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Abstract

Spatial transcriptomics (ST), a breakthrough technology, captures the complex structure and state of tissues through the spatial profiling
of gene expression. A variety of ST technologies have now emerged, most prominently spot-based platforms such as Visium. Despite
the widespread use of ST and its distinct data characteristics, the vast majority of studies continue to analyze ST data using algorithms
originally designed for older technologies such as single-cell (SC) and bulk RNA-seq—particularly when identifying differentially
expressed genes (DEGs). However, it remains unclear whether these algorithms are still valid or appropriate for ST data. Therefore,
here, we sought to characterize the performance of these methods by constructing an in silico simulator of ST data with a controllable
and known DEG ground truth. Surprisingly, our findings reveal little variation in the performance of classic DEG algorithms—all of
which fail to accurately recapture known DEGs to significant levels. We further demonstrate that cellular heterogeneity within spots is
a primary cause of this poor performance and propose a simple gene-selection scheme, based on prior knowledge of cell-type specificity,
to overcome this. Notably, our approach outperforms existing data-driven methods designed specifically for ST data and offers improved
DEG recovery and reliability rates. In summary, our work details a conceptual framework that can be used upstream, agnostically, of
any DEG algorithm to improve the accuracy of ST analysis and any downstream findings.
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Introduction
In recent years, spatial transcriptomics (ST) has gained immense
popularity for its ability to spatially resolve gene expression in the
context of 2D tissue structure. In particular, spot-based technolo-
gies (e.g. 10X Visium) have been widely adopted owing to relatively
low costs and user-friendly setup. Despite the merits of spot-
based approaches, these platforms present distinct technologi-
cal challenges, including: (i) spot-level resolution, which ranges
from capturing a few to hundreds of cells per spot and which
can create significant levels of spot heterogeneity; (ii) diffusion
(“leakage”) of transcripts into neighboring spots; and (iii) akin
to, yet worse than, single-cell (SC) RNA-seq data—sparsity and
low sequencing depth [1–3]. Regardless of these challenges, this
technology remains an invaluable tool for biomedical research.
Of these three main challenges, spot heterogeneity has received
the most attention, with a plethora of deconvolution algorithms
developed in an attempt to mitigate the issue [4–11]. However,
even with deconvolution, issues arising from spot heterogeneity
may not yet be fully resolved.

A common analysis in the transcriptomic field is the iden-
tification of differentially expressed genes (DEGs). In ST data,
one approach to DEG detection seeks to identify spatially vari-
able genes (SVGs), whereby coherent patterns of expression are
searched for in space. SVGs are typically used to define clusters or
niches within the tissue, in an unsupervised manner. In contrast,

a more classical, supervised approach, which is widely used, pre-
defines regions of interest based on the origin of the tissue sample
or by morphological examination of accompanying Hematoxylin
and Eosin (H&E) images and computes DEGs between pairs of
selected areas. While several novel, ST-specific algorithms exist
for SVG-based DEG analysis [12–16], the algorithms used in this
latter scenario are, in many cases, designed for older technolo-
gies (e.g. bulk RNA-seq, scRNA-seq) [17–19]. Given the unique
characteristics and challenges of ST data, the efficacy of such
DEG algorithms in accurately recovering DEGs in this manner is
unclear. Indeed, a number of common DEG methods were recently
shown to exhibit inflated error rates when spatial dependencies
are present in the data [20], emphasizing the need to explore
this further. Moreover, despite the recent emergence of ST-specific
DEG algorithms [21, 22], these methods remain under-utilized and
under-tested. We therefore chose to focus our attention on this
type of supervised ST DEG analysis.

Assessing the accuracy of DEG algorithms on ST data is chal-
lenging owing to a lack of knowable, ground truth. Thus, we eval-
uated the performance of both classic and ST-specific DEG algo-
rithms—between two regions and/or conditions—by constructing
and using a novel simulation platform capable of generating
simulated tissues with known DEGs. Notably, we demonstrate
that all methods display relatively poor performance, and we
further identify the technology-specific factors responsible for

https://orcid.org/0000-0001-5836-6724

 7741 15391 a 7741 15391
a
 
mailto:timcooper@technion.ac.il
mailto:timcooper@technion.ac.il
mailto:timcooper@technion.ac.il

 16796 16443 a 16796 16443 a
 
mailto:shenorr@technion.ac.il
mailto:shenorr@technion.ac.il
mailto:shenorr@technion.ac.il


2 | Nahman et al.

this. Finally, we propose a conceptual framework to enhance the
reliability of ST DEG results by integrating prior knowledge of cell
type–specific expression.

Results
Classic algorithms for differentially expressed
gene analysis perform poorly on realistic,
simulated spatial data
To assess the performance and accuracy of DEG algorithms on
ST data, we established a simulation pipeline capable of gener-
ating spatial data in silico that closely resembles real-world data,
but that also includes a well-defined ground truth of DEGs. In
brief, our first-of-its-kind simulation scheme combines simulated
single cells (SCs), with known DEGs, into spots distributed across
a 2D tissue slice, with optional inclusion of simulated transcript
leakage to neighboring spots, and optional downsampling of the
transcripts within each spot to mimic the sparsity and depth of
real ST data (see Methods) (Fig. 1A). Moreover, we incorporated
unique aspects of ST data, such as the density of cells per spot
and uniformity of cell type occurrence across spots, into our
simulation scheme (see Methods) (Supplementary Fig. 1A and B)
and provide tunable parameters (see Supplementary Table 1) for
DEG generation in order to collectively investigate a wide range
of different scenarios. In total, we conducted 800 simulations
across 160 distinct parameter configurations to not only com-
prehensively appraise DEG algorithms but also identify spatial-
specific parameters affecting their performance. Our evaluation
compared two distinct biological conditions, present on the same
simulated tissue slice, that exhibit known and controllable differ-
ences in gene expression per cell type. Each spot that contains
a specific cell type participates in the evaluation of algorithm
accuracy, assessed through F1, sensitivity, and specificity metrics,
for that particular cell type (see Methods) (Fig. 1B).

