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Abstract

RNA N6-methyladenosine (m6A) is a critical epigenetic modification closely related to rice growth, development, and stress response.
m6A accurate identification, directly related to precision rice breeding and improvement, is fundamental to revealing phenotype
regulatory and molecular mechanisms. Faced on rice m6A variable-length sequence, to input into the model, the maximum length
padding and label encoding usually adapt to obtain the max-length padded sequence for prediction. Although this can retain complete
sequence information, resulting in sparse information and invalid padding, reducing feature extraction accuracy. Simultaneously,
existing rice-specific m6A prediction methods are still at an early stage. To address these issues, we develop a new end-to-end
deep learning framework, MFDm6ARice, for predicting rice m6A sites. In particular, to alleviate sparseness, we construct a multi-
kernel feature fusion module to mine essential information in max-length padded sequences by multi-kernel feature extraction
function and effectively transfer information through global–local dynamic fusion function. Concurrently, considering the complexity
and computational efficiency of high-dimensional features caused by invalid padding, we design a downsampling residual feature
embedding module to optimize feature space compression and achieve accurate feature expression and efficient computational
performance. Experiments show that MFDm6ARice outperforms comparison methods in cross-validation, same- and cross-species
independent test sets, demonstrating good robustness and generalization. The application on maize m6A indicates the MFDm6ARice’s
scalability. Further investigations have shown that combining different kernel features, focusing on global channel-local spatial, and
employing reasonable downsampling and residual connections can improve feature representation and extraction, ensure effective
information transfer, and significantly enhance model performance.
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Introduction
There are over 200 post-transcriptional epigenetic modifi-
cations of RNA in eukaryotes, such as N6-methyladenosine
(m6A), N1-methyladenosine (m1A), 5-methylcytidine (m5C),
1-methylguanosine (m1G), pseudouridine (ψ) [1]. The most
prevalent internal modification is m6A, which occurs widely
in mRNA, miRNA, long non-coding RNA, tRNA, and rRNA [2].
Methyltransferase complexes (writers), demethylases (erasers),
and m6A-binding proteins (readers) are the primary components
of the m6A modification system. Writers and erasers add and
remove the methyl group (–CH3) to the amino group (–NH2) at the
sixth position of adenosines in the RNA, respectively. Readers
recognize the m6A site and play specific regulatory roles [3].
In Oryza sativa (rice), m6A is involved in growth, development
[4–6], and response to biotic [7–10] and abiotic stresses [11–
14]. For example, m6A regulates the early degeneration of rice
microspores at the vacuolar pollen stage [4]. Dynamic regulation

of m6A occurs during rice-plant virus interactions [7]. Cheng et al.
found that rice m6A may be associated with cadmium stress-
induced aberrant root development [11].

MeRIP-seq (m6A-seq) allows the detection of m6A sites in plants
but has a resolution of 100–200 nucleotides, which is too coarse
for precise m6A editing detection [15, 16]. Several improvements
with single-base resolution have been developed, including PA-
m6A-seq [17], miCLIP [18], and m6A-CLIP-seq [19]. However, these
techniques are limited by the small sample sizes of high-RNA-
metabolism tissues, making biological replication and accurate
detection difficult [19]. The DART-seq method [20] requires only
10 ng of RNA, much less than MeRIP-seq. Advances in third-
generation sequencing technologies, such as single-molecule
real-time sequencing [21] and nanopore sequencing [22], have
also enabled better detection of m6A sites. In 2020, Parker et al.
successfully used nanopore direct RNA sequencing to map m6A
sites in Arabidopsis [23]. This technique is well-suited for small
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samples and can significantly accelerate m6A research in plants,
aiding the mapping of single-base resolution modifications and
editing.

Although bio-experimental m6A site detection technology is
continuously being improved and refined, it still requires substan-
tial human, material, and financial resources. Therefore, there is
an urgent need to develop corresponding computational methods.
Currently, some m6A site prediction methods have been pro-
posed for many species, especially Homo sapiens [24–28]. In plant
research, several computational methods have also been devel-
oped to predict m6A sites across different species. For instance,
SMEP [29] is a method designed for rice and Zea mays (maize),
while m6A-Maize [30] focuses exclusively on maize. PEA-m6A
[31] has been applied to various economically important plants,
including rice, maize, and Triticum aestivum L. (wheat), showing
its potential applicability across multiple crops. For Arabidopsis,
models like RFAthM6A [32] and M6AMRFS [33] have also been
proposed.

