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Abstract

Contamination with exogenous DNA presents a significant challenge in ancient DNA (aDNA) studies of single organisms. Failure to
address contamination from microbes, reagents, and present-day sources can impact the interpretation of results. Although field and
laboratory protocols exist to limit contamination, there is still a need to accurately distinguish between endogenous and exogenous data
computationally. Here, we propose a workflow to reduce exogenous contamination based on a metagenomic classifier. Unlike previous
methods that relied exclusively on DNA sequencing reads mapping specificity to a single reference genome to remove contaminating
reads, our approach uses Kraken2-based filtering before mapping to the reference genome. Using both simulated and empirical shotgun
aDNA data, we show that this workflow presents a simple and efficient method that can be used in a wide range of computational
environments—including personal machines. We propose strategies to build specific databases used to profile sequencing data that
take into consideration available computational resources and prior knowledge about the target taxa and likely contaminants. Our
workflow significantly reduces the overall computational resources required during the mapping process and reduces the total runtime
by up to ∼94%. The most significant impacts are observed in low endogenous samples. Importantly, contaminants that would map to
the reference are filtered out using our strategy, reducing false positive alignments. We also show that our method results in a negligible
loss of endogenous data with no measurable impact on downstream population genetics analyses.
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Introduction
The field of paleogenomics relies on degraded ancient DNA
(aDNA) molecules extracted from historic or prehistoric biological
remains to study past environments and populations. Major
progress in molecular methods to isolate and sequence aDNA has
enabled the recovery of high-quality ancient genomes from many
different species and sources [1–5]. However, contamination from
modern and ancient exogenous sources remains a challenge that
requires attention to improve the reliability and interpretative
power of paleogenomic research.

Sample exposure to contaminating sources of DNA happens
at various stages, including microorganisms and environmental
DNA in the soil matrix; DNA from people who collected and
handled samples in the field and/or museums and performed lab-
oratory work [6]; and cross-contamination from different samples
in the lab during DNA extraction and contamination from DNA
sequences in reagents and consumables [7]. In short, a complex
mixture of ancient and modern DNA contaminants continuously
accumulates in and on the sample from the time of death of the
organism up to laboratory work. As a result, endogenous DNA
content is often outcompeted by exogenous DNA contaminants in
sequenced data [8]. In the last decade, continuing improvements
in laboratory protocols and established best practice guidelines
have specifically addressed the issue of contamination in aDNA
sequence data. From the excavation to library preparation and
target enrichment, stringent measures are applied to minimize,
identify, or discard exogenous DNA contaminants during sample
handling and laboratory work [7].

Beyond these practical advances, sequencing data processing
could assist with managing DNA contaminants. Currently,
computational methods rely on the specificity of mapping
shotgun sequences to a linear reference genome of, or closely
related to, the species of interest [9]. However, spurious mapping
of exogenous sequences to the target reference increases with
decreasing fragment length and if the exogenous sequences come
from a species closely related to the target reference. Recently,
Feuerborn et al. [10] suggested the use of competitive mapping
to remove human contamination from faunal aDNA datasets
by mapping aDNA sequences against a composite reference
sequence file containing both human and target reference
genomes simultaneously. This technique is traditionally used
in microbial genomics [11]. However, competitive mapping only
considers a few sources of contamination and is not easily
scalable to target multiple complex eukaryotic organisms due
to increasing computational demand with larger composite
reference genomes. Therefore, exogenous contamination not only
complicates aDNA analysis but also intensifies the computational
demands during sequence mapping. Postmapping filtering tools
such as PMDtools [12] rely on the presence of aDNA damage mis-
incorporations to remove contemporary contamination. However,
not all endogenous aDNA reads present base misincorporations
characteristic of aDNA damage, so this approach can lead to a
large loss of endogenous sequences. Moreover, contaminating
sequences from exogenous aDNA would not be removed by this
approach. In short, efficient computational methods are lacking
to not only identify but also efficiently remove contaminant DNA
during the mapping process of aDNA datasets.

In recent years, the field of metagenomics has given rise to
metagenomic classifiers capable of efficiently and accurately
identifying diverse taxa in sequence data. These capabilities have
shown potential in ancient metagenomic studies as well, although
with specific caveats for each tool [13, 14]. We hypothesize that

metagenomic classifiers offer an efficient approach to removing
contaminant DNA by filtering them out before the mapping stage.
As a result, we predict improved mapping accuracy and a signifi-
cant reduction in computational resources needed, thereby mak-
ing aDNA analysis more accurate and accessible across various
computing platforms. A similar approach has been successfully
applied to remove human patient DNA from clinical metagenomic
data [15].