We initially focused our efforts on the simulation configuration
that best recaptures the characteristics and dynamic range of
real ST data—as learned and inferred from nine different spatial
datasets (Supplementary Fig. 2)—which incorporates both leakage
and downsampling effects (hereafter referred to as “ST-LD”). By
using ST-LD, we tested common, “classic” DEG algorithms, that is,
algorithms oblivious to the distinct nature of ST data and that
predate spatial methods (see Methods), contrasting performance
here to direct analysis of the same data in SC space.

In all cases, data were preprocessed according to common prac-
tices (see: Methods) and normalized using SCTransform—a method
commonly applied to both SC and ST data—where applicable.
Strikingly, we observed a significant and substantial decrease in
F1 and sensitivity scores in comparison to the analysis of SC
data (t-test corrected with Bonferroni, P < 9e-10) (Fig. 1C). While a
decrease was expected due to the lack of ST-specific optimizations
in these DEG algorithms, test scores were remarkably low (mean
F1 scores = 0.2 ± 0.014) and moreover, similar across all DEG meth-
ods tested, including when we combined the results of each DEG
algorithm through majority voting (Kruskal–Wallis P = .1) (Fig. 1C).
Interestingly, while spatial characteristics, including the density
of cells in a spot and the uniformity of cells in space, do affect
these results, the effects are consistent across all DEG methods
tested and even favorable spatial parameters failed to rescue DEG
recovery to any appreciable, practical level (Supplementary Fig. 3).
Such results suggest that the low performance of classic DEG
algorithms may be attributable to an inherent property of spot-
based ST data or, alternatively, the preprocessing of ST data, as
opposed to a failure of the DEG methods themselves.

Distinct normalization schemes are unable to
rescue differentially expressed genes in spatial
transcriptomics data
Given the unexpectedly low performance of all tested DEG algo-
rithms on ST data, we next sought to pinpoint the factors respon-
sible for this. As normalization methods can have a significant
impact on DEG results [23], we hypothesized that by employing
different normalization methods we may yield diverse and/or
improved DEG results. However, we observed minimal variation
among the different normalization algorithms, closely resembling
the variation observed between DEG algorithms (Fig. 2A). While F1
scores were significantly different between normalization meth-
ods when tested for each DEG algorithm separately (Kruskal–
Wallis P-value <2e-16), the differences were ultimately without
practical value as they all remain poor overall (F1 ≈ 0.2).

Subsequently, to test whether normalization itself reduces the
ability to accurately call DEGs, we compared unique DEGs, called
per normalization method, to an unnormalized case. Surprisingly,
we observed a higher amount of true, unique DEGs in the unnor-
malized approach (Fig. 2B); however, the difference is marginal,
and, in all cases, only ∼4%–5% of the true DEGs are correctly
identified. Collectively, these findings suggest that while normal-
ization methods may differ statistically and mathematically, their
practical impact on DEG analysis in ST data is minimal and
normalization methods commonly used for ST data are unable
to rescue the poor recovery of true DEGs.

Spot-level heterogeneity is primarily responsible
for the decrease in accurate differentially
expressed gene recovery
Since we observed similar results across varying DEG and nor-
malization methods, we hypothesized that the underlying cause
of inaccurate DEG recovery may be more datatype-inherent in
nature. Consequently, we turned our attention to assessing the
contribution of each unique spatial characteristic to the observed
lack of performance. By utilizing our simulation pipeline, we gen-
erated models from intermediate stages that incorporate various
combinations of these characteristics. Each simulation comprised
a mixture of cells in spots (“ST-M”), which represents the spatial
and cellular heterogeneity of ST data—an unavoidable property
of spot-based technologies—and could additionally include, in
isolation from one another, leakage of transcripts (“ST-L”), down-
sampling of transcripts per spot (“ST-D”), or both (“ST-LD,” as used
in Fig. 1) (Supp Fig. 1C). While ST-M, ST-L, and ST-D configurations
are unrealistic scenarios, unachievable with current technology,
they serve as tools to help us dissect the problem. We used ST-
LD, the most realistic configuration (see: Supp Fig. 2), as a base-
line for comparison against all other configurations. Interestingly,
downsampling resulted in considerably lower sensitivity than the
configuration with mixing alone (t-test corrected with Bonferroni,
P < 2e-80), but enhanced specificity compared to configurations
without it (t-test corrected with Bonferroni, P < 5e-30). Moreover,
the introduction of leakage atop mixing, had a similar effect to
downsampling, albeit to a lower extent. Finally, the difference in
F1 scores for both ST-L and ST-D was significantly different from
ST-LD (t-test corrected with Bonferroni, P < 3e-6). However, despite
these differences, all configurations tested yielded low F1 scores
(Fig. 2C—left) (mean difference from ST-LD ranges between −0.08
and 0.11), suggesting that a property common to all simulations—
mixing—is primarily responsible for the results observed. Con-
ceivably, the mixing of different cell types or states can strongly
confound DEG detection by masking true DEGs or generating
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Figure 1. A novel spatial simulation pipeline highlights the poor performance of classic DEG algorithms on spatial data. (A) A novel simulation pipeline to
simulate spatial tissues with known DEGs. In brief, the simulation platform: (i) utilizes SC and 10X Visium ST references as input; (ii) simulates SC data
consisting of two conditions, with known DEGs; (iii) allocates SCs to spots in two-dimensional space, according to user-controlled simulation parameters;
and (iv) optionally, simulates leakage of transcripts to neighboring spots and downsampling of transcripts to emulate sparsity. (B) A DEG detection
scheme and a set of evaluation metrics allow comparisons between different DEG methods. Left: Each simulated tissue is divided into two regions in
accordance with the simulated conditions. In each spot, multiple different cell types can reside—generating the cellular heterogeneity characteristic
of spot-based ST technologies and which is referred to here as “mixing.” Each region exclusively contains cells from one condition, thus differential
expression is computed between each cell type of each region. It is important to note that in spots lacking cells, transcripts may still be present due
to transcript leakage. Right: A hypothetical example of the evaluation metrics used—namely, F1 (harmonic mean of precision and recall), sensitivity,
and specificity, which are calculated independently for each DEG method and per cell type. (C) The ability to accurately detect DEGs in realistic spatial
simulations is significantly diminished relative to SC data. F1, sensitivity, and specificity scores derived from either simulated SC data or ST-LD simulated
data, stratified by each DEG detection algorithm tested. F1 scores of the different DEG methods for ST-LD are not significantly different (Kruskal–Wallis
P-value = 0.1). (SC, single cell; ST-LD, ST with leakage and downsampling) (∗P ≤ .05, ∗∗P ≤ .01, ∗∗∗P ≤ .001).