Despite rice’s economic importance, few methods exist for
predicting m6A sites in rice. In 2021, Wang and colleagues
introduced SMEP [29], the first computational method for rice
m6A site prediction, after collecting and processing the first
rice m6A dataset. SMEP used padding and label encoding to
handle variable-length m6A sequences and applied convolutional
layers to extract high-level features, followed by a multilayer
perceptron for final prediction. While SMEP laid the foundation
for rice m6A site prediction, its use of max-length padding
leads to sparse features, affecting extraction, and the multiple
convolutional layers focus mainly on local information, missing
broader context. Recently, Song et al. proposed PEA-m6A [31], an
ensemble learning method based on gradient-boosted decision
trees, which integrates statistical and deep learning features to
improve feature representation and achieve strong performance.
However, PEA-m6A is not an end-to-end model and struggles
with unstructured data. Additionally, simply stacking features
from different sources has limitations for enhancing feature
representation.

Considering the advantage of max-length padded sequences
that retain complete information, to exploit the information they
encode and overcome existing limitations fully, we develop an
end-to-end Rice m6A site prediction learning framework called
MFDm6ARice. This framework combines Multi-kernel feature
extraction, dynamic Fusion of global and local features, and
Downsampled residual embedding technology. Since variable-
length sequences contain valuable information, we use label
encoding and padding to construct max-length padded sequences
to facilitate feature learning. However, this padding can lead
to sparse and redundant features, reducing the model’s ability
to capture meaningful sequence-level information. To this
end, we develop a multi-kernel feature fusion (MKFF) module
that extracts key features across multiple receptive fields
to reduce sparsity. These features are then effectively fused
and transferred by combining global and local features. To
improve computational efficiency, we introduce a downsampling
residual feature embedding (DRFE) module, which compresses
features efficiently and enhances performance. Experiments
show that MFDm6ARice surpasses state-of-the-art methods in
performance, robustness, and generalization. Its scalability is
demonstrated with maize m6A data. Importantly, comparative
experiments confirm that global–local dynamic fusion (GLDF) of
multi-kernel features, appropriate downsampling, and residual
connections significantly enhance feature representation and
model performance.

Table 1. Details of benchmark dataset and independent test sets

Datasets Number of
positives

Number of
negatives

Total
number

Benchmark dataset 19 844 39 692 59 536
Same-species
independent test set

4963 9923 14 886

Cross-species
independent test set

24 532 24 518 49 050

Materials and methods
Datasets
In this study, one benchmark dataset and two independent test
sets are used to evaluate the performance of MFDm6ARice. Table 1
tabulates the details of these datasets.

Wang et al. [29] proposed the first rice m6A dataset, with pos-
itive samples extracted from m6A-seq peak sequences of Japon-
ica Nipponbare seedling leaves, ranging from 20 to 800 nt in
length. Negative samples were selected by extracting equal-length
sequences without m6A sites from the upstream and downstream
regions of the positive samples. They used CD-HIT [34] to reduce
homology bias and remove redundant sequences. After cleaning
and deduplication, 80% of the positive and negative samples were
randomly selected as the benchmark dataset for evaluating model
performance. The final prediction model was tuned and trained,
and its generalizability was tested using independent test sets.
The remaining samples were used as a same-species independent
test set, and H. sapiens m6A data from DeepM6ASeq [26] were used
as a cross-species independent test set. Unlike the peak sequences
in the benchmark and same-species sets, the cross-species test
set contained precise methylation sites with 101 nt-long positive
and negative samples. Notably, these data had been mapped to
the reference genome and provided as the corresponding DNA
sequences (A, T, G, and C).

Architecture of MFDm6ARice
Figure 1 shows the architecture of MFDm6ARice framework. The
framework consists of four main modules: input representation
module, MKFF module, DRFE module, and output module.