Kraken2 [16] is a k-mer-based classifier initially designed to per-
form metagenomic analyses. Here, we propose an approach where
Kraken2 is used to identify and remove contaminating sequences
from ancient DNA datasets of single organisms to accelerate
the mapping process and improve mapping accuracy. We opted
for a k-mer-based metagenomic classifier over alignment-based
methods due to its faster processing speed [17], and we chose
Kraken2 because it presented the best balance between speed,
database size, and classification accuracy compared to other
metagenomic classifiers [18, 19], especially in ancient DNA con-
texts [20]. Using both simulated (human and dog) and empirical
shotgun aDNA datasets, we show that this workflow presents a
simple and efficient method that enables the removal of contami-
nating sequences from aDNA datasets with limited loss of endoge-
nous DNA sequences while simultaneously reducing the overall
computational resources needed during the mapping process as
well as mitigating any potential errors introduced by spuriously
mapping contaminant reads.

Methods
Data simulations
We simulated ancient human (Homo sapiens) and dog (Canis lupus
familiaris) shotgun sequencing datasets with varying levels of
contamination (Fig. 1, Table S1) using Gargammel 1.1.2 [21]. The
human and dog reads, referred to as endogenous, were simulated
from autosomal, sex, and mitochondrial contigs of GRCh38.p14
(GCF_000001405.40) and CanFam6 (GCF_000002285.5) genome
assemblies, respectively. The exogenous contaminants consisted
of modern human reads, represented by reads simulated from the
same GRCh38.p14 genome assembly; microbial contamination,
represented by reads simulated from profiled microbial commu-
nities (Table S2) as presented by Seguin-Orlando et al. [22], includ-
ing bacteria, viruses, and phages; and other contaminating reads
representing common sources of contaminants found in aDNA
datasets [23, 24]: sheep (ARS-UI_Ramb_v2.0; GCF_016772045.1),
domestic cattle (ARS-UCD1.3; GCF_002263795.2), pig (Sscrofa11.1;
GCF_000003025.6), goat (ARS1.2; GCF_001704415.2), and chicken
(GRCg6a; GCF_000002315.6). Deamination profiles were simulated
from the Loschbour individual in Lazaridis et al. [25] for the
endogenous and microbial reads, simulating the damage profile of
a single-stranded aDNA library partially treated with uracil–DNA–
glycosylase (UDG) (Supplementary Fig. S1a). Finally, all the reads
were simulated as paired-end Illumina HiSeqX reads with a read
length of 75 bp and size distribution of the sequenced fragments
simulated from the subset of a 45 000-year-old human sample
from Siberia [26] (Supplementary Fig. S1b). Default Gargammel
settings were used for the rest, including base quality distribution
of the simulated bases and adding Illumina adapter sequences
for fragments shorter than the read length (75 bp).

We simulated two scenarios with differing levels of modern
human and other contamination in the dataset (Fig. 1A). For the
ancient human dataset, the modern human portion was replaced
with microbial sequences since a taxonomic classifier such as
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Figure 1. (A) Workflow of types of simulated data, different methods applied to the simulated data, and metrics collected. The best-performing method
is applied to empirical data. (B) Ancient human reads classified at the order Primates or lower taxonomic ranks are considered endogenous reads and
hence retained (red), similarly for ancient dog reads at the order Carnivora or lower (purple). Unclassified reads represented as grey are reads that could
not be assigned a taxonomy.

Kraken2 will not be able to differentiate between modern and
ancient reads from the same taxa. The endogenous proportion of
the simulated reads ranged from 0.1% to 60%, with 20 million read
pairs simulated for each (Table S1).

Data processing
Preprocessing of simulated data
The simulated datasets were processed with AdapterRemoval 2.3.2
[27] to trim adapters and merge paired-end reads with length and

base quality filters ‘–minlength 30’ and ‘–minquality 20’, respectively
[28]. Additionally, ‘–qualitymax’ was set to 64 to account for maxi-
mum read quality in the datasets simulated using Gargammel.

Data processing for baseline mapping performance
We mapped the merged reads using bwa aln 0.7.17-r1188 [29]
with the ‘-n 0.01’, ‘-l 1024’ and ‘-o 2’ ancient DNA parameters
[30]. The human and dog datasets were mapped to GRCh38.p14
and CanFam6 genome assemblies, respectively. The mapped files

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae646#supplementary-data
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were used to establish the baseline performance of bwa aln for all
simulated endogenous levels.

