply characterizing intricate tis-
sue architectures. Ideal ST data should have single-cell resolution
and cover the entire tissue surface. Enhancing the resolution of
spot-based ST data to the cellular level can effectively solve the
above problems and help discover more biologically significant
pathways.

Several methods have been developed to enhance the reso-
lution of spatial gene expression by imputing the gaps between
spots, dividing spots into sub-spots, or mapping the entire tissue
into a collection of superpixels representing single cells. For exam-
ple, stEnTrans [22] establishes self-supervised tasks to predict
gene expression in gaps between spots using the Transformer
encoder. STAGE [23] utilizes a spatial location-supervised auto-
encoder to predict high-density gene expression. BayesSpace [24]
uses Bayesian modeling to estimate gene expression data at the
subspot level without relying on histological images. However,
none of these methods have achieved comprehensive prediction
of single-cell resolution gene expression across the entire tis-
sue. XFuse [25] integrates ST data and histology images using a
deep generative model to infer super-resolution gene expression
profiles. TESLA [26] generates high-resolution gene expression
profiles based on Euclidean distance metric, which considers the
similarity in physical locations and histological image features
between superpixels and measured spots. However, they have not
deeply extracted the intrinsic features of histological images and
inefficiently utilized existing data. iStar [27] employs a multi-layer
Transformer architecture to extract features from histological
images, aiming to predict super-resolution gene expression by
capturing both local patterns and global spatial relationships, but
it does not consider for the strong correlations between neigh-
boring cells clusters, failing to capture the complex relationships
between adjacent superpixels. Additionally, gene expression cor-
relates with spatial location, a factor overlooked by all methods
predicting super-resolution gene expression.

Here, we developed scstGCN to robustly predict super-
resolution closed to single-cell spatial gene expression with
the ViT module and the multimodal-features-supervised Graph
Convolutional Network (GCN) module by integrating histolog-
ical image features, spatial positional information, and spot-
based ST data. Compared to existing inferring super-resolution
methods, scstGCN integrates histological image features and
spatial location information, leveraging GCN to effectively
capture complex relationships among adjacent superpixels.
Comprehensive benchmarking on ST data generated on multiple

diverse disease and healthy tissues from different platforms
demonstrates the exceptional super-resolution gene expression
prediction capability of scstGCN. Moreover, scstGCN has exhibited
its capability in enhancing spatial patterns of significant genes,
discovering more biologically meaningful pathways and high-
resolution annotation of tissue architecture.

Materials and methods
Dataset description and preprocessing
To precisely evaluate the performance of scstGCN, we used mul-
tiple Xenium datasets including human breast cancer (HBC),
human pancreas (HP), and hHeart Non-diseased (HN) generated
by 10x Genomics. Xenium dataset contains subcellular-based ST
data, along with spatial positional information of the subcellular
locations. We preprocessed Xenium datasets to align with our
experimental objectives. To obtain ground truth, we constructed
a rectangle grid of superpixels and then partitioned the cell-level
gene expression into this rectangle grid based on the overlap area
between cells and the grids:

pmn =
∑

k∈�mn

Akmn

Ak
ck, (1)

where pmn and ck represent the gene expression at superpixel Pmn

and cell Ck, respectively; Ak and Akmn represent area of cell Ck

and its overlapping area with the superpixel Pmn, respectively; �mn

represents the set of all cells that overlap with the superpixel
P(m, n). Next, pseudo-Visium data was obtained by segmenting the
gene expression of Xenium dataset into a series of spots based on
the spot size and center-to-center distance of the Visium:

si =
∑
k∈�i

ck, (2)

where si represents the gene expression of pseudo-spot Si, and �i

represents the set of all cells covered by pseudo-spot Si. The size
of each superpixel was set to 8×8 μm2, which is approximately
equivalent to the size of a single-cell. The spot diameter was set
to 55 μm, and the center-to-center distance was set to 100 μm.
The location information of the pseudo-spots are evenly covered
on the entire detection tissue based on the characteristics of
Visium data.

Visium HD technology is 10X Genomics’ latest high-resolution
spatial transcriptome high-throughput sequencing technology. It
enhances the resolution to the single-cell level while maintaining
the advantages of high gene throughput. Unlike Xenium data, it
can detect more genes, and the sequencing unit is a square area
without gaps (such as 8×8 μm). Therefore, processing Visium HD
data only requires simulating pseudo-Visium data. We need to
segment the super-resolution gene expression of Visium HD data
into a series of spots based on the spot size and center-to-center
distance of the Visium to obtain the pseudo-Visium data. In simple
terms, the gene expression of the sequencing unit set covered by
the spot is aggregated as the gene expression of the spot:

sj =
∑

(m,n)∈�j

pmn,

�j = {
(m, n) | d(Sj, Pmn) ≤ r

}
,

(3)

where pmn and sj represent the gene expression at sequencing
unit Pmn and pseudo-spot Sj, respectively; d(sj, pmn) represent the
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Table 1. Summary of ST datasets used in this study. Among
them, MBHD, HBCHD, HP, HN, MBC, and MBS datasets were also
collected from the 10x Genomics portal.

Datasets Size/Radius Sections Genes Platform

MBHD single-cell 1 17 797 Visium HD
HBCHD single-cell 1 18 085 Visium HD
HP single-cell 1 377 Xenium
HN single-cell 1 377 Xenium
MBC 55um 1 19 465 10X Visium
MBS 55um 1 32 285 10X Visium
HBC [28] single-cell 3 288-313 Xenium
HER2ST [29] 100um 32 10 530 ST
DLPFC [30] 55um 12 33 538 10X Visium

center distance between pseudo-spot Sj and sequencing unit Pmn;
r represent the radius of the Visium data. The location information
of the pseudo-spots are evenly covered on the entire detection
tissue based on the characteristics of Visium data.

Additionally, we also evaluated scstGCN numerically on the
human dorsolateral prefrontal cortex tissue (DLPFC) conducted
from 10X Visium platform. Since the resolution of DLPFC data is at
the spot-level, and the resolution of our predicted gene expression
is close to the cell-level, we merged the predicted single-cell
resolution gene expression into the spot-level gene expression
based on the location information of all spots in the original
DLPFC data. This process is basically the same as the process of
generating pseudo-Visium data from Visium HD. The difference
is that the location information of pseudo-spot Sj comes directly
from the original data, spot Strue

j . Flow of preprocessing for all
single-cell resolution datasets can be inferred in Supplementary
Figure S1.