Input representation
To adapt the input to the model, it is first necessary to convert the
m6A sequence into a numerical representation. The label encod-
ing method is a simple yet effective approach for transforming
classified text data into numerical form, assigning each category
a unique numerical identifier [35]. Accordingly, we utilize this
technique to represent the input m6A sequences in this study.
In particular, m6A sequences are variable-length data that have
rich information. To retain complete sequence information and
incorporate it into the model, like SMEP, we pad all sequences
to the maximum length of 800 to obtain the max-length padded
sequences, of which each sequence has five categories. For exam-
ple, assuming the maximum sequence length is 10, a sequence
‘ATTCG’ consisting of four type bases (A, T, G, and C) pads to
‘PPPPPATTCG’ where ‘P’ denotes padding. The five categories (P,
A, T, G, and C) are assigned numbers by label encoding: 0, 1,
2, 3, and 4, respectively. Consequently, this max-length padded
sequence can be represented as LE_Fea = [0, 0, 0, 0, 0, 1, 2, 2, 4, 3],
as shown in Fig. 1A. In addition, we present an experimental
analysis of padding length in the Supplementary Section S1 and
Supplementary Table S1.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae647#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae647#supplementary-data
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Figure 1. Overall flowchart of MFDm6ARice. (A) Input representation of m6A sequences. Label encoding is performed on sequences after padding to the
maximum length of 800 to obtain max-length padded sequences. (B) After the input representation, it is input into the MKFF module. Its multi-kernel
feature extraction function extracts multi-kernel features (the upper part of B), then inputs these features into the (C) GLDF function to obtain multi-
kernel dynamic fused features. (D) The dynamic fused features are input into the DRFE module to get the corresponding feature embedding. DR_block
represents the downsampling residual block. (E) Finally, the output module predicts whether contained m6A sites or not.

Multi-Kernel feature fusion module
Although max-length padded sequences can preserve complete
sequence-level information, they also introduce lengthy and inef-
fective information. Such can lead to sparse and redundant fea-
tures that hinder the model’s ability to capture subsequent mean-
ingful sequence-level information. Therefore, after obtaining the
m6A feature representation (LE_Fea), we design an MKFF module
that combines the multi-kernel feature extraction function and
GLDF function to extract and integrate features from different
kernels, as shown in Fig. 1B and C.

Multi-Kernel feature extraction function. To help mitigate the
sparsity problem associated with max-length padded sequence
encoding, we develop the multi-kernel feature extraction func-
tion, which extracts crucial features across multiple receptive
fields. This function guarantees efficacious feature capture from
different scales and regions, providing a more comprehensive fea-
ture representation and contextual information of the sequence.
Specifically, firstly, the LE_Fea is passed through the embedding
layer (Embedding) to obtain embedding vectors. Besides, for embed-
ding vectors, a point-wise convolution (i.e. a kernel size of 1, Conv1)
is used to transform dimension and feature to obtain Oembed. As
follows:

Oembed = Conv1(Embedding(LE_Fea)) (1)

Then, four parallel paths are operated on Oembed to extract
information at different kernel receptive fields:

k1 = Conv1(Oembed) (2)

k2 = Conv3(Conv1(Oembed)) (3)

k3 = Conv5(Conv1(Oembed)) (4)

k4 = Conv1(MaxPool3(Oembed)) (5)

where (2), (3), and (4) use convolution layers with kernel sizes of 1,
3, and 5 (Conv1, Conv3, Conv5), respectively, to extract information
of different spatial dimensions. The rationale for choosing these
kernel sizes is provided in Supplementary Section S2. In addition,
we also perform experimental analysis on other kernel sizes, such
as 7 and 9, see Supplementary Section S2 and Table S2. Equations
(3) and (4) initially perform Conv1 on the input to reduce the num-
ber of channels, thereby decreasing the number of parameters
and the complexity of the model. Equation (5) uses a max pooling
layer with a kernel size of 3 (MaxPool3) and then employs Conv1 to
change the number of channels. Appropriate padding is applied to
these paths to maintain consistent input and output heights and
widths. k1, k2, k3, and k4 are the multi-kernel features obtained.