Measuring baseline mapping performance
To measure the mapping performance, the reads were then
categorized as ‘true positives’ (TPs), ‘true negatives’ (TNs), ‘false
positives’ (FPs), and ‘false negatives’ (FNs) depending on the
source taxonomy (endogenous or contamination) of the mapped
read and its mapping quality to the reference genome (Table S3).
These were used to calculate precision, recall, and f-measure to
establish the baseline mapping performance [31].

Precision = TP
TP+FP measures the proportion of correctly pre-

dicted positive instances out of all instances predicted as positive.
In this context, precision quantifies the ratio of endogenous reads
to all reads mapped to the reference.

Recall = TP
TP+FN , also known as sensitivity or the true posi-

tive rate, measures the proportion of correctly identified positive
instances from all positive instances in the dataset. In this con-
text, recall quantifies the ratio of endogenous reads mapped to
the reference to all endogenous reads in the dataset.

f-measure (or f-score): F1 = 2· Precision·Recall
Precision+Recall is the harmonic

mean of precision and recall. It is typically used to quantify the
overall performance of a classification model since optimizing
only for precision or recall can have conflicting goals. A high F1

value suggests accurate identification of positive instances while
also minimizing false positives. In this context, F1 quantifies a
method’s ability to identify endogenous reads and contaminants
in the dataset accurately.

Measuring the performance of competitive mapping
For the dog dataset, we also benchmarked competitive mapping
using a composite reference with the CanFam6 and GRCh38.p14
assemblies as suggested by Feuerborn et al. [10], which has been
shown to remove contemporary human contamination in ancient
faunal datasets. We then mapped the reads using the compos-
ite reference and categorized reads according to Supplementary
Table S4 to calculate precision, recall, and f-measure.

Metagenomic classification
Measuring the performance of metagenomic filtering before
mapping
We used Kraken2 (v 2.1.3) [16], a k-mer-based method for taxo-
nomic classification of sequence data. A k-mer refers to substrings
of length k within a nucleotide sequence. Kraken2 relies on the
presence of exact l-mer (a subsequence of length l, where l ≤ k)
matches between sequence data and a reference database con-
taining known sequences and taxonomies to perform taxonomic
classification.

To understand the effect of database composition on taxo-
nomic classification, we created different databases that con-
tained single species or sequences from multiple domains of life
(Table 1). All databases were built with the default k-mer length
of 35, as well as the k-mer length of 29. This choice of k-mer
lengths is motivated by the fact that while a longer k-mer (i.e. 35)
decreases the risk of false classification compared to a shorter k-
mer (i.e. 29) [18], aDNA datasets generally use a cut-off of 30 bp
for the minimal fragment length for mapping to a reference
genome [32]. Therefore, a k-mer of 29 is likely more appropriate
in the context of aDNA datasets to prevent a bias against very
short reads. Finally, we also tested a publicly available database,
k2_nt_20230502 (https://benlangmead.github.io/aws-indexes/k2),
which includes a larger collection of sequences across the three

domains of life and viruses from the National Centre for Biotech-
nology Information (NCBI), inclusive of GenBank, RefSeq, Third
Party Annotation (TPA), and Protein Data Bank (PDB).

We evaluated databases based on their size and sensitivity
when classifying endogenous sequences. The best-performing
databases (see results) were used to filter reads from the sim-
ulated dataset before mapping. The filtered reads were then
mapped to the reference with the same method as the baseline
above. Finally, precision, recall, and F1 were calculated after reads
were categorized based on metagenomic filtering and mapping
as per Tables S5 and S6.

Building Kraken2 databases
The k-mer 35 databases were built with the default options using
genomes described in Table 1. The k-mer 29 database was built
with options ‘—kmer-len 29‘, ‘—minimizer-len 24‘, and ‘—minimizer-
spaces 6‘ and included genomes as described in Table 1.

Kraken2 filtering
The Kraken2 classifications were run with default parameters.
A nextflow pipeline is available on github (https://github.com/
shyama-mama/taxonomicfiltering) to perform filtering given a
database and input reads.