false DEGs depending on the exact mixture present. Thus, even if
solutions are found to address leakage and downsampling, spot-
level heterogeneity alone appears sufficient to deteriorate both F1
and specificity scores and hamper the accurate detection of DEGs
in ST data (Fig. 2C).

Spot deconvolution combined with classic
differentially expressed gene methods does not
improve differentially expressed gene recovery
Since spot-level heterogeneity in ST data is a major contributing
factor to the loss of DEG algorithm performance, we aimed to

investigate whether deconvolution—a process that attempts to
resolve heterogeneity by estimating the contribution of each cell
type to a spot—could improve results. Several benchmarking
papers on spatial deconvolution methods have been published in
recent years [8–11], and, based on these, we chose to focus our
evaluation on the highest-ranked methods: RCTD [6], cell2location
[7], and SpatialDWS [5]. Deconvolution results are typically pre-
sented as cell-type ratios per spot or the absolute abundance of
a cell type per spot. Thus, to incorporate deconvolution into our
pipeline and evaluate whether prior deconvolution of ST data
spots could improve DEG detection, we included these metrics
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Figure 2. Normalization methods have a negligible impact on DEG recovery in spatial data. (A) DEG detection in ST data is not rescued by different
normalization methods. A dot plot showing the F1 scores of all combinations of DEG algorithms and normalization techniques tested. Note that the
range of F1 scores obtained resides between 0 and 0.25, while the theoretical F1 range is 0–1. For most combinations, only small practical differences are
noted yet these remain significant (Kruskal–Wallis for each DEG separately, P-values <2e-16). (B) The percentage of both unique and true DEGs detected
by utilizing different normalization algorithms is limited. In brief, the detection of true DEGs, as a percentage of total DEGs, was assessed by a t-test per
normalization method and compared to unnormalized data. DEGs detected by both normalized and unnormalized data, and DEGs detected by either
method alone are shown. While the majority of true DEGs detected are shared, unnormalized data yielded a marginally higher percentage of unique
DEGs; however, the percentage of DEGs accurately detected overall, in all cases, remains very low (∼5%). (C) Spot heterogeneity is, alone, sufficient to
hinder the accurate identification of DEGs. F1, sensitivity, and specificity scores derived from various combinations of unique ST configurations that
isolate different characteristics of spatial data, and which are expressed as differences (�) relative to the baseline analysis of ST-LD (see Fig. 1C). Scores
above zero represent methods with improved, relative performance and vice versa (ST-M, ST with only mixing; ST-L, ST with leakage; ST-D, ST with
downsampling) (∗P ≤ .05, ∗∗P ≤ .01, ∗∗∗P ≤ .001).

as covariates in compatible DEG algorithms (see Methods) when
evaluating realistic ST data (ST-LD). In simple terms, this approach
controls for differences in cell type composition and seeks to
“unmask” true DEGs or correct false DEGs otherwise confounded
or created by cellular mixing. Surprisingly, this approach failed
to improve DEG recovery (Fig. 3A). Specifically, when compar-
ing the differences in each evaluation metric with and without
the inclusion of cell-type ratios or abundances, we observed a
consistent decrease in F1 and sensitivity scores when decon-
volution priors were included. Moreover, these conclusions held
even when we used ground-truth (“GT”) cell ratios as input (see
Fig. 3A), suggesting that it is not caused by errors in deconvolution
estimates.

Therefore, and as before, to deduce the cause of this
discrepancy, we extended our analysis to include all simulation
configurations and spatial characteristics in isolation. Notably,
the incorporation of deconvolution priors can, as originally
anticipated, enhance the results but only in configurations
that lack downsampling (i.e. ST-M, ST-L) (t-test corrected with
Bonferroni, P < 2e-6) (Fig. 3B). Downsampling causes a marked