Global-local dynamic fusion function. Having obtained multi-
kernel features, if merely concatenating them is simple and prac-
tical, it does not consider the differences between the features
at various kernels. Therefore, it is pivotal to integrate the multi-
kernel features and efficiently transfer them. For this reason, we
propose a GLDF function as an alternative to the simple con-
catenation process, ensuring the preservation of broad contextual
information and fine-grained details.

This function contains two main parts: global channel dynamic
fusion and local spatial dynamic fusion, as shown in Fig. 1. The
lower part is global channel dynamic fusion, the upper part is local
spatial dynamic fusion. Details are as follows.

(i) Feature concatenation
The first step is to concatenate the extracted multi-kernel

features. After, Conv1 is applied to perform point-wise channel
information interaction and context aggregation at each spatial
position.

MK_Fea = Conv1(cat(k1, k2, k3, k4)) (6)

(ii) Global channel dynamic fusion

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae647#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae647#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae647#supplementary-data
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In global channel dynamic fusion, channel aggregation fea-
tures are first generated by compressing the global spatial infor-
mation to the channel using global average pooling AvgPool. The
global channel attention weights Globalweight are then dynamically
generated by convolution with kernel size Convkadp and the Sigmoid
nonlinearity function.

Globalweight = Sigmoid(Convkadp (AvgPool(MK_Fea))) (7)

where kadp represents the adaptive convolution kernel size, which
is used to flexibly capture the dependencies between different
channels [36]. Given the channel dimension C, it is calculated as
follows:

kadp =
∣∣∣∣
log2(C)

γ
+ b

γ

∣∣∣∣ odd (8)

where || odd means rounding down the absolute value to the near-
est odd number. γ and b are two hyperparameters. As with ECA
[36], they are set to 2 and 1, respectively.

Therefore, the global dynamic fusion features can be obtained
by the following equation:

Global_Fea = MK_Fea ⊗ Globalweight (9)

where ⊗ is the element-wise multiplication.
(iii) Local spatial dynamic fusion
For local spatial dynamic fusion, the spatial attention weights

Localweight are calculated through a bottleneck structure as fol-
lows:

squeeze = Convsqueeze
kadp

(MK_Fea) (10)

Localweight = Softmax(Convexcitation
kadp

(squeeze)) (11)

Given the input channel dimension C, the output channel of
Convsqueeze

kadp
and the input channel of Convexcitation

kadp
are C//r, and

the output channel of Convexcitation
kadp

is C. Here, r is the reduction
ratio [37], a key hyperparameter. Softmax is the softmax function.
Specifically, Convsqueeze

kadp
is applied to the MK_Fea, compressing the

spatial features into a compact representation while retaining
essential information. This squeezing operation reduces capacity
and computational cost. Subsequently, Convexcitation

kadp
and a non-

linear transformation softmax function are employed to activate
the information aggregated during the squeeze operation. These
operations allow dynamic weighting of spatial features, facilitat-
ing the capture of dependencies between spatial features and
enhancing critical features.

After obtaining the local spatial attention weights, Localweight,
the local dynamic fusion features are derived as follows:

Local_Fea = MK_Fea ⊗ Localweight (12)

(iv) Combining global and local features
By concatenating Global_Fea and Local_Fea and feeding into

Conv1, the GLDF features (GLDF_Fea) are generated by the
following:

GLDF_Fea = Conv1(cat(Global_Fea, Local_Fea)) (13)

Ultimately, Oembed is transferred to GLDF_Fea through a resid-
ual connection operation [38] to obtain the final multi-kernel

dynamic fusion features OMKFF, which transfers more information
and reduces distortion.

OMKFF = Oembed ⊕ GLDF_Fea (14)

where ⊕ is the broadcasting addition.

Downsampling residual feature embedding module
In Fig. 1D, to tackle the issues of high-dimensional features and
low computational efficiency resulting from ineffective padding,
we introduce a DRFE module, combining layer-by-layer down-
sampling, equal-length convolution, and residual connections.
This module aims to efficiently compress the features, reducing
dimensionality while retaining critical information.