For all Xenium datasets, we predicted all genes in each dataset
(313 genes in HBC_S1R1 and HBC_S1R2, 288 genes in HBC_S2, 377
genes in HP and HN). For all spot-based ST datasets and Visium
HD datasets, we selected the top 1000 highly variable genes as
experimental samples. Other details of description for all datasets
can be found in Table 1 and Supplementary Table S1.

Overview of scstGCN
scstGCN is specifically designed to infer super-resolution gene
expression by integrating histological image features, spatial posi-
tion information, and spot-based ST data. We first extract mul-
timodal feature map, and then use the GCN module to predict
single-cell resolution gene expression from multimodal feature
map by a weakly supervised framework (Fig. 1).

To obtain histological feature map, scstGCN first divides the
histological image into a series of subimages, and then extracts
histological image features using the ViT module. The positional
feature map is constructed based on the two-dimensional coordi-
nates of the superpixels, while the Red-Green-Blue (RGB) feature
map is obtained through simple downsampling. Next, multimodal
feature map is obtained by stacking the histological feature map,
positional feature map, and RGB feature map (Fig. 1). Generally,
gene expression is largely influenced by complex interactions
between adjacent cells. To model this, scstGCN adaptively repre-
sents the intricate correlations between neighboring superpixels
using the GCN modules, thereby effectively establishing the rela-
tionship between multimodal feature map and super-resolution
gene expression (Fig. 1). We adopt a weakly supervised learning
framework to train scstGCN because the model outputs are at
the superpixel-level while the training data are at the spot-level.

Specifically, we model the sum of gene expression of the super-
pixels covered by spots and the gene expression of spots.

Extracting multimodal feature map based ViT
module
A substantial body of study has confirmed the strong correlation
between histology images and gene expression patterns [31, 32].
ViT has demonstrated remarkable success in image analysis.
Therefore, we aim to leverage ViT to extract comprehensive fea-
tures from histology images. Due to varying pixel sizes in histology
images from different datasets, we need to resize the histology
images, defaulting to scaling the pixel size to 0.5 μm. This process
ensures that 16×16 patches approximately correspond to the size
of a single cell. When the scaled image is not divisible by 224,
padding operation is required for the image so that its height and
width are both divisible by 224.

Next, we partition the entire histological image into subimages
of size 224×224 to serve as inputs to the ViT module to extract
histology image features in tiles. Let M and N denote the height
and width of the histology image, then it can be expressed as X =
[Xmn]M/224,N/224

m=1,n=1 , where X ∈ R
M × R

N × R
3 and each subimage Xmn ∈

R
224 × R

224 × R
3.

Following the traditional principles of ViT [33], we reshape each
subimage into a series of 16×16 patches, and then flatten the
image into sequence data for compatibility with the Transformer
architecture:

X′
mn = Xmn ∗ W + b, (4)

X̂mn = Flatten
(
X′

mn

)
, (5)

where X′
mn and X̂mn have shapes (16×16×3,224/16,224/16) and

(196, 768); W and b represent the filter parameters and biases of
the convolutional structures.

Next, we briefly describe the basic components of the
Transformer block, including Multi-head Self-Attention (MSA)
and Multi-Layer Perceptron (MLP).

In the MSA module, the inputs U ∈ R
n×d are linearly trans-

formed into three parts, namely Q ∈ R
n×dk , K ∈ R

n×dk , and
V ∈ R

n×dv where n is the sequence length, d, dk, and dv are
the dimensions of inputs, keys (queries) and values, respectively.
Linear transformation can be described as follows:

[Qi, Ki, Vi] = UWi + bi, i = 1, 2, . . . , h, (6)

where h denotes the numbers of self-attention operations in
MSA, Wi and bi represent parameters and biases of the linear
transformation. The scaled dot-product attention is applied on Q,
K, V and then concat all head as the output:

Attention (Q, K, V) = softmax

(
QKT√

dk

)
V, (7)

headi = Attention (Qi, Ki, Vi) , (8)

Mutihead(U) = concat
(
head1, head2, . . . , headh

) × Wmsa, (9)

where QKT√
dk

represents the similarity between Query and Wmsa is

the weight matrix for multiple heads.
There are two linear transformations separated by an activa-

tion function in the MLP module for feature transformation and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae630#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae630#supplementary-data
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Figure 1. The architecture summary of scstGCN. First, the histological image is divided into sub-images of size 224 to fit the input of the ViT module, which
can extract histological feature maps by converting image data into sequence data. Second, the RGB feature map can be obtained from the histological
image through downsampling and then the location feature map is calculated based on the two-dimensional spatial coordinates of the superpixels.
These features are stacked to obtain the multimodal feature map. Next, The GCN module is utilized to further capture the complex relationships
between adjacent cells. Finally, based on a weakly supervised GCN framework, the original gene expression data are employed as pseudo-labels to
predict super-resolution gene expression.

non-linearity:

MLP (X) = σ
(
XW1 + b1

)
W2 + b2, (10)

where W1, b1, W2, and b2 are the weight and bias term of the first
and second fully-connected layer, respectively; σ represents the
activation function such as GELU [34].

We use the function f (·) to represent the above process of
feature extraction using the ViT module. ViT maps each 16×16
patch within each subimage Xmn into a feature vector of length
1024, and then the histological image features are obtained by
applying the inverse operation of Flatten:

Y′
mn = f (Xmn) , (11)

Ymn = Flatten−1 (
Y′

mn

)
, (12)

where Y′
mn ∈ R

196×1024 is 2D sequential data, and Ymn ∈ R
1024×14×14

is 3D image data. After extracting features from all subimages, the

entire histological feature map Y = [Ymn]M/16,N/16
m=1,n=1 ∈ R

1024×M/16×N/16

are obtained.
Additionally, certain regions within the tissue may exhibit sim-

ilar histological features while differing in gene expression levels.
By incorporating spatial location features, we aim to enhance the
robustness and accuracy of the model. We calculate the positional
feature map P ∈ R

2×M/16×N/16 based on the two-dimensional
spatial location information of the superpixels:

P
(
k, i, j

) =
⎧⎨
⎩α i

M/16 , k = 0

α
j

N/16 , k = 1
, (13)

where i and j represent the two-dimensional coordinates of super-
pixel, and the hyperparameter α is set to be 1 in the experiments.