deterioration in F1 and sensitivity scores, beyond those observed
without deconvolution priors included. Remarkably, a similar
trend was observed even when the density of a given cell type
was high in both conditions—a state that favors accurate DEG
detection (Supp Fig. 4A and B). Application of a less conservative
P-value threshold (P < .01) for DEG detection within this state was
able to yield comparable results with and without deconvolution
priors (Supp Fig. 4A and C), suggesting that deconvolution
may not be a viable solution even under favorable or lenient
conditions. We hypothesize that a breakdown in the correlation
structure of ST data post-downsampling, specifically due to
the introduction of missing values, confounds the ability to
accurately estimate gene-to-cell relationships which, in turn,
introduces errors when deconvolution priors are considered
by DEG algorithms. Regardless of the underlying cause, our
observations suggest that while deconvolution can improve
classic DEG analysis under certain conditions—or in future
technologies with higher sequencing depth—the high sparsity of
data, as modeled here by downsampling, severely diminishes this
benefit.
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Figure 3. Deconvolution and deconvolution-based inference of cell type–specific expression fails to enhance DEG recovery due to gene expression
sparsity. (A) Incorporation of spot-deconvolution results does not boost DEG detection in realistically simulated ST data. F1, sensitivity, and specificity
scores derived from DEG tests when the results of different deconvolution methods or the simulated ground truth of cell type ratios were taken into
consideration. All scores are expressed as differences (�) relative to results obtained from standard, classic DEG approaches. In brief, the model formula
for classic DEG algorithms was modified to include cell ratios or abundances as a covariate, while the baseline approach we are comparing to received
no additional information about spot composition. Scores above zero represent methods with improved, relative performance compared to the classic
DEG approach and vice versa. Of note, only SpatialDWLS had significantly lower F1 scores than the ground truth, but, in all cases, the scores were
decreased in comparison to the classic DEG analysis baseline (∗P ≤ .05, ∗∗P ≤ .01, ∗∗∗P ≤ .001). (B) Downsampling results in a significant drop in DEG
algorithm performance when deconvolution priors are considered. F1, sensitivity, and specificity scores derived from various spatial configurations
that isolate different characteristics of spatial data, computed with (as in Fig. 3A) and without the use of ground-truth cell type ratios. The standard
classic DEG method—edgeR—was applied in all scenarios (ST-M, ST with mixing only; ST-L, ST with leakage; ST-D, ST with downsampling; W/O, without
additional information; GT, ground truth) (∗P ≤ .05, ∗∗P ≤ .01, ∗∗∗P ≤ .001). (C) Alternative deconvolution-based approaches fail to outperform classic
DEG approaches on ST data. F1, sensitivity, and specificity scores derived from the realistic, ST-LD configuration using either a standard t-test or cell
type–specific deconvolution-based approaches. Top: A cell2location [7] model was used to infer cell type–specific expression and subsequently a t-test
was applied to the resulting data to detect DEGs. This approach was compared to a standard t-test that received no additional information beyond the
spots containing the cell types in question. Of note, this analysis was performed on a subset of 160 simulations (one representative example for each
DEG % configuration) due to computational limitations. Bottom: C-SIDE-based DEG analysis [23]. As before, this approach was compared to a standard
t-test that received no additional information beyond the spots containing the cell types in question. Of note, CSIDE returns predictions for only a subset
of genes, and an identical subset was used by the standard t-test to ensure a fair comparison and all evaluation scores are computed relative to the
subset (W, with) (∗P ≤ .05, ∗∗P ≤ .01, ∗∗∗P ≤ .001).
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Spot cell–specific expression fails to improve
differentially expressed gene detection
Since deconvolution priors were unable to enhance the perfor-
mance of classic DEG algorithms under realistic conditions, we
next sought to test alternative approaches to integrate decon-
volved information into the DEG detection pipeline. Specifically,
we examined two options: (i) estimation of cell type–specific gene
expression using cell2location [7], followed by the application of
classic DEG methods to the resulting data, and (ii) the use of an
ST-specific DEG algorithm, C-SIDE [21], that, by design, uses RCTD
deconvolution results as input. Prediction of cell type–specific
expression prior to DEG analysis resulted in significantly lower F1
scores compared to the original analysis that detects DEGs on the
data as is (Fig. 3C top, see Methods) (t-test P = .005), potentially
owing to the lack of statistical pooling of information across
multiple cell types [24].

Similarly, C-SIDE aims to predict cell-specific DEGs along with
confidence metrics but only operates on a subset of genes—
excluding marker genes used during deconvolution and genes
that do not meet specific confidence criteria. As with cell2location,
the F1 scores obtained by C-SIDE failed to outperform a standard
DEG analysis performed without deconvolution but conducted
on the same subset of genes selected by C-SIDE (Fig. 3C bottom)
(t-test P = 6e-4). Despite this, we note that, in both cases, the
F1 scores are improved compared to our typical results (F1 ≈ 0.4
versus F1 ≈ 0.2) suggesting that while C-SIDE does benefit the
process, it is the selection of genes itself that is responsible for
this improvement and not other aspects of the algorithm. Taken
together and in support of our previous findings, we conclude
that the benefits of cell deconvolution methods and the inference
of cell-specific expression, in particular, for DEG recovery are
diminished by the high sparsity commonly found in real ST data.

Prior selection of genes can enhance
differentially expressed gene detection in spatial
data
Since F1 scores were improved by considering only a subset of
genes (see Fig. 3C bottom), we speculated that this principle could
be expanded upon and that prior selection of genes, based on
cell-type specificity, i.e. those genes less likely to be confounded
by cellular mixing, could further enhance F1 scores and increase
confidence in the results—albeit at the cost of losing a portion
of true DEGs present in the data. While cell type–specific genes
may still be influenced by the absolute number of cells in a spot,
the likelihood of interference from multiple conflicting or additive
sources would decrease. Therefore, we decided to implement a
gene–cell specificity metric to narrow the gene space and prese-
lect targets with a higher probability of being accurately assessed
in ST data.