Empirical data
To validate our method with empirical data, we selected 10
ancient Canis samples from Bergström et al. [33] at similar
endogenous proportions to the simulated data (Fig. 1A, Table S6).
We mapped the data with bwa aln to the CanFam6 reference
genome following the parameters in the Data Processing for
Baseline Mapping Performance section. We built a Kraken2
database with a k-mer length set to 29 and composed of
reference sequences from dog (CanFam6; GCF_000002285.5), grey
wolf (mCanLor1.2; GCA_905319855.2), and dingo (ASM325472v2;
GCF_003254725.2). Additionally, we also added a consensus
CanFam3.1 (GCF_000002285.3) reference using the alternate allele
from bi-allelic single-nucleotide polymorphisms (SNPs) from
722 Canidae genomes from [34] into the database to minimize
reference bias [35]. We used databases with and without the
alternate allele information for filtering. We filtered the data by
discarding any unclassified reads before mapping with bwa aln as
above and compared both approaches: mapping only (SampleBWA)
and filtering before mapping (SampleFilt).

To understand the effect of filtering on the data, for each
sample, we extracted reads that met the following criteria: they
mapped to the reference with a mapping quality score >20 when
no premapping metagenomic filtering was performed, and they
were also removed by Kraken2 filtering when metagenomic fil-
tering was performed. These reads were then classified using
Nucleotide BLAST v2.14.1 [36]. We used the MEGAN v6.24.20 [37]
suite of tools to get taxonomic abundances for each sample
using the weighted lowest common ancestor (LCA) algorithm and
following best-suited options for ancient DNA as suggested by
Eisenhofer and Weyrich [13].

Since Kraken2’s taxonomic assignment relies on exact l-
mer matches (where l ≤ k) to sequences in the database, there
is a possibility to introduce reference bias when filtering
relies on identifying endogenous sequences in the dataset.
Hence, we used f4 statistics from ADMIXTOOLS v7.0.2 [38] to
assess if endogenous reads that were removed during Kraken2
filtering introduced any bias in downstream analysis. The f4

was performed with the configuration f4(SampleFilt, SampleBWA;
Basenji01, Coyote01California), where Coyote01California and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae646#supplementary-data
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Table 1. List of Databases used, their contents, k-mer length and memory required to run the database.

Name Contents K-mer Memory (GB)

k2_human Default Kraken Human Library 29 2.9
35 3.9

k2_microbes_human k2_human + Default Kraken Libraries for archaea, viruses, bacteria, fungi, and protozoa 29 35
35 73

k2_dog Sequences from CanFam6 (Dog) 29 2.6
35 3.3

k2_canis_lupus Sequences from CanFam6 (Dog), mCanLor1.2 (Grey Wolf) and ASM325472v2 (Dingo) 29 2.8
35 3.7

k2_canis_lupus + 722 g
Variants

k2_canis_lupus + Consensus sequence of CanFam3.1 (Dog) genome with alternate alleles
from 722 g project

29 3.7

k2_human_dog k2_dog + Default Kraken Human Library 29 5.1
35 7.2

k2_microbes_human_dog k2_microbes_human + k2_dog 29 35
35 76

k2_custom k2_microbes_human_dog + Default Kraken Library for Plants + Sequences from
ARS-UI_Ramb_v2.0 (sheep), ARS-UCD1.3 (cow), Sscrofa11.1 (pig), ARS1.2 (goat), GRCg6a
(chicken), Bison_UMD1.0 (American Bison), panTro6 (chimpanzee), Kamilah_GGO_v0
(gorilla), ponAbe3 (orangutan), EquCab3.0 (horse), UM_NZW_1.0 (rabbit)

29 58

35 166
k2_nt_20230502 Very large collection, inclusive of GenBank, RefSeq, TPA, and PDB from Kraken2’s

publicly available indexes
35 481

Basenji01, are coyote and dog, respectively, from Plassais et al. [34].
The effect of reference bias was tested for databases with and
without alternate allele information. Pseudo-haploid genotype
calls were generated for each sample using PileupCaller 1.5.2
(https://github.com/stschiff/sequenceTools) at polymorphic loci
ascertained using heterozygous sites in the coyote genome [33]
mapped to the CanFam6 reference. To account for variability
during random allele sampling, we replicated pseudo-haploid
genotype calls three times per sample. We tested each sample for
reference bias caused by filtering where a significant deviation
from 0 in the positive direction indicates an introduced bias
towards the reference due to filtering.