First, we extract initial features on OMKFF through two convo-
lutions. This operation captures the fundamental patterns and
features present in OMKFF, thereby facilitating the generation of
more expressive feature representations. As follows:

stem = Conv5(Pad(Conv5(Pad(OMKFF)))) (15)

where a padding layer (Pad) ensures equal-length convolution
that expands the receptive field, effectively captures long-range
dependencies, and reduces information loss without increasing
the parameters and computational complexity [39]. It also main-
tains the dimensions of the feature map, aiding subsequent layer-
by-layer downsampling.

Then, we build the downsampling residual block (DR block).
Details are as follows:

Xdown = MaxPool3(Pad(stem)) (16)

XDRFE = Conv5(Pad(Conv5(Pad(Xdown)))) ⊕ Xdown (17)

By alternating between maximum pooling (MaxPool3) and
equal-length convolution, the spatial size of the feature map
gradually reduces. Additionally, residual connections enable
the network to retain important high-frequency information
while reducing feature map size and maintaining the spatial
consistency of feature maps [38]. Accordingly, this module
employs residual connections to ensure the preservation of the
original information integrity, thereby preventing the loss of
significant features during the downsampling process. Three
DR blocks are used in the DRFE module to obtain the required
embedded features.

Furthermore, to learn a feature space where similar samples
are closer and dissimilar samples are further apart, we introduce
a contrastive learning loss function [40] (Lcl) for representation
optimization about DRFE features during training. For feature
representations of two sequence XDRFE

i and XDRFE
j :

Lcl = 1
2

((1 − K)D(XDRFE
i , XDRFE

j )2+

K{max(0, M − D(XDRFE
i , XDRFE

j ))2}) (18)

where K = 0 if two sequences belong to the same class, otherwise
K = 1. D represents the Euclidean distance. M is the margin. If
K = 1 and D(XDRFE

i , XDRFE
j ) < M, we optimize by moving them away

from each other. To facilitate understanding, we draw a schematic
diagram of the contrastive learning process, see Supplementary
Figure S1.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae647#supplementary-data
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Output module
Finally, the probability of a sample containing a m6A site (ŷ) is
calculated as follows (Fig. 1E):

ŷ = FCSigmoid(Flatten(XDRFE)) (19)

where FCSigmoid denotes a fully connected layer with a Sigmoid
activation function. If ŷ is less than 0.5, the sequence is classified
as a negative sample (not containing m6A site). Otherwise, it is
classified as a positive sample (contains a m6A site).

Here, we utilize the binary cross-entropy loss function as the
objective function to minimize:

Lbce = − 1
N

N∑

i=1

(yilog(ŷi) + (1 − yi)log(1 − ŷi)) (20)

where N is the batch size, yi is the true label, and ŷi is the
predicted probability. Hence, the total loss function of the
MFDm6ARice is:

Ltotal = Lcl + Lbce (21)

Evaluation metrics
In this study, 5-fold cross-validation (5-CV) is adopted to evaluate
the performance of MFDm6ARice and state-of-the-art methods.
For the benchmark dataset, we randomly select 80% as the train-
ing set and use the remaining 20% as the validation set to optimize
model parameters. The final 5-CV result is the average of the
results of five validation sets. Traditional evaluation metrics [41,
42], including accuracy (ACC), Matthew’s correlation coefficient
(MCC), the area under the receiver-operating characteristic curve
(AUC), and the area under the precision-recall curve (AUPR) are
used to assess the performance of our proposed method and other
methods.

Results and discussion
This section introduces the experimental results, parameter anal-
ysis, and the effectiveness of each component of the MFDm6ARice,
accompanied by relevant visualizations and research.

Comparison with state-of-the-art methods
To evaluate the performance of MFDm6ARice, we compare it
with SMEP and PEA-m6A, the leading methods for predicting
m6A sites in rice, using two types of datasets mentioned pre-
viously. Simultaneously, we choose DeepM6ASeq, a classic and
well-established method for predicting m6A in other species, as a
comparison.

Cross-validation performance on benchmark dataset
The predictive performance of MFDm6ARice is assessed on
the benchmark dataset via 5-CV. As demonstrated in Table 2,
MFDm6ARice exhibits superior overall performance compared
to the other methods. In particular, the model achieves an ACC
of 0.8321, an MCC of 0.6225, an AUC of 0.9038, and an AUPR of
0.8201, exhibiting an 11.81% improvement in overall performance
compared to the second-best method, DeepM6ASeq.