Finally, we obtain the RGB feature map T ∈ R
3×M/16×N/16 by

resizing the entire histological image to the desired size M/16 ×
N/16 using average pooling. From this point, we have obtained
histological feature map Y, positional feature map P, and RGB
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feature map T. By stacking these feature maps along the channel
dimension, we obtain the multimodal feature map:

H = concat (Y, P, T) ∈ R
C × R

M/16 × R
N/16, (14)

where H can be represented as H = [
hpq

]M/16,N/16
p=1,q=1 , with each

superpixel hpq ∈ R
C is the feature vector at pixel

(
p, q

)
. C =

1024+2+3, which is the sum of the channels of the feature maps
Y, P, and T.

Additionally, due to the benefits of transfer learning in ViT
architecture, we pretrain ViT module through self-supervised
learning. This step only requires histological images, making
many publicly available histopathology datasets suitable for
model pretraining. In our experiments, we utilized the general
pathology self-supervised model named UNI [35], which uses
DINOv2 [36] to pretrain on over 100 million images from
diagnostic H&E-stained WSIs spanning 20 major tissue types.

Inferring super-resolution gene expression using
GCN module
Our purpose in extracting multimodal feature map is to use it
for inferring super-resolution gene expression profiles. In tissue
structures, the gene expression exhibits a high degree of cor-
relation with adjacent cells, far exceeding that with regions of
tissue that are physically distant from each other. GCN module
is well-suited for establishing complex communication relation-
ships between neighboring cells. Therefore, we capture complex
relational information between adjacent superpixels using an
undirected graph G(V, E) when predicting gene expression at the
single-cell level. Each vertex V symbolizes the superpixel, char-
acterized by a multimodal feature vector hpq. And the edge E
represents the connections between two vertices. Due to the large
number of superpixels, we consider the set of superpixels spanned
by each spot as a graph to reduce computational complexity. Let
S be the number of spots in the original ST data, then training
data Htrain = {

H1
train, H2

train, · · · HS
train

}
, where Hj

train is the set of
superpixels spanned by spot i of size D × D with C channels.
Here, D denotes the number of superpixels covered by the spot’s
diameter. Next, we define each superpixel as a node, and select the
four closest nodes based on physical distance as its neighbors to
generate the adjacency matrix A. After two layers of GCN, which
fuse information between adjacent cell-level, a 512-dimensional
feature vector at each superpixel is obtained. The above process
can be described as follows:

Hj(0)

train = Flatten
(
Hj

train

)
, (15)

Hj(1)

train = ReLU
(
AHj(0)

trainW0
)
, (16)

Hj(2)

train = ReLU
(
AHj(1)

trainW1
)
, (17)

where Hj(0)

train has shape (D2, C), Hij(1)

train and Hj(2)

train have the same shape
(D2, 512), with D2 represents the number of nodes for graph.

Next, Hj(2)

train are input into the output layer containing a linear
layer with 512 input nodes and K output nodes, where K represents
the number of genes. The outputs are activated by an exponential
linear unit (ELU) [37] to ensure that the predicted super-resolution

gene expressions are non-negative. The process of transferring
from feature vectors to gene expressions is as follows:

Zj
train = ELU

(
Hj(2)

trainW2 + b
)
. (18)

To train GCN module and output layer, due to training data
lacks high-resolution gene expression profiles as labels, we
employ a weak supervision framework. Specifically, we model the
gene expression of each spot as the sum of the gene expressions
of the superpixels covered by that spot. Regions not covered by
any spot are excluded from the training process. Let Hj

train be the
set of superpixels spanned by spot j, F(·) represents the network
composed of the GCN module and the output layer, Zj

train be the
predicted super-resolution gene expressions corresponding to
Hj

train, Filter(·) represents the operation of filtering out superpixels
not contained within round area of spots, gj be the observed gene
expressions at spot j. Then the weak supervision framework can
be described as follows:

Zj
train = F

(
Hj

train

)
, (19)

M(Zj
train) = Sum

(
Filter

(
Zj

train

)
, 0

)
, (20)

Loss(�) =
S∑

j=1

(
gj − M

(
Zj

train

))2
, (21)

where gj and M
(
Zj

train

)
are both spot-level gene expression vec-

tors of length K.
We use ADAM optimizer to minimize the loss via mini-batch

gradient descent. After completing the training phase, we neatly
divide the entire multimodal feature map into a series of graphs
as predicting data Htest = [Hij

test]
M′/D,N′/D
i=1,j=1 , where M′ = M/16 and N′ =

N/16. And then we can infer super-resolution gene expression use
the trained network F(·):

Yij
test = Flatten−1

(
F
(
Hij

test

))
, (22)

Y = Mask
([

Yij
test

]M′/D,N′/D

i=1,j=1
, X

)
, (23)

where the shape of Y is (M′, N′, K), with each Yij
test has shape

(D, D, K). Function Mask(·) first detects the contour of the captured
tissue regions in the histological image X, then masks out values
outside that detected contour in super-resolution gene expression
data Y. The k-th channel of Y with shape (M′, N′) represents the
super-resolution gene expression profile predicted by scstGCN for
the gene k.

Results
The details on the baseline methods, implementation details, and
evaluation metrics can be found in Supplementary Note 1, 2,
and 3.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae630#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae630#supplementary-data
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Figure 2. Results on multiple Xenium ST datasets demonstrate scstGCN can predict super-resolution gene expression with higher accuracy. (A)
Calculation result in term of the RMSE metric. (B) Calculation result in term of the SSIM metric. We calculated RMSE and SSIM metrics between ground
truth and predicted super-resolution gene expression using scstGCN, iStar, TESLA, XFuse, and STAGE on multiple ST datasets.

scstGCN can better predict super-resolution gene
expression profiles
Due to the lack of single-cell resolution in spot-based ST data,
it is not possible to perform precise quantitative evaluation of
predicted super-resolution gene expression profile. To assess the
accuracy of scstGCN in predicting super-resolution gene expres-
sion, our numerical evaluation experiments were conducted on
multiple simulated datasets derived from Xenium data.