Results
Effect of database composition on taxonomic
classifications
Based on simulated ancient human and dog reads with no intro-
duced contamination, we demonstrate that database composition
significantly impacts classification accuracy (Fig. 2). Databases
consisting of only a single genome exhibit a bias towards classi-
fying sequences as belonging to that genome’s taxonomy. Con-
versely, more complex databases may compromise taxonomic
resolution—i.e. the ability to classify sequences at the lowest spe-
cific taxonomic rank, as previously observed by Nasko et al. [39].
We observed a substantial reduction in dog reads misclassified
as human from 3.17% to 0.12% and 52.52% to 3.34% for k-mer
lengths 35 and 29, respectively, when using ‘k2_human_dog’, built
from human and dog reference genomes, compared to ‘k2_human’,
built with only the human reference (Fig. 2A). Using the combined
database led to some reads classified as Boreoeutheria (0.26% and
1.77% for k-mer lengths 35 and 29, respectively), a classification
rank that includes humans and dogs. Similarly, Canis sequences
in ‘k2_nt_20230502’ led to dog reads classified primarily as Canis
or C. lupus (Fig. 2A), and the presence of primate genomes in
the ‘k2_custom’ database led to the classification of human reads
as Hominidae or Homininae (Fig. 2B). We also note a substan-
tial number of human reads classified as ‘root’ (22.22%) when
using ‘k2_nt_20230502’. A ‘root’ classification is a result of the

query sequence matching with viral and cellular organisms in the
database (Fig. 1B). It is unclear if this is a result of contaminated
viral sequences in the database or the presence of human endoge-
nous retroviral sequences.

Databases built with k-mer length 29 decrease the size of the
database and the number of unclassified reads—i.e. reads that
could not be assigned a taxonomy (Fig. 1B). Kraken2 assigns a
classification to a read-only when the read contains unique l-
mers (a subsequence of length l, where l ≤ k) that exactly match
the l-mer sequences in the database [16]. Hence, databases built
with a k-mer length of 29 assign taxonomies to shorter reads
and reads with misincorporations due to damage better than
the larger default k-mer length (Supplementary Fig. S2). How-
ever, this comes at the price of lower taxonomic resolution, with
increased ancient dog and human reads classified as ‘cellular
organism’ or ‘Eukaryota’ (21.38% and 22.31% for dog and human
reads, respectively, using ‘k2_custom’), as well as increased false
classifications as the simulated reads were misclassified as other
vertebrate species in the database (>10% in dog reads using
‘k2_custom’).

.

Benchmarking filtering before mapping
Filtering before mapping using metagenomic classifiers primarily
aims to retain as many endogenous reads as possible while dis-
carding contaminating sequences. However, sensible taxonomic
classification is highly dependent on taxa represented in the
database, regardless of database complexity. As we showed above,
the rate of classification bias is driven by the k-mer length used
to build the database, with lower specificity due to a shorter k-
mer length leading to more aberrant classifications. Therefore, we
investigated two strategies that take into account the strengths
and drawbacks of different types of databases.

First, we applied filtering based on identifying contaminants
using databases built with k-mer 35 and consisting of sequences
from the target taxa and as many, as possible, contaminating
genomes, to remove as many contaminating sequences as possi-
ble (negative filtering). We predict that this strategy is well suited
for when the database is built with larger k-mer sizes, which show
substantially lower false classification rates (Fig. 2).

https://github.com/stschiff/sequenceTools
https://github.com/stschiff/sequenceTools
https://github.com/stschiff/sequenceTools
https://github.com/stschiff/sequenceTools
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Figure 2. Impact of database choice on Kraken2 classification of (A) 20 million ancient dog reads, and (B) 20 million ancient human reads. The x-axis
represents the k-mer length of the databases (DB; see Table 1 for descriptions) represented in the facets. The y-axis shows the proportion of reads
classified as a particular taxonomy (colours).

Second, we applied filtering based on identifying endogenous
reads using databases built with k-mer 29 and consisting of
sequences from target taxa and genomes related to the target taxa
to the family level, to retain as many endogenous reads as possible
(positive filtering). We predict that this strategy is well suited for
low k-mer sizes, which show higher classification rates at shorter
read lengths (Supplementary Fig. S2).

The ancient human and dog reads were simulated as per
the two scenarios in Fig. 1A and Table S1. Indeed, Kraken2 is a
metagenomic classifier, and it will not be able to differentiate
between modern and ancient reads from the same species. Fur-
thermore, while modern human contamination is a persistent
problem in ancient human datasets, tools such as PMDtools have
been shown to effectively remove them [12]. Subsequently, for
the negative filtering strategy (removing contaminants), the simu-
lated datasets were classified using the ‘k2_custom’ database, built
with k-mer 35, to select reads classified at the order rank of the
species of interest—Primates for human and Carnivora for dog—
or remaining unclassified, before performing mapping with bwa
aln. For the positive filtering strategy (retaining endogenous data),
we used ‘k2_canis_lupus’ and ‘k2_human’ built with k-mer 29 for the
dog and human datasets, respectively, and only mapped classified
reads.