Although the standard deviation (std) of MCC is not as optimal
as PEA-m6A, the std of other metrics is superior to that of the
comparative methods. These findings indicate that MFDm6ARice
demonstrates both notable performance and robustness.

Performance on independent test sets
To further illustrate the superiority and generalizability of
MFDm6ARice, we compare it with existing prediction methods
on independent test sets, as presented in Table 3.

In Table 3, our proposed method exhibits greater effective-
ness than the comparative method concerning the same-species
independent test set. Specifically, MFDm6ARice improves ACC,
MCC, AUC, and AUPR by 2.12, 5.59, 1.86, and 3.68%, respectively,
exhibiting a 13.25% improvement in overall performance over the
suboptimal method. Meanwhile, our proposed method is com-
parable to the cross-species independent test set. MFDm6ARice
has an overall performance slightly higher than the second-best
method.

Notably, the results from the same-species independent test
set in rice are comparable to those of the 5-CV results, indicating
that our method exhibits robust and transferable performance
on the same species. However, as expected, the performance of
all methods diminishes markedly on the cross-species indepen-
dent test set due to species and data type discrepancies. These
findings highlight the challenges of developing multi-species m6A
prediction methods and identifying unseen data. Despite these
difficulties, MFDm6ARice outperforms the comparison methods
in overall performance, suggesting its resilience to challenges and
potential.

Extended application of MFDm6ARice framework on maize
In addition, to evaluate the model’s utility and scalability on
other species from the Poaceae family, we collect maize m6A
dataset from SMEP [29]. This dataset contains 11 150 positive
samples and 22 300 negative samples. Like rice, the data in this
dataset also have variable-length peak sequences. Then, we use
the MFDm6ARice framework tuned on the rice dataset to extend
to this dataset. The processing and training of the MFDm6ARice
framework on this dataset are consistent with those on the rice
dataset.

Supplementary Table S3 shows all results from the compared
methods. As anticipated, the performance metrics of the models
trained by directly applying the frameworks to the maize m6A
dataset are lower than those trained on the rice dataset. However,
our method remains competitive. These findings indicate that
MFDm6ARice exhibits utility and potential for extension to other
Poaceae plants.

Parameter analysis
To evaluate the influence of main hyperparameter settings on
model performance, we conduct a hyperparameter sensitivity
analysis [43, 44] encompassing batch size, output channels, reduc-
tion ratio (in GLDF’s Local dynamic fusion), DR block (in DRFE),
and margin through 5-CV. The hyperparameters ultimately used
in this study are summarized in Table 4. At the same time, we
further explore the impact of these hyperparameter changes
on the validation set and the same-species independent test
set. The results are shown in Fig. 2. Supplementary Section S3,
Supplementary Tables S4 and S5 provide results and analyses of
additional hyperparameters, such as the learning rate and the
number of layers in the convolutional blocks. We also offer a
hyperparameter selection process in Supplementary Section S4.

The impact of various hyperparameter settings on
validation set
Examining the validation set results (solid line) in Fig. 2, we
observe the following:

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae647#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae647#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae647#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae647#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae647#supplementary-data
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Table 4. The optimal hyperparameter settings of MFDm6ARice

Hyperparameter Setting

Batch size 128
Out channel 128
Ratio 4
DR block 3
Margin 2

Note: The ratio is the abbreviation for reduction ratio. DR block is the
downsampling residual block.

network structure by controlling feature map resolution,
computational complexity, and information flow through
downsampling and residual connections. Moderate infor-
mation compression enhances performance, but excessive
compression (e.g. DR_block=4) limits feature information,
ultimately reducing performance.

(iii) Batch size: Batch size has a noticeable, though smaller, effect.
As shown in the first column of Fig. 2, changing the batch
size from 32 to 128 results in performance differences of
0.97, 2.78, 1.18, and 1.99% in ACC, MCC, AUC, and AUPR,
respectively. Larger batch sizes offer more accurate gradient
estimates, stabilizing convergence. However, very large batch
sizes (e.g. batch size = 256) may cause the model to converge
to suboptimal solutions, leading to a slight performance
decrease.