We tested two definitions of gene–cell specificity and selected
“mean cell specificity,” which yielded the best overall performance
(supp Fig. 5A, see Methods). Moreover, we explored varying types
of input data. Specifically, in all analyses up until this point, DEGs
were assessed per cell type using only the spots containing the
cell type of interest—an approach that benefits DEG detection.
However, such information is not typically available without fur-
ther analysis or examination of H&E images. In order to assess
the performance of our method under less beneficial but more
practical conditions, we simplified our process to compare regions
emanating from two conditions regardless of which cell types they
contain. Subsequently, we learned gene–cell specificity scores, per
gene, based on our simulated SC data (see: Fig. 1A) and assessed

whether this selection of genes improves DEG recovery relative to
C-SIDE, C-SIDE’s gene selection process in isolation and random
gene selection while keeping the preprocessing, input data, and
number of genes selected consistent. Remarkably, we observed
that, even at the lowest specificity thresholds tested, our gene
selection scheme considerably outperforms C-SIDE (t-test cor-
rected with Bonferroni, P < 3e-11). Moreover, this analysis further
indicates that C-SIDE’s advantage is driven, predominantly, by
gene selection. Specifically, performance is comparable between
C-SIDE (see Fig. 3) and the direct assessment of genes selected
by C-SIDE when using a standard DEG test between two regions,
where no information about cell types in spots is given (Fig. 4A).
Notably, our gene selection method increasingly outperforms the
other approaches tested as the threshold increases, suggesting
that—as we hypothesized—the higher the gene–cell specificity is,
the more reliable the results are. Importantly, both C-SIDE and
our prior-based approach have higher F1 scores in comparison
to a random selection of genes (t-test corrected with Bonferroni,
P < 4e-62) when any threshold above 0 is applied, emphasizing
that the identity of the gene is key and more important than
the number of genes selected (Fig. 4A). Of note, the number of
genes that are analyzed at a threshold of 0.2—the point at which
the trend begins to change—stands at 93.5% of the total, but
this value drops dramatically as the threshold increases, while
the percentage of DEGs lost increases symmetrically (Fig. 4B).
By repeating the same analysis on real scRNA-seq data, which
contains 19 cell types and 10 399 genes in total, we observed a
similar overall profile to that of our simulated data (Supp Fig. 5B)
and likewise a specificity threshold of 0.1—equivalent to 0.2 in
simulated data—retained 94.2% of the total genes, demonstrating
that our approach may also be applicable to real data despite
its size and complexity. At a stricter threshold (0.3), where F1
scores reach >0.5 in our simulations, 1800 genes (45% of the
total) remain in the simulated data, while 902 genes (8.6% of the
total) remain in the real data, and thus, a biologically relevant
number of genes may still be appraised even at strict cutoffs.
However, clear benefits are seen throughout the spectrum of
specificity values tested. While there is an inherent trade-off in
our approach, such as the exclusion of genes and loss of DEGs,
our work suggests that genes that are not cell-type specific cannot
be reliably detected using current spot-based ST technologies—
making this loss largely inconsequential and unavoidable. Overall,
we conclude that correct DEG identification can be substantially
improved by preselecting genes with high specificity per cell type
based on prior knowledge and/or publicly available data.

Discussion
Here, we investigated, in-depth, the impact of various factors
and methodologies on the accuracy of DEG analysis in spot-
based ST data. Using a novel simulation platform and extensive
simulations, we revealed that accurate DEG detection for realistic
ST simulations notably lags behind those of equivalent SC anal-
yses. Surprisingly, we only found marginal differences emanating
from the different DEG algorithms tested. Likewise, normalization
methods also exhibit minimal effects on the outcome of DEG
analysis, suggesting that a preference for raw data utilization may
be warranted—as previously proposed in the context of ST data
[25]. Among the unique characteristics of ST data, spot hetero-
geneity—an unavoidable property of spot-based spatial technolo-
gies—emerged in our study as the primary contributor to the
inability to accurately detect DEGs. While deconvolution algo-
rithms can provide insights about cell type ratios or abundances
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Figure 4. Prior-based selection of genes significantly improves the accurate detection of DEGs in ST data. (A) A novel approach of pre-selecting genes
enhances the reliability of DEGs across a wide range of specificity thresholds. F1 scores derived from a standard t-test with genes selected by our prior-
trained, gene cell-specific thresholds, compared with C-SIDE, a standard t-test ran on C-SIDE selected genes, and a standard t-test ran on randomly
selected genes. The number of genes was kept static between the different approaches to ensure a fair comparison. Each comparison is computed per
cell type as before, but all approaches that utilized a standard t-test received the entire tissue region that is associated with the condition and not only
spots containing the cell type in question (as in Figs 1–3). All F1 scores are relative to the subset of genes tested. (B) Increasing the specificity threshold
is a trade-off between DEG reliability and the percentage of DEGs lost. Line plot showing the number of genes passing each threshold and that were
analyzed, and a line plot showing the percentage of DEGs lost and which were not evaluated, as a function of the specificity threshold.

per spot, our results suggest that, in the presence of high spar-
sity, their ability to benefit DEG recovery is limited. Moreover,
this also applies to data-driven deconvolution-based schemes
that infer cell-specific expression from spatial data. While the
deconvolution-based algorithm C-SIDE moderately improves F1
scores, our findings suggest that its primary strength lies in gene
selection.