A positive outcome of filtering reads before mapping is shorter
processing times. We see more than a 6-fold increase in processing

speed (Supplementary Figs S3A and S4A, Tables S8 and S9). Here,
processing time includes the runtime to classify, filter, and map
reads when filtering is applied, as opposed to only mapping time
when no filtering is applied. Interestingly, despite identical total
read counts across all endogenous fractions, mapping took longer
for data with high contamination from vertebrate sequences (i.e.
Scenario 1 in Fig. 1 and Table S1) as opposed to data with low
vertebrate contamination (i.e. Scenario 2 in Fig. 1 and Table S1),
when mapped solely using bwa aln. This suggests that contam-
inants from taxa closely related to the target species’ reference
disproportionately and negatively impact mapping time. Using
a larger composite reference in competitive mapping further
extended mapping times, up to 1.6-fold (Fig. S3A, Table S8). Com-
bining competitive mapping with both Kraken2 filtering strategies
greatly improved mapping time, up to 4.4-fold and 6.8-fold faster
when compared to single-reference and competitive mapping,
respectively (Fig. S3A, Table S8).

By default, Kraken2 databases are loaded into working memory
and hence require, at minimum, free memory the same size as
the database used. The ‘k2_canis_lupus’ (k-mer 29), and ‘k2_human’
(k-mer 29) databases are relatively small at 2.6 and 2.9 GB, respec-
tively, making it possible to filter data even on personal machines.
In contrast, the ‘k2_custom’ (k-mer 35) database is substantially
larger, at 166 GB, and is better suited for high-performance com-
puting systems. Importantly, premapping filtering, regardless of
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the filtering strategy, greatly reduces the read volume for highly
contaminated samples (Tables S8 and S9), which, in turn, facil-
itates a more efficient mapping process, sparing computational
resources.

Across all endogenous proportions tested, both Kraken2
filtering strategies consistently yielded more precise mapping
compared to bwa aln mapping alone for both the high and low
vertebrate contaminations (Fig. 3A and Supplementary Fig. S5A;
Tables S8 and S9). Competitive mapping was also more precise
compared to bwa aln mapping to a single reference, indicating it
can accurately remove human contaminants from the faunal
data, albeit with the longest run time. Since competitive
mapping was only used to remove human contamination,
other microbial and vertebrate contamination introduced
remained in the mappings (Figs S10–S13). Combining competitive
mapping with Kraken2 filtering improved mapping accuracy
beyond what either method achieved alone while significantly
reducing the processing time required for competitive mapping
(Figs 3A and S5A).

We summarized the precision and recall of each method by read
length (Figs S6–S9). Both competitive mapping and positive filter-
ing showed the largest precision increase for shorter fragments
(30–40 bp) compared to longer fragments when benchmarked
against bwa aln mapping to a single reference. Interestingly,
negative filtering achieved the highest precision improvement
with fragments 41–50 bp in length. This is due to the k-mer 35
database used for negative filtering; shorter fragments <35 bp
cannot be classified with this k-mer length. Additionally, since
negative filtering retains unclassified reads for mapping with
bwa aln to maximize endogenous read retention, the precision
increase is less pronounced for 30–40 bp fragments than for
41–50 bp fragments.

We observe a greater loss of endogenous reads when applying
both Kraken2 filtering strategies compared to mapping directly
to the reference, with losses up to 0.99%, and 3.8% for negative
and positive filtering, respectively (Tables S8 and S9). For negative
filtering, this lower recall stems from endogenous reads misclas-
sified as other taxa, a known limitation of Kraken2’s probabilistic
compact hash table, which can lead to false classifications. This
loss is more pronounced with fragments 41–50 bp in length. In
positive filtering, short fragments (<50 bp) were filtered out, as the
k-mer 29 database struggled to classify these reads, despite the
shorter k-mer length (Figs S6–S9). Despite this loss of endogenous
reads, the resulting precision increase from filtering improved
f-measures for low endogenous samples with high vertebrate
contamination (Scenario 1). In contrast, this same loss of endoge-
nous reads lowered f-measure for samples with more endogenous
data or less vertebrate contamination (Scenario 2) when com-
pared to bwa aln mapping to a single reference (Figs 3B and S5B).
Competitive mapping, in comparison, showed the lowest loss of
endogenous reads across all fragment lengths and endogenous
fractions. Consequently, combining Kraken2 filtering with com-
petitive mapping improved the f-measure beyond what Kraken2
filtering achieved individually.