First, we applied scstGCN and other methods on pseudo-
Visium dataset derived from the HBC dataset. HBC comprises two
samples: Sample 1 includes two consecutive sections (denoted
as HBC_S1R1 and HBC_S1R2), while Sample 2 contains only
one section (denoted as HBC_S2). We compared the prediction
accuracy of scstGCN with iStar [27], XFuse [25], TESLA [26], and
STAGE [23]. Some methods were excluded such as BayesSpace
[24] and stEnTrans [22] because BayesSpace separates a spot
into several sub-spots and cannot impute gene expression
for unmeasured locations; stEnTrans merely interpolated the
gaps between spots and did not enhance the gene expression
levels to super-resolution. We calculated root mean square
error (RMSE) and structural similarity index measure (SSIM)
[38] between ground truth and each predicted super-resolution
gene expression. The results show that scstGCN attains lower
median of gene-wise RMSE and higher median of gene-wise
SSIM across all sections in HBC (Fig. 2). scstGCN’s 75th percentile
(0.055, 0.056, and 0.062, respectively) of RMSE is lower than the
minimum of 50th percentiles of iStar (0.073, 0.063, and 0.067,
respectively) in HBC (Fig. 2A). What’s even weirder is that the
25th percentile of SSIM for scstGCN is higher than or comparable
to the maximum 75th percentile of SSIM for iStar in HBC (Fig. 2B).
Additionally, to demonstrate scstGCN’s broad applicability, we
conducted the same experiment on HP and HN datasets (details
in Table 1), and the results were consistent with those observed
in HBC data, with scstGCN achieving the best performance
(Fig. 2).

To intuitively analyze the predictive capabilities of different
methods, we spatially visualized several genes that have different
spatial patterns. Figure 3 shows the comparison of pseudo-
Visium, ground truth and the predicted super-resolution gene
expression using scstGCN, iStar, XFuse and TESLA about certain
genes. Visually, the predictions from scstGCN are the closest to
the ground truth measured by Xenium data. Despite achieving

the same super-resolution as scstGCN, iStar predicts high gene
expression in certain tissue areas (such as globally highly
expressed in ERBB2, partially highly expressed in KRT8 and PTPRC),
XFuse exhibits distortion in genes with weak spatial patterns, and
TESLA can only roughly predict gene expression patterns in all
genes.

Finally, to illustrate that scstGCN has powerful transfer learn-
ing capabilities, the pseudo-Visium data of HBC_S1R2 were used
as the training data, and super-resolution gene expression profiles
was obtained on HBC_S1R1 using only its histological image as
the input (Supplementary Figure S2). The results show that both
in terms of evaluation metrics and spatial expression analysis,
scstGCN outperforms the state-of-the-art method iStar.

scstGCN enables accurately restore gene
expression data of Visium HD technology
Recently, 10X Genomics has launched Visium HD technology,
which enhances the resolution to the single-cell level while main-
taining the advantages of high gene throughput. Compared to
Xenium, Visium HD has two advantages for our study: (1) the
sequencing unit of Visium HD is a square area without gaps
(8×8 μm), which is consistent with the output of our task. This
character eliminates the need to map scattered cellular gene
expression onto a rectangle grid of superpixels, enhancing the
reliability of the experimental results. (2) Visium HD offers the
advantage of high gene throughput, allowing us to evaluate the
performance of the model on a greater number of genes. In view of
the above benefits that are more capable of verifying the accuracy
of our method, we selected two Visium HD datasets: Human
Breast Cancer (HBCHD) and Mouse Brain (MBHD).

We used the 8μm bins of the Visium HD data as ground
truth, which is approximately equal to single-cell resolution. Sim-
ilar to the simulation process on Xenium data, pseudo-Visium
data was obtained as the input of scstGCN and other baselines.
The results show that scstGCN outperforms all baselines on
MBHD and HBCHD datasets from different species. It is worth
emphasizing that scstGCN’s 25th percentile (0.7059 for MBHD and
0.6839 for HBCHD) of SSIM are even higher than the maximum
of 75th percentile (0.6912 for MBHD and 0.6483 for HBCHD) of
SSIM for state-of-the-art method iStar (Fig. 4A). Certainly, the
50th percentile of scstGCN is also significantly lower than the
minimum 25th percentile of iStar in terms of RMSE. In addition,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae630#supplementary-data
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Figure 3. Spatial expression analysis of multiple groups of genes with different spatial patterns in HBC_S1R1 data further demonstrate the superiority
of scstGCN. The analysis are based on pseudo-Visium data, super-resolution ground truth, and predicted data using scstGCN, iStar, XFuse, and TESLA.
Each column corresponds to a gene, with the first two rows from the top displays the pseudo-Visium and ground truth, while the subsequent rows show
the predicted data using different methods.

the super-resolution gene expression predicted by iStar on the
Visium HD datasets exhibit many extreme values, which may be
linked to the number of genes (Fig. 4A). As the number of genes
increases, the gene expression data becomes sparser, making it
more challenging to capture sufficient statistical information,
which can lead to outliers for other baselines that don’t establish
complex communication relationships between neighboring cells.
This results in a more pronounced advantage for scstGCN in terms
of the mean evaluation metrics, with a mean RMSE of 0.0462 and
0.0507 and SSIM of 0.7919 and 0.7692 for scstGCN across MBHD
and HBCHD datasets, compared to RMSE of 0.0881 and 0.1267 and
SSIM of 0.5735 and 0.4874 for iStar.

In addition, due to the strong sense of pattern in the mouse
brain, we spatially visualized several genes with different spatial
patterns in ground truth and predicted profiles by scstGCN, iStar,
XFuse, and TESLA in MBHD data (Fig. 4B). Visually, the single-
cell resolution gene expression profiles predicted by scstGCN is
closer to the ground truth. iStar only performs a simple mapping
from hierarchical histological features to gene expression, with-
out considering the complex relationship between adjacent cells,
which results in discontinuous predicted gene mapping and prone
to blurred phenomenon. XFuse is misled by intense morpho-
logical similarities between different regions in histology image,
resulting in poor prediction of low-expression regions of genes.