(iv) Reduction ratio and margin: These two hyperparameters
have minimal impact on performance, suggesting that the
model is relatively insensitive to them compared to the more
influential settings above.

Comparing results for different hyperparameter settings on
validation set and independent test set
By comparing the results of the validation set and independent
test set (dashed line) based on 5-CV, we observe that the gen-
eral trends and impacts of different hyperparameter settings are
closely consistent between the validation set and the independent
test set. It shows that the hyperparameters selected by cross-
validation in this work are effective. What’s more, there is lit-
tle difference between the validation and independent test set
results. This highlights the model’s strong generalization ability.
These consistencies show that our model learns to generalize
effectively and to remember the training data, ensuring its prac-
tical application in real-world scenarios.

Effectiveness of the MKFF module’s functions
MFDm6ARice, proposed in this work, designs a multi-kernel
feature extraction with a GLDF module, MKFF. The module
begins with extracting multi-kernel features and then fuses them
through a global–local dynamic attention mechanism. To assess
the efficacy of the MKFF module, we conduct an ablation study
and effectiveness evaluation on two key functions: the multi-
kernel feature extraction and the GLDF. Details are as follows.

Validity of multi-kernel feature extraction function
In the multi-kernel feature extraction function, we use (2), (3),
(4), and (5) to obtain the multi-kernel features (k1234) of kernel1
(k1), kernel2 (k2), kernel3 (k3), and kernel4 (k4). To verify the
effectiveness of k1234, we set up a comparative experiment with
different kernel feature combinations, as shown in Fig. 3. In this
experiment, k1 means only using kernel1 features. k12 represents
the features combination of kernel1 and kernel2, k123 denotes

the features combination of kernel1, kernel2, and kernel3, and
so forth. Note that, except for the different feature combinations,
the remainder of the model framework remains unaltered in this
comparative experiment.

As evidenced in Fig. 3, the overall performance of the combined
features exceeds that of a single kernel feature. The k1234 used
in this work is optimal, i.e. four-kernel features combination. The
performance of the three-kernel feature combination is superior
to that of the two-kernel feature combination. It shows that,
with the addition of different kernel features, the model can
capture feature information of varying receptive fields, obtain
more diverse feature maps, and provide more comprehensive
information input for subsequent layers. It enhances model per-
formance and demonstrates the efficacy of multi-kernel features.

Validity of global–local dynamic fusion function
To assess the effectiveness of the GLDF function, we design two
types of comparative experiments: internal and external compar-
isons.

For the internal comparisons, we construct four GLDF variants:

• Replacing the GLDF module with concatenation (cat).
• Replacing the GLDF module with addition (add).
• Removing local dynamic fusion (global).
• Removing global dynamic fusion (local).

For external comparisons, we use other widely adopted fea-
ture fusion techniques: SE [37], ECA [36], and CBAM [45]. These
methods are often employed to strengthen feature representation
by focusing on specific feature channels or spatial locations. By
replacing GLDF with these techniques, we can evaluate GLDF’s
relative effectiveness.

The results in Fig. 4 demonstrate that the GLDF module gener-
ally outperforms both internal and external comparison models,
underscoring its effectiveness in dynamically fusing multi-kernel
features. Concurrently, we observe the following:

(i) Superiority over concatenation and addition: The GLDF, SE,
ECA, and CBAM modules perform better than simple con-
catenation or addition. Even the isolated components of
GLDF (global and local dynamic fusion) outperform concate-
nation and addition. It suggests that simple fusion tech-
niques like concatenation or addition fail to account for the
distinct importance of each kernel feature map, which can
impair model performance.

(ii) Addition versus concatenation: Adding feature maps yields
worse results than concatenation. Element-wise addition of
feature maps from different kernels can lead to information
loss and reduce the complementarity between feature maps,
resulting in less effective feature interaction and weaker
feature representation.