Filtering empirical data
Finally, we mapped classified reads from 10 ancient grey wolf
samples from Bergström et al. [33] using the positive filtering
strategy with the ‘k2_canis_lupus’ database built with k-mer 29
and including biallelic SNPs from 722 Canidae genomes [34]. We
see up to a 16-fold increase in processing speed (sample 367
with 0.4% endogenous DNA) when filtering with Kraken2 (Fig. 4A,
Supplementary Table S10). The performance boost was observed

across samples, with even those having a higher endogenous
fraction of 20% and 50% or more experiencing a 2-fold and 1.3-
fold increase in processing speeds, respectively. In line with our
simulated results, we observed some loss of endogenous data
(Fig. 4B, Supplementary Table S10).

Reads that were mapped to the reference with a mapping
quality score above 20 when no premapping metagenomic
filtering was performed but were filtered out during metagenomic
filtering were assigned taxonomies using BLAST and LCA
algorithms in MEGAN. Most of these reads could not be assigned
a taxonomy (41.80%–76.55%), with the majority of the classified
reads assigned to the Order Carnivora (> 93% of classified
reads). Of note, all samples had reads classified at the order
Primates (0.03%–0.70%). Competitive mapping against CanFam6
and GRCh38.p14 references saw the reads map preferentially
to the human reference. Since these reads were originally also
mapped to the CanFam6 reference, we were able to compare the
damage profiles of these reads mapping to the two references
independently. Six out of the 10 samples (367, IN18-005, TU114,
TU148, WOL-VAL-18A, and CANIS-ALAS-016) showed spurious
C-to-T and G-to-A misincorporations when mapped to the dog
reference, whereas no such misincorporations were observed
when mapped to the human reference, suggesting these reads
are modern human contamination (Supplementary Fig. S14).
We also observed up to 3.58%, 0.82%, 0.27%, 0.26%, and 0.25%
reads classified as bacteria, Artiodactyla, Rodentia, Chiroptera,
and Lepidoptera, respectively (Supplementary Table S11). The
authenticity of these classifications was not determined.

We see no significant bias (|Z| < 3) introduced by filtering with
Kraken2 when the database used to select endogenous reads
contains variation information for Canids (Fig. 4C). However,
it should be noted that samples CANIS-ALAS-016 and AL2744
observed low but significant reference bias when the Kraken2
database used to identify endogenous reads did not contain the
alternate allele information (Fig. 4C, Supplementary Tables S12
and S13).

Discussion
Our study presents evidence that premapping filtering using
Kraken2 not only optimizes the usage of computational resources
by greatly reducing mapping time but also improves the precision
of mapped aDNA reads. This is particularly evident in datasets
involving samples with very low levels of endogenous sequences
and high contamination from sequences closely related to the
target species. By implementing a positive filtering strategy to
retain putative endogenous reads using a Kraken2 database built
with k-mer 29 consisting of reference and alternate sequences,
and genomes from closely related taxa to the species of interest,
we achieve a streamlined process that is resource-efficient
and suitable for a wide array of computational environments,
including personal machines due to the database requiring <5 GB
of memory to run.

A more thorough approach is negative filtering to remove
putative contaminants. This strategy utilizes a comprehensive
database built with k-mer 35 and encompassing a broad spectrum
of contaminants and affords enhanced precision and recall. The
increased memory requirements for a larger database means this
approach is more suitable for researchers who have access to
high-performance computing resources. However, the feasibility
of this strategy depends on how well the database represents
the full array of potential contaminants in a particular dataset
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Figure 3. Precision and recall (A) and f-measure (B) of the six methods—bwa mapping to a single (colour: blue & shape: small circle) and composite
dog and human reference (competitive mapping; colour: purple & shape: large circle), mapping only reads classified as Carnivora and unclassified
reads by the ‘k2_custom’ database to a single (negative filtering; colour: light red & shape: triangle) and composite reference (negative filtering w/
competitive mapping; colour: dark red & shape: upside-down triangle), mapping only reads classified by ‘k2_canis_lupus_kmer29’ database to a single
(positive filtering; colour: light green & shape: square) and composite reference (positive filtering w/ competitive mapping; colour: dark green & shape:
diamond)—for the simulated ancient dog genome. Reads were filtered with MapQ >20 postmapping.

because the filtering depends on how many contaminants can
be classified and hence removed. Identifying environmental
microbes is a limitation of empirical data since most reference
databases focus on human pathogens or microbial species
that are of interest to humans [40–46]. However, in recent
years, ancient and modern environmental microbiomes have
increasingly been characterized [47, 48]. The development

of resources like the Genomic Taxonomy Database [49] is
helping bridge the gap between genomics and microbial tax-
onomy, improving microbial characterization across diverse
environments, including contamination present in ancient
datasets.