TESLA comprehensively considers the physical distance between
superpixels and the histological similarity, but does not deeply
integrate gene expression with histological image, resulting in
the overall smoothness of the predicted gene expression profiles,
which deviates from the ground truth.

scstGCN demonstrates superior overall
performance on DLPFC datasets
Here, we evaluated the ability of scstGCN to predict super-
resolution gene expression on the DLPFC tissue with 12 sections
from 10X Visium platform. Since DLPFC data lacks super-
resolution gene expression as labels, we conducted a post-
processing step to precisely evaluate the performance of scstGCN
and iStar numerically. Specifically, we aggregated the predicted
super-resolution gene expression data by summing the gene
expression values of superpixels covered by each 10X Visium
spot, thus obtaining predicted gene expression at the spot-level.
As we have conducted comprehensive comparisons using three
Xenium datasets and two Visium HD datasets that have single-
cell resolution gene expression as labels, and considering the long
runtimes of XFuse and TESLA and the need for post-processing
steps on the DLPFC data, so we only consider comparison with the
state-of-the-art method iStar on the DLPFC data. We evaluated
the prediction performance numerically by calculating the RMSE,
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Figure 4. scstGCN enables accurately restore gene expression data for Mouse Brain (MBHD) and Human Breast Cancer (HBCHD) datasets from Visium
HD technology. (A) Comparison of RMSE and SSIM between ground truth and predicted single-cell resolution gene expression by scstGCN, iStar, TESLA,
XFuse, and STAGE on the MBHD and HBCHD datasets. (B) Spatial visualization of several genes having different spatial patterns for the ground truth
and predicted data by scstGCN and other baselines in MBHD data.

Pearson correlation coefficient (PCC), and mean absolute error
(MAE) between the original data and the predictions generated by
scstGCN and iStar on the DLPFC dataset with 12 sections (Fig. 5A
and Supplementary Figure S3). The results indicate that scstGCN
outperformed iStar across almost all genes in 12 sections with
statistical significance (median: PCC = 0.83, RMSE = 0.08, and
MAE = 0.06 for scstGCN; PCC = 0.67, RMSE = 0.17, and MAE = 0.09
for iStar).

Similarly, we selected some highly variable genes that have
different spatial patterns for spatial visualization to illustrate the
advantages of scstGCN. The results show that the gene expres-
sions predicted by scstGCN were closer to the ground truth,
accurately recovering the original spatial patterns of the genes
(Fig. 5B). In contrast, the results from iStar visually restored the
spatial patterns but showed high expression levels throughout
the tissue compared to the ground truth. iStar exhibits exces-
sive smoothing in local regions of gene expression, resulting in
blurriness, while scstGCN provides more finer depiction of gene
expression. iStar predicts gene expression by considering only the
features of the superpixel itself, without leveraging the effective
knowledge from neighboring superpixels. On the other hand,
scstGCN enables the neural network to adaptively learn differ-
ent gene expression levels corresponding to different regions by

integrating spatial positional information into histological fea-
tures. In addition, scstGCN can not only improve the resolution
within the measured spot, but also predict single-cell resolution
gene expression in non measured spot areas of histological images
(Supplementary Figure S4).

To further demonstrate the superiority of scstGCN in maintain-
ing the spatial structures, we performed clustering on the data
obtained from scstGCN and iStar with spatial clustering methods
AVGN, STAGATE, and GraphST, using Adjusted Rand Index (ARI) as
the evaluation metric. The results show that the ‘spot-level’ data
obtained from scstGCN is better than iStar in all spatial clustering
algorithms, ARI has a significant improvement (Supplementary
Table S2). scstGCN retains the structure of the spatial domain
tightly when enhancing the resolution of spatial gene expression.

scstGCN can enhance the spatial patterns in the
human DLPFC tissue
Next, we tested the ability of scstGCN to enhance the spatial
patterns of genes in ST. We applied a tool called Sepal [39], which
employs a diffusion-based model to identify transcripts exhibiting
spatial patterns in the transcriptome, to DLPFC datasets before
and after super-resolution prediction using scstGCN. Following
the tutorial of Sepal, we ranked the original and super-resolution

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae630#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae630#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae630#supplementary-data
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Figure 5. scstGCN demonstrates superior performance in the human DLPFC tissue compared to state-of-the-art method iStar. (A) Scatter plots of RMSE,
MAE, and PCC between the original spot-level gene expression and ‘spot-level’ gene expression obtained from the enhanced expression generated by
scstGCN and iStar for the top 1000 highly variable genes selected across all sections in DLPFC tissue. Each dot in plots represents one of the 1000 genes.
(B) Spatial visualization of several genes having different spatial patterns for the ground truth and predicted data by scstGCN and iStar in section 151507,
respectively.

gene expression profiles in each section by the degree of spatial
structure from distinct to random patterns respectively; then
grouped top-ranked genes that had distinct spatial patterns into
pattern families based on the similarity of their spatial orga-
nization. Finally, we conducted functional enrichment analysis
for each section in DLPFC datasets using the Gene Ontology:
Biological Processes (GO: BP) database [40]. Figure 6A shows a
subset of transcript profiles in 151510 section that top-ranked in
the super-resolution data but lower rankings in original data. The
super-resolution expressions of these genes have distinct spatial
structure. In contrast, the spatial structures are more diffuse
in the original data. TPT1 is pivotal in cell growth regulation
and cancer progression, making it a promising target for thera-
pies aimed at inhibiting tumor development and metastasis [41].
COX6C is vital for mitochondrial function, influencing cellular
energy production and potentially impacting diseases like neu-
rodegeneration and cancer [42]. PTGDS is crucial for inflammation

and neuroprotection, making it a promising target for treating
neurological and inflammatory conditions [43]. RTN1 regulates
neuronal morphology and function, impacting neurodegenerative
disorders and neuronal regeneration [44]. The super-resolution
data predicted by scstGCN helps researcher better discover spatial
patterns of these genes, significantly improving their rankings.