Building upon this premise, we introduced a conceptual gene
selection scheme that focuses on the specificity of genes per
cell type—a scheme that can be applied in an easy and acces-
sible way, without the need for deconvolution or a specific DEG
algorithm. The use of cell type–specific genes in DEG analysis
has been previously suggested for bulk RNA-seq in combina-
tion with deconvolution results to identify the cell types from
which the differential expression originated from [26]. Here, we
utilize similar information but in a distinct manner. By lever-
aging the rich cell-expression profiles now available from SC
data, we devised a gene–cell specificity scheme and showed that
this prior-based approach surpasses the results obtained through
data-driven gene selection schemes performed on the experi-
mental data itself. This prior-based approach appears to provide
significant benefits even at a low specificity threshold while
retaining most of the genes. Additionally, our scheme enables
the assessment of marker genes during differential expression
analysis, which is not often possible when using deconvolution-
based methods such as C-SIDE.

Ultimately, our prior-based approach allows users to flexibly
adjust the specificity threshold, balancing the number of genes
and the potential DEGs lost with the reliability of the outcome.
Importantly, with the explosive growth of SC data and large-scale
integration efforts to construct SC atlases and foundation models,
building robust priors for cell-specific expression is expected to
become easier and ultimately become organism, tissue, and con-
dition specific. Such priors immediately feed into our approach

and may be used to further enhance the analysis of ST data. As it
stands, we envision that researchers will be able to easily leverage
publicly available, precomputed specificity scores, such as those
available from cellXgene [27], or compute their own scores from
closely matched samples using our formula or others [28], to boost
accurate detection of DEGs in their ST data.

It is important to note that the conclusions of this work are
limited by the scope of the simulations we ran and that, as of
writing, no real-world, gold-standard or ground-truth ST datasets
exist to benchmark our approach on. Further exploration of differ-
ent tissue inputs to the simulation, which affect, for example, the
baseline gene expression, leakage coefficients, and the amount
of downsampling applied may prove useful. Moreover, our prior-
based approach is limited by its inability to determine if a gene
is differentially expressed in multiple cell types. However, gene
specificity schemes are flexible and may, in the future, incorpo-
rate increasingly sophisticated measures to partially overcome
this caveat.

In summary, we believe that knowledge integration and build-
ing priors for cell-specific expression holds promise as a strategy
to enhance DEG analyses, circumventing the need for deconvo-
lution, while significantly simplifying the computation. As new
spatial technologies develop, with a richer ability to capture tran-
scriptional depth and SC resolution, the need to leverage cell-
specific priors may need re-evaluation, however, with the physical
limitations of SC resolution spatial technologies and in contrast,
the exponential growth in SC data, the benefits of knowledge-
based priors may be here to stay.

Methods
Single-cell simulation & data quality control
SC transcriptomes were simulated using the muscat (v1.12.0)
scRNA-seq simulation platform [29] but with custom
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modifications. Namely, modifications were made to allow the
use of only one reference data source, to ensure less variability in
the SC simulation results. As input, an SC reference comprising
human distal lung samples from three male donors [30] was used.
This dataset was chosen because it contains matched SC and ST
data. Nineteen cell types were retained after filtering the data to
contain ≥50 cells per type, per donor. Cells were further filtered
based on sequencing depth (≥500 counts per cell), cell quality
(<12% mitochondrial mRNA), and gene detection rates (>1 count
in at least 10 cells, per gene). Finally, genes were removed if they
had a very low, mean gene expression. The rationale for this was
that the simulation would not be able to simulate such mean
expression values accurately, and the log-fold change values of
any subsequent DEGs will therefore greatly deviate between the
simulation parameters and the actual, calculated values derived
from the generated counts. User-configurable parameters for both
the SC simulator and the subsequent spatial simulator (below)
are generated through a bespoke script and saved as a JavaScript
Object Notation (JSON) file. We varied several parameters when
generating the simulated SC data, including: the percentage of
DEGs in the SC simulation, the random seed used to generate
replicates, and the number of total cell types added to the
downstream spatial tissue data. An example JSON file, used for
our simulations, is available in the linked GitHub repository (see
Code and Data Availability), and a list of all tunable simulation
parameters can be found in Supplementary Table 1.

Differentially expressed gene quality control
As the main goal of the simulation pipeline was to establish
a rigorous and dependable ground truth for DEG analysis, we
ensured that any deviations between the simulated data and the
simulation parameters were negligible. Specifically, a set of cri-
teria were applied and tested against. Firstly, the empirical mean
expression per gene, per cell type was calculated. If gene means
were both zero, the similarity to the simulation parameters could
not be tested, and the gene was considered unanalyzable. For a
given simulation to pass these criteria, the number of unanalyzed
genes was set strictly to ≤5%. Secondly, log-fold changes were
calculated by taking the log2 of the division between the mean
expression of the two conditions. Only an absolute difference of
0.1 in log-fold change between the log-fold change specified in
the simulation parameters and the actual one based on simulated
data was tolerated. Thirdly, we considered a gene differentially
expressed if the P-value of a t-test between the two conditions’
mean gene expressions was <.01. The difference in the number
of DEGs detected and the parameter specified by the user must
be <2% for the simulation to be considered valid. Finally, the
percentage of the congruent DEGs in the top 100, with the highest
log-fold changes, must be ≥60%. Collectively, these latter three
conditions were only applied to genes with means above 0 in both
conditions, and the simulated dataset had to pass all criteria to
be included in the spatial simulator (see below). Thresholds were
chosen to balance stringency with the ability to retain a sufficient
number of simulated datasets for spatial simulation.