Our findings suggest that the choice of strategy should be
guided by the available resources and specific priorities. The loss
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Figure 4. (A) Kraken2 + bwa aln filtering and mapping speed, normalized to bwa aln mapping only speed; (B) coverage difference between mapping only
and filtering before mapping; and (C) observed f4 statistics of the configuration f4(SampleFilt (blue), SampleBWA (brown); Basenji01, Coyote01California)
from pseudo-haploid genotypes. Multiple points indicate replicate pseudo-haploid calls to account for variability introduced by random pseudo-
haploidization. The points are coloured by |Z| score. |Z| values below 3 are on a green-to-yellow gradient. |Z| values above 3 are denoted with red. Filtering
using only the reference genome (left panel) led to samples CANIS-ALAS-016 and AL2744 being significantly biased (Z > 3) towards the reference. Adding
Canid variation from the 722 g project (right panel) shows a nonsignificant deviation (|Z| < 3) from 0 for all samples.

of some negligible amounts of endogenous data is an inherent
limitation of the Kraken2 filtering approach, but this trade-
off is balanced by gains in mapping efficiency and precision.
Endogenous read loss occurs either through misclassifications—
more common in negative filtering—or through unclassified
reads in the positive filtering strategy. Misclassifications stem
from the probabilistic compact hash table used by Kraken2,
which, though memory-efficient compared to a standard hash
table, sacrifices some specificity and accuracy [16]. Likewise,
unclassified reads in positive filtering are also because of
this, with shorter, damaged DNA fragments being especially
affected (Fig. S2).

We also caution against filtering by identifying endogenous
reads when studying extinct species for which no reference
genomic resources exist, as it might impact the retrieval of
endogenous reads and cause the reads to be biased towards the
reference alleles in the database. For well-studied species such as
humans and dogs, we propose adding alternate allele information
from large genomic studies to better capture variation in the
sequence data. Furthermore, the processing time of ancient
hominin genomes enriched with the 1240 k SNP panel [50] could
be greatly reduced if a database with the human reference
and the expected alternate allele information captured by
the panel were used to select human reads before mapping.
Our findings coincide with the increasing use of pangenomic
approaches for genomic analysis, such as adding alternate
allele information to reduce reference bias during mapping [51],

building databases from sequences from pangenomic projects
for improved host removal from clinical metagenomic data [15],
and novel tools such as Euka [52] that use pangenomic graphs for
metagenomic classification—although currently, Euka databases
are restricted to mitochondrial genomes of tetrapods and
arthropods.

We also highlight that using databases with microbial and
human sequences to classify human DNA can lead to some
human reads being classified at the kingdom or domain rank as
previously observed [18] because some microbial sequences are
contaminated with human DNA. It is thus imperative to bench-
mark databases against the project’s objectives to mitigate these
issues and their effect on data interpretation, which aligns with
the growing body of literature that underscores the importance
of benchmarking metagenomic classifiers in different contexts
[13, 14, 18–20, 53, 54]. In recent years, there have been increased
efforts in characterizing and removing contaminated sequences
in reference databases to reduce erroneous interpretations of
metagenomic datasets [55–57].

We propose that an approach that includes classification-
based filtering has the potential to refine data processing and
improve overall mapping data quality. We anticipate that con-
tinued improvements in metagenomic classifiers and reference
databases that can identify environmental taxa will result in
increased accuracy of our proposed filtering approaches and
reduce data loss, paving the way for more precise reconstructions
of ancient genomes.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae646#supplementary-data
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Key Points

• Contamination is a major challenge in paleogenomics.
Computational methods are essential to distinguish
between endogenous and contaminant sequences.

• We propose a new workflow relying on a metagenomic
classifier to filter out contaminants prior to aligning
sequences to a reference sequence.

• We provide clear strategies to build the reference
database and finetune the parameters to optimize the
classification.

• Our workflow significantly reduces the computational
resources and overall runtime while improving mapping
precision and downstream analyses.
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