Figure 6B shows that the DLPFC tissue has six cortical lay-
ers and white matter annotated manually. Next, we partitioned
the top 100 ranked genes into pattern families using Sepal in
both the original data and the super-resolution data across all
sections (Fig. 6C). In the original Visium data, the number of
families partitioned by Sepal is much greater than the manually
annotated count because low-resolution expression blurs the
family patterns. The super-resolution gene expression data brings
the number of families closer to manual annotations because it
maximally restores the actual biological features of the tissue and
enhances spatial patterns.
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Figure 6. scstGCN can help find spatial patterns for DLPFC tissue and enrich more biologically significant pathways. (A) Some disease-related genes rank
higher in super-resolution data predicted by scstGCN (below) because of distinct spatial patterns but rank lower in original Visium data (above). The
head of each gene expression profile provides the names and specific ranking of the genes. (B) Manual annotation of hematoxylin-and-eosin-stained
tissue image in section 151510. (C) Number of families divided according to similarity in spatial structure (left) and significant (P-value<0.05) GO:BP
terms (right) for all sections. Orange represents the original Visium data, while blue represents the super-resolution data. (D) Top-10 significant GO:BP
terms were only identified in the super-resolution data in section 151510.

Finally, we conducted enrichment analysis in DLPFC tissue
among the top 100 ranked genes. The results show that super-
resolution data were enriched more GO: BP term across all
sections (Fig. 6C). Specifically, section 151672 enriched 113 new
pathways, section 151673 enriched another 92 new pathways, and
the least enriched section 151675 also identified 13 new pathways.

Moreover, high-resolution DLPFC data revealed a variety of
biological processes closely related to metabolic activities and
regulatory networks (Fig. 6D and Supplementary Figure S5),
among which adenosine triphosphate metabolic production,
precursor and energy metabolites, and oxidative phosphorylation
were closely related to schizophrenia [45, 46], which provides new

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae630#supplementary-data
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perspectives and strategies for studying disease mechanisms and
identifying therapeutic targets. By inferring super-resolution gene
expression to accurately capture and analyze tissue structure
details, scstGCN brings new advances to systems biology and
biomedical research.

Explore insights by super-resolution gene
expression
We further analyzed the capability of scstGCN in super-resolution
tissue structure segmentation and annotation. We applied scst-
GCN to the HER2ST data [29], which has a lower resolution than
Visium. Specifically, we considered three consecutively cut sec-
tions from sample H, where manual annotations were only pro-
vided for section H_1. We used the spot-based ST data and histol-
ogy image from section H_1 for training data, and then we used
only the histology images from three sections as inputs to obtain
the super-resolution gene expression. We used the output of the
GCN as features for the k-means algorithm [47], and the resulting
segmentation showed a strong concordance with the manual
annotations (Fig. 7A). scstGCN successfully separated in situ can-
cer, Breast glands, and Adipose tissue from manually annotated
section H_1. Additionally, the tissue segmentation results have
similar structure across the three sections, demonstrating that
scstGCN has robust transfer learning capabilities and maintains
consistency across different sections from the same sample.

Next, we explored the potential of scstGCN in detecting mul-
ticellular structures. Tertiary lymphoid structures (TLSs) refer to
specific types of lymphoid tissue structures that form in non-
lymphoid tissues [48]. Research indicates that TLSs may play
a significant role in tumor immune surveillance and therapeu-
tic responses. However, the resolution of ST data may not be
sufficient to accurately capture TLSs because they are typically
small and sparsely distributed lymphoid structures, especially
under low signal-to-noise conditions. We calculated TLS scores
separately on the super-resolution gene expression and Visium
data of the section G_1 of another sample G in the HER2ST
dataset by normalizing and averaging the TLS marker genes
(Supplementary Table S3). The results show that TLSs detected
from the Visium data are unusually sparse and have low density.
On the contrary, super-resolution data predicted by scstGCN can
detect more clearer and densely packed TLSs at a fine-grained
characteristics (Fig. 7B).

Finally, we applied scstGCN to MBS and MBC datasets to
demonstrate that scstGCN is a generic tool not limited to a
specific type of cancer or healthy tissue. We used the same
method as in Fig. 7A to perform tissue segmentation, and the
results show that scstGCN could characterize fine-grained
tissue structure with high-resolution (Fig. 7C and D). The fine-
grained tissue segmentation based on super-resolution gene
expression predicted by scstGCN closely aligns with Allen Brain
Atlas annotations. This further demonstrates the accuracy and
reliability of scstGCN. When Allen Brain Atlas Annotation does
not fully cover certain data, scstGCN serves as a new effective
tool for brain research, opening new avenues for disease research
and therapeutic strategies.

In addition, we also compared the ability of the spatial
clustering algorithms STAGATE and GraphST to identify spatial
domains with scstGCN, although both methods only identify
spatial domains at the spot-level. The results show that STAGATE
and GraphST did not show excellent spatial domain recognition
performance on HER2ST data (Supplementary Figure S6). In
contrast, scstGCN provides a better fine-grained super-resolution
segmentation effect, which is consistent with the rough manual

annotation. STAGATE and GraphST exhibited more pronounced
effects in the specific regions identified in the MBC data, but the
regions scstGCN identifies in MBS data may be more obvious
(Supplementary Figure S7). scstGCN is not a tool specifically
designed to identify spatial domains, which provides an idea for
fine-grained high-resolution tissue segmentation.

Finally, we assessed the predictive performance of super-
resolution gene expression in all of the aforementioned datasets.
scstGCN outperformed iStar for virtually all genes across all
datasets (Supplementary Figure S8).

Assessing the impact of each module in scstGCN
on predicted single-cell resolution gene
expression results
In order to comprehend the reasons behind the performance
improvement of scstGCN compared to other methods, we
assessed the contribution of each module to scstGCN, including
various feature map from mutimodal feature map (denoted as
‘UNI’, ‘LOC’, and ‘RGB’, respectively) and the GCN module to
scstGCN, as shown in Table 2. We systematically removed various
combinations of four modules, including individual and combined
removals. It is worth noting that the histological feature maps
must retain at least one of the ‘UNI’, ‘LOC’, and ‘RGB’ modules,
and when the GCN is removed, we replace it with a feedforward
neural network with four hidden layers, each containing 512
nodes, and ReLU as the activation function for the hidden layers
was employed. From the numerical evaluation results of RMSE
and SSIM in five Xenium datasets, keeping all modules intact
provides the best alignment of the predicted super-resolution
gene expression with the ground truth. Notably, removing the
GCN module resulted in a significant performance drop across all
datasets, only slightly better than iStar. Removing the UNI module
led to an even more substantial decline.