Spatial simulation
Mixed, Visium-like spots were simulated in silico using the emdann
simulation platform [31], designed to build ST spots from an
SC reference. Source code for this package was obtained from:
https://github.com/emdann/ST_simulation. Simulated scRNA-
seq data (see above) was used as an input. Spatial simulation
parameters are loaded from the same JSON file as the SC
simulator. Parameters varied between simulation configurations,

including the number of cell types, the uniformity of distribution
of spots in space, and the density distribution of cells inside a spot.
For each cell type, there are two states of uniformity, either a cell
type is evenly spread in the tissue or sparsely located, in isolated
spots. High uniformity percentages, as can be specified by the
user, indicate the likelihood of the cell type to be in the uniform,
evenly spread state. Similarly, there are two distinct states for
density. A cell type can be either present with high density in
spots or with low density in spots, as determined by the user. An
example JSON file, which contains the values of these parameters,
can be found in the linked GitHub repository (see Code and Data
Availability), and a full list of the simulation parameters used
can be found in Supplementary Table 1. Emdann was customized
to support two biological conditions that are mutually exclusive
in space so that each spot has cells originating from only one
condition—reminiscent of disease samples containing adjacent,
healthy tissue segments. Building on the foundation provided
by emdann, we further introduced the ability to allocate spots to
precise locations in 2D space using a real-world spatial reference
for the size of the array. To assign spots to a location, we: (i) first
chose a random spot in space and then (ii) placed all remaining
spots based on random walks of 0, 1, or 2 steps backward or
forward in each direction separately. Should the spot be invalid or
already occupied, a location from the occupied locations is picked
at random, and secondary attempts are made with a maximum
of 1000 trials. Once a valid location is found, the random walk
continues from that location, and the full selection process is
repeated until all the spots are assigned to locations. Tissue
shapes typically generated are continuous with a relatively small
number of holes. Spots not selected are considered background
and contain zero transcripts.

Transcript leakage
Leakage—that is, the diffusion of transcripts from the source spot
to neighboring spots—was simulated and incorporated into our
model using the mathematical principles detailed by SpotClean
[2]. According to their model, the original count in a given spot
is the sum of transcripts remaining in that spot along with the
transcripts lost and gained due to leakage outwards. Specifically,
independent Poisson distributions are used to model the process
and the bleeding (i.e. leakage) rate, contamination rate, and a
weighted Gaussian kernel are inferred from a separate ST refer-
ence. Since in our simulation, original counts are known a priori,
we used the model to calculate leakage to other spots to obtain ST
data with the effects of leakage included. Overall, the counts per
simulated spot are the initial transcripts, minus the transcripts
that leaked from that spot, plus the gene expression that was
received from other spots. Should the leakage from a spot exceed
the original count in a spot, a correction is made, and spots
that received counts are sampled again with a number equal to
the overall leakage. The probability of each spot being chosen
is proportional to the difference between the counts that leaked
to the spot and the leakage distribution mean, with a minimum
of zero.

Downsampling
Downsampling is performed independently per spot. Specifically,
it creates downsampled versions with 10%, 7%, 5%, 3%, 2%, 1%,
and 0.5% of the original transcripts. Firstly, the number of tran-
scripts after downsampling per spot is sampled from a normal
distribution with a mean equal to the desired percentage from the
total. Subsequently, per spot, all genes are sampled together with
a probability that is equal to their original proportions in the spot.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae621#supplementary-data
https://github.com/emdann/ST_simulation
https://github.com/emdann/ST_simulation
https://github.com/emdann/ST_simulation
https://github.com/emdann/ST_simulation
https://github.com/emdann/ST_simulation
https://github.com/emdann/ST_simulation
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae621#supplementary-data
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There is an option to make the downsampling more constrained
by ensuring that there are no more counts per gene per spot than
in the original count matrix by setting the flag “accurate” to TRUE.
This option will take longer to run, and, according to an analysis
of a subset of 160 simulations (one representative of each DEG %),
it does not affect any DEG results significantly (Supp Fig. 6). An
optimal downsample percentage is selected by comparison to the
reference data distribution using a Kolmogorov–Smirnov test. The
total number of counts per gene and the mean gene expression
are calculated, and the percentage that gives the minimal statistic
for their sum is chosen.

Normalization
Simulation data are filtered, such that each gene has at least
three counts over all cells, each spot has at least one cell from
the SC dataset allocated to it, and the number of counts per
cell is >0. After invalid spots are removed, genes are filtered
again to ensure that all genes have at least 1 count over all
cells. The refiltering of genes is predominantly necessary for the
configurations that include both leakage and downsampling. The
normalization methods that were used are: SCTransform (v0.3.5)
[32, 33], DESeq2 (v1.38.2) [34], scran (v1.26.1) [35], loglib, and sanity
(commit 81564f7e52d5df47096c083dbf0ce671d1e44801) [36].

SCTransform is run with default parameters. For DESeq2, a
design matrix is built to include both simulated conditions. Since
the conditions are mutually exclusive in space, the design formula
includes only one of the conditions. As the data are sparse,
we calculate geometric means without the zeros prior to size
factor calculation. Scran runs in two steps, first deconvolving size
factors from cell pools and then computing a log-transformed
normalized expression matrix based on cell-specific size factors.
Loglib runs a log transformation of the scaled counts plus a
pseudocount to avoid division by zero. Sanity runs with default
parameters. In order to obtain the normalized count, we used the
unnormalized counts and multiplied them by the exponent of the
log-transcription quotients.