(iii) Importance of Global Features: Global fusion contributes
more to performance than local fusion. In classification
tasks, global features often carry more importance than local
details. Global channel dynamic fusion captures overall sta-
tistical information through global average pooling, enabling
a more adaptive and comprehensive adjustment of each
channel’s importance. In contrast, local spatial dynamic
fusion focuses on adjusting weights within smaller areas,
constrained by the receptive field, limiting its ability to cap-
ture global context.

(iv) Effective of Combined Global and Local Fusion: Despite the
global fusion being more effective than the local fusion on
its own, combining both global and local dynamic fusion



https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae647#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae647#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae647#supplementary-data


https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae647#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae647#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae647#supplementary-data


10 | Liu et al.

size and complexity. Results from the benchmark and indepen-
dent datasets show that MFDm6ARice outperforms existing meth-
ods in accuracy, robustness, and generalization. It is also scalable
to maize. Ablation studies and t-SNE visualizations confirm the
effectiveness of dynamic fusion and downsampling in improving
feature representation and m6A site prediction accuracy.

Despite its promising performance, MFDm6ARice presents
several limitations that warrant attention. First, considering the
variable-length sequences, simplicity, and computational effi-
ciency, we use label encoding with maximum length padding to
process RNA sequences. However, we recognize that this encoding
method may overlook the chemical properties of nucleotides
and potential sequence dependencies within RNA sequences.
Therefore, in future work, we aim to explore alternative encoding
methods based on biochemical properties and embedding-based
representations to enhance the feature representation of variable-
length sequences. Additionally, we discuss the potential impacts
of these alternative encoding methods on model interpretability
and performance in Supplementary Section S6. These could
provide a more comprehensive encoding method, thereby
addressing current limitations.

While the DRFE module effectively optimizes feature space
compression, reducing model parameter count and computa-
tional consumption, it still presents relatively high computa-
tional costs and model complexity compared to simpler archi-
tectures such as those without DRFE, MLP, or stacked convolu-
tional layers. These differences in efficiency and complexity are
detailed in Supplementary Section S7 and Supplementary Table
S8. As a result, the high computational demands may limit the
model deployment in resource-constrained environments, such
as large-scale agricultural applications. Therefore, in future work,
we aim to address these challenges, including reducing storage
and memory consumption and exploring techniques such as
model pruning, quantization, and lightweight deployment frame-
works. Detailed discussions can be found in Supplementary Sec-
tion S8.

The dataset used in this study is specific to rice, which may
introduce biases and limit the model generalizability. Although
MFDm6ARice demonstrates scalability with maize, it is not
designed for multi- or cross-crop applications, limiting its broader
utility. In contrast, methods like those proposed by [31, 53, 54]
aim to predict methylation sites across multiple species. Future
research could focus on developing a broad-spectrum m6A
prediction model that accommodates various crops or species,
enhancing its applicability. Additionally, inherent biases in the
dataset, such as the under-representation of specific sequence
types or environmental factors influencing m6A modifications,
should be addressed in future studies. Incorporating more diverse
datasets or integrating omics data from different conditions
could help provide a more comprehensive biological context
and improve model performance. For a more concrete plan, see
Supplementary Section S9.

In summary, future efforts will focus on expanding the model’s
applicability to multi-crops prediction, integrating more detailed
molecular features, and refining the rice m6A dataset, which
collectively will enhance both the accuracy and generalizability
of m6A site predictions.

Key Points

• We propose an end-to-end rice m6A site prediction
learning network, MFDm6ARice, which can effectively

learn the complete information of max-length padded
sequences.

• To reduce feature sparsity caused by max-length
padded sequences and effectively transfer the features
extracted by multi-kernel, we design the MKFF module
with a multi-kernel feature extraction and a GLDF mech-
anism that enriches and enhances feature representa-
tion and suppresses useless information.

• To solve the high-dimensional features and low compu-
tational efficiency caused by invalid padding, we intro-
duce the DRFE module to efficiently compress features
through layer-by-layer downsampling and residual con-
nections, ensure valid information transfer, and improve
computational efficiency.

• Extensive comparative, ablation experiments, and visu-
alization studies demonstrate the superior performance
of MFDm6ARice and the rationality and effectiveness of
the MKFF and DRFE modules.
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