But one key point to emphasize is that removing UNI and
relying solely on ‘LOC’ and ‘RGB’ modules for gene expression pre-
diction will inevitably lead to a significant drop in performance. In
contrast, if UNI is replaced with other pre-trained large models for
extracting histological features, the differences will be minimal.
To further demonstrate the contribution of our study, we compare
scstGCN to state-of-the-art method iStar where both are using
the same underlying ViT. We replaced the histological feature
extraction of scstGCN with the HIPT hierarchical Transformer
to make it consistent with iStar, and we refer to this method
as ’scstGCN+HIPT’. On the other hand, we also replaced iStar’s
hierarchical histological feature extractor HIPT with UNI to make
it consistent with scstGCN, which we refer to as ‘iStar+UNI’.
We conducted a series of numerical evaluation experiments on
the HBC datasets from Xenium platform and the MBHD and
HBCHD datasets from Visium HD platform by comparing the
prediction accuracy of those methods. The results indicate that
replacing UNI with HIPT hierarchical Transformer did not sig-
nificantly decrease the model’s performance compared to the
original scstGCN. Even with the replacement of UNI with HIPT
for feature extraction, our method (‘scstGCN+HIPT’) still achieved
higher median and mean values in RMSE and SSIM compared to
iStar (Table 3 and Supplementary Figure S9). Specifically, com-
pared to iStar on the mean, ‘scstGCN+HIPT’ has increased by
42.5%, 55.0% on the RMSE,and 35.9%, 55.5% on the SSIM, respec-
tively, on MBHD and HBCHD datasets, with similar improvements
observed in three sections of HBC dataset (details in Table 3).
In addition, the median comparison with iStar yielded results
consistent with the mean. We also analyzed the difference in

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae630#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae630#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae630#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae630#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae630#supplementary-data
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Figure 7. Exploring the capability of scstGCN for segmenting and annotating tissue structures at super-resolution across different types of datasets.
(A) Annotating tissue architecture at superpixel-level using scstGCN on three consecutive tissue sections from sample H in the HER2ST breast cancer
dataset. (B) Super-resolution gene expression obtained from section G_1 of HER2ST breast cancer dataset by scstGCN can facilitate the discovery of
TLSs. (C, D) The tissue segmentation results based on super-resolution gene expression closely resemble the details of the Allen Brain Atlas. (C) mouse
brain coronal cut data. (D) mouse brain sagittal cut posterior data.
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Table 2. Ablation experiments on the HBC, HP, HN datasets from Xenium platform. The results showed the average RMSE and SSIM for
scstGCN and its variants after removing specific modules in each dataset.

UNI LOC RGB GCN HBC_S1R1 HBC_S1R2 HBC_S2 HP HN

RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM

� � � � 0.0420 0.7579 0.0419 0.7835 0.0495 0.7395 0.0259 0.8462 0.0231 0.9051
� � � � 0.1487 0.2723 0.1525 0.3099 0.1929 0.1740 0.2298 0.1056 0.2363 0.1019
� � � � 0.0441 0.7235 0.0445 0.7493 0.0511 0.7339 0.0271 0.8219 0.0277 0.8942
� � � � 0.0432 0.7423 0.0423 0.7629 0.0498 0.7095 0.0269 0.8214 0.0245 0.9006
� � � � 0.0642 0.6564 0.0618 0.6934 0.0699 0.6412 0.0385 0.7627 0.0278 0.8208
� � � � 0.1459 0.2672 0.1378 0.3209 0.1476 0.3519 0.2364 0.0924 0.4605 0.0363
� � � � 0.3405 0.1176 0.3242 0.1821 0.3880 0.0898 0.5594 0.0026 0.3996 0.0171
� � � � 0.1203 0.3137 0.1211 0.3547 0.1204 0.3304 0.3807 0.0688 0.1562 0.1399
� � � � 0.0432 0.7259 0.0441 0.7494 0.0519 0.6909 0.0281 0.8106 0.0251 0.8936
� � � � 0.0627 0.6636 0.0607 0.6913 0.0687 0.6425 0.0386 0.7606 0.0286 0.8149
� � � � 0.0636 0.6581 0.0618 0.6949 0.0700 0.6399 0.0385 0.7641 0.0290 0.8126
� � � � 0.0625 0.6653 0.0607 0.6917 0.0686 0.6452 0.0277 0.8426 0.0280 0.8147
� � � � 0.1560 0.1909 0.1587 0.2618 0.1081 0.4215 0.3438 0.0386 0.3777 0.0892
� � � � 0.1785 0.2601 0.1971 0.2506 0.2251 0.1669 0.4154 0.0659 0.2013 0.0713

Table 3. Comprehensively evaluate the performance of scstGCN and iStar, under the condition that both use the same pretrained ViT.
‘Increased proportion’ represents the percentage of performance improvement of scstGCN+HIPT compared to iStar.

Mean prediction error HBC_S1R1 HBC_S1R2 HBC_S2 MBHD HBCHD

RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM

scstGCN 0.0420 0.7579 0.0419 0.7835 0.0495 0.7395 0.0462 0.7919 0.0507 0.7692
scstGCN+HIPT 0.0447 0.7219 0.0435 0.7704 0.0505 0.7303 0.0507 0.7795 0.0570 0.7577
iStar 0.0787 0.5715 0.0660 0.6853 0.0733 0.6379 0.0881 0.5735 0.1267 0.4874
iStar+UNI 0.0679 0.6153 0.0666 0.6449 0.0736 0.6141 0.0816 0.6185 0.1118 0.5458
Increased proportion 43.2% 26.3% 34.1% 12.4% 31.1% 14.5% 42.5% 35.9% 55.0% 55.5%

Median prediction error HBC_S1R1 HBC_S1R2 HBC_S2 MBHD HBCHD

RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM RMSE SSIM

scstGCN 0.0389 0.7688 0.0389 0.8014 0.0481 0.7386 0.0447 0.7840 0.0489 0.7546
scstGCN+HIPT 0.0405 0.7272 0.0412 0.7891 0.0474 0.7269 0.0475 0.7794 0.0538 0.7440
iStar 0.0736 0.5811 0.0632 0.7256 0.0679 0.6295 0.0679 0.6057 0.0986 0.5537
iStar+UNI 0.0611 0.6262 0.0652 0.6579 0.0708 0.6018 0.0692 0.6247 0.0944 0.5400
Increased proportion 45.0% 25.1% 34.8% 8.8% 30.2% 15.5% 30.0% 28.7% 45.4% 34.4%

performance between iStar and ‘iStar+UNI’. For numerical evalu-
ation metrics, ‘iStar+UNI’ has a slight improvement in HBC_S1R1
but even a slight decrease in HBC_S1R1 and HBC_R2 compared
to iStar. To further verify the importance of GCN module, we
set up a method to improve iStar, introducing GCN module to
capture complex relationships between neighboring cells while
keeping the upstream feature map acquisition part unchanged.
The experimental results show that the introduction of GCN to
capture complex relationships between neighboring cells signifi-
cantly improves the prediction accuracy in iStar (Supplementary
Figure S10 and Table S4).

The experimental results indicate that there is a minimal
performance difference in predicting single-cell resolution spatial
gene expression between using UNI and other pre-trained large
models as feature extractors for histology images. On the contrary,
establishing complex communication relationships between
neighboring cells using the GCN module is crucial for enhancing
resolution of gene expression. Relying on histological features to
predict gene expression is the cornerstone, and the GCN module
of establishing complex communication relationships between
neighboring cells plays a crucial role in improving accuracy.
Additionally, removing the ‘LOC’ and ‘RGB’ modules from the

histological feature maps also reduced performance to varying
degrees.

Conclusion
ST is a revolutionary technology with tremendous potential
for elucidating cellular composition, understanding molecular
interactions between tissue components, and advancing disease
research [49]. Despite its advantages, the low resolution or
inability to cover the entire transcriptome limits their application.
Computational predictions of high-resolution gene expression are
effective solution, but existing methods often fail to accurately
capture the full complexity of cellular features. Here, we
developed scstGCN, a GCN-based method that leverages a
weakly supervised learning framework to integrate multimodal
information and then infer super-resolution gene expression at
single-cell level. scstGCN can accurately enhance gene expression
from the spot-level to the superpixel-level, and it can predict
expression both outside the spots and in external tissue sections.

However, the datasets used in this study are limited to a
narrow range of sequencing platform types. In future studies, we
consider introducing diverse data types from multiple sequencing

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae630#supplementary-data
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14 | Xue et al.

platforms. Our ideal solution is to develop a unified framework
designed to enhance the spatial resolution of gene expression
across various data types derived from different sequencing tech-
nologies. In addition, scstGCN currently lacks the capability to
integrate multi-omics data. In future studies, we aim to incorpo-
rate single-cell RNA sequencing data and effectively fuse it with
ST data and histological images using an attention mechanism. By
combining multi-omics data at the informative feature represen-
tation level, we expect to enhance the accuracy and robustness of
scstGCN’s single-cell resolution gene expression predictions.

Identifying genes that display spatial expression patterns is a
crucial step in characterizing the complex tissue landscapes in
ST studies. Due to low resolution and high noise levels, original
transcriptomics data makes it challenging to identify biologically
significant genes with spatial patterns. We demonstrated that
scstGCN can help identify spatial patterns of disease-related
genes, which is of significant importance for understanding dis-
ease mechanisms by analyzing all sections from DLPFC tissue.
Enrichment analysis in DLPFC tissue has shown that scstGCN
allows for the enrichment of more biologically significant path-
ways, thereby providing deeper insights into biological processes.
The ability of scstGCN to annotate tissues at super-resolution
demonstrates great potential, showing consistency with manual
annotations while providing higher granularity.

In summary, scstGCN provides a robust approach for ST data
enhancement, including super-resolution gene expression gen-
eration, identification of spatial patterns of genes, enrichment
of biologically significant pathways, and tissue structures seg-
mentation. In addition, we quantified the runtime and memory
consumption of scstGCN. scstGCN is the second fastest method,
only slightly higher than iStar. And scstGCN consumes the least
Video Random Access Memory (Supplementary Table S5).

Key Points

• scstGCN combines multi-modal information including
histology image, spot-based spatial transcriptomics (ST)
data, and physical spatial location through deep learning
methods to achieve single-cell resolution of spot-based
ST data without requiring single-cell references.

• scstGCN employs GCN to capture complex relationships
between neighboring cells, facilitating the integration
of multimodal feature information based on single-cell
level, and then accurately infers single-cell resolution
spatial gene expression.

• scstGCN can infer single-cell resolution gene expression
across the entire tissue region. Through transfer learn-
ing, gene expression in three-dimensional tissues can be
characterized efficiently. Furthermore, it demonstrates
outstanding performance in spatial patterns enhance-
ment, functional enrichment analysis, and annotate tis-
sues at the high-resolution.

Supplementary data
Supplementary data is available at Briefings in Bioinformatics
online.
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datasets/ffpe-human-pancreas-with-xenium-multimodal-cell-
segmentation-1-standard. The Xenium hHeart Non-diseased data
can be downloaded from the Genomics website https://www.10
xgenomics.com/datasets/human-heart-data-xenium-human-
multi-tissue-and-cancer-panel-1-standard. The Visium HD
mouse brain (fresh frozen) data are available from https://www.10
xgenomics.com/datasets/visium-hd-cytassist-gene-expression-
mouse-brain-fresh-frozen. The Visium HD human breast cancer
(fresh frozen) data can be found at https://www.10xgenomics.
com/datasets/visium-hd-cytassist-gene-expression-human-
breast-cancer-fresh-frozen. The human dorsolateral prefrontal
cortex tissue datasets are available in the spatialLIBD package
http://spatial.libd.org/spatialLIBD. The human HER2-positive
breast tumor ST data are available in the her2st package
https://github.com/almaan/her2st. The 10X Visium mouse brain
coronal cut data can be found at https://www.10xgenomics.
com/resources/datasets/mouse-brain-coronalsection-2-ffpe-2-
standard. The 10X Visium mouse brain sagittal cut data can
be downloaded from the Genomics website https://www.10
xgenomics.com/resources/datasets/mouse-brain-serial-section-2-
sagittal-posterior-1-standard.

Code availability
All source codes of the scstGCN algorithm have been deposited at
https://github.com/wenwenmin/scstGCN.
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