Differentially expressed gene analysis
DEG analysis is run on either normalized or unnormalized data.
We used a t-test, Wilcoxon, edgeR (v3.40.1) [37], MAST (v1.24.0)
[38], DESeq2 (v1.38.2) [34], and C-SIDE (v2.2.0) [21]. All algorithms
calculate DEGs per cell type. Spots taken into account during DEG
analysis contain at least one cell from the cell type in question
and reside within the tissue boundary. t-test runs with the default
two-sided hypothesis option. If a t-test runs into an error due to, for
example, a low number of samples, the P-value is replaced with
“NA” (“Not Available”) and is treated as a P-value of 1. Wilcoxon runs
with the default two-sided hypothesis option. EdgeR runs with a
design matrix including the condition. The estimation of binomial
dispersions is done by filtering the total sum of counts above 0.
MAST runs only on log-transformed data, so, if the normalized
data are not log-transformed, a log2 with a pseudocount scheme
was used. A design matrix with the condition is built per cell type.
The zero-inflated regression formula is made up of the proportion
of genes detected in each cell and one of the conditions, and
the model is tested by a likelihood ratio test of nested models.
Majority is calculated in the evaluation step, and it treats a gene
as a DEG if half + 1 of the other DEG algorithms mentioned above
(excluding C-SIDE) or more have classified the gene as a DEG.
DESeq2 is the only classic algorithm that does not accept, as input,
normalized data. DESeq2 instead ran on filtered data (as described
in the Normalization section above). A design matrix with the
condition is built per cell type. To avoid zeros in the count matrix

when calculating geometric means, we added a pseudo count of
1 to the count matrix and ran the express function DESeq. C-SIDE
first runs RCTD in full mode with a cell type threshold of 20 per
cell type. This means that for tissues with a low number of spots,
some cell types may not have DEG results. Subsequently, we ran C-
SIDE with a single explanatory variable and used a false discovery
rate (FDR) threshold of 0.4 and a weight threshold of 0.8. When
comparing C-SIDE with a standard DEG algorithm, we chose to use
a t-test since it had similar results to the other DEG algorithms and
is both widely used and simplistic.

Deconvolution analysis
Three state-of-the-art deconvolution algorithms were used:
cell2location (v0.1.3) [7], RCTD (spacexr v2.2.0) [6], and SpatialD-
WLS (Giotto v1.1.2) [5]. Each of the algorithms requires scRNA-
seq and spatial data pairs. These were provided by using our
simulated scRNA-seq data with cell labels from the simulation
in conjunction with the simulated spatial configuration that
includes both leakage and downsampling. To ensure the initial
conditions to all methods were kept static, we applied the same
filtering as described in the Normalization section to all simulated
spatial data. Of note, cell2location is the only algorithm of the three
to require a Python environment.

Cell2location
All scRNA-seq models were calculated with a max_epoch of 400
during training and we used 50 cells per location in the spatial
model though variation was permitted as per the simulation con-
figuration. Detection_alpha was set to 20, as suggested for data
that suffers from technical effects. We lowered the max_epochs
to 15000, half of the default amount since we observed that the
-ELBO loss function reached a plateau at this value. RCTD: RCTD
ran using default parameters for full mode, as provided in the
GitHub repository of spacexr.

SpatialDWLS
SpatialDWLS requires the Giotto package and was run accord-
ing to the published tutorial [39], using default parameters. We
applied similar processing steps to the simulated SC data as
suggested and used the function findMarkers_one_vs_all to detect
marker genes that are used as signatures and are essential for the
deconvolution process in SpatialDWLS.

Differentially expressed gene analysis with
deconvolution results
In order to use deconvolved information, pertaining to cell-type
ratios in spots, in combination with classic DEG algorithms, we
used only those DEG algorithms that allow the inclusion of covari-
ates such as MAST, edgeR, and DESeq2. All of the selected algo-
rithms accept a design matrix that can be used to include addi-
tional covariates about the experimental design or data. Both
C-SIDE and cell2location were excluded as their functions do not
accept cell ratios as covariates since these are estimated from
their own models. Similarly, since ttest and wilcoxon methods do
not have an inherent option to account for cell ratios, they were
also excluded from testing. In these tests, all spots were included.
As before, the design matrix not only specified the condition but
also, now, included the cell ratios (for all the spots) and an interac-
tion term between the condition and the cell ratios (condition:cell
ratio). This analysis was repeated per cell type since including
the full array of cell-type ratios created two unavoidable issues:
(i) extremely large covariate matrices, and (ii) the rank of the
matrix was not full and would result in convergence errors. In

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae621#supplementary-data
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terms of specifics per algorithm, for edgeR, the design matrix is
as described above but the dispersion is estimated using only
the condition and cell ratios. Generalized linear model (GLM) fit
tests were performed on the interaction term. In MAST, the zero-
inflated regression formula contains the condition, cell ratios,
and interaction term. The likelihood ratios test is performed with
the function CoefficientHypothesis on the interaction term. For
DESeq2, the design formula includes the condition, cell ratios, and
interaction term.

Gene specificity analysis
When devising and benchmarking our own gene-selection
method, we examined three inputs for each DEG algorithm : (i)
incorporating all spots that contain a specific cell type without
the absolute cell quantity or percentage (“containing spots”—as
used in the majority of the work); (ii) taking only spots composed
predominantly of a specific cell type similar to the output from
annotation tools where spots are treated as if they are an SC
(“single”); or (iii) encompassing the entire region of a specific
condition (“regional”). Ultimately, we chose to use the regional
input, as such a scenario is easier to obtain in the real world
than “containing spots,” and it was significantly better than
the “single” input. Mean specificity was significantly better than
both frequency and random specificity (post hoc Tukey’s honestly
significant difference (HSD) P-values 1e-7, and 2e-5, respectively).

Additionally, we assessed two definitions of gene specificity per
cell:

(i) the average mean expression scaled by the sum of average
mean expression across all cell types (“mean”):

Mean specificityci ,g = countsci ,g∑n
j=1 countscj ,g

where counts = the average mean expression (per cell type), c = cell
type, g = gene, and n = total number of cell types.

(ii) the frequency of expression, scaled by the sum of frequency
across all cell types (“frequency”):

frequency specificityci ,g = mean
(
cell countsci ,g > 0

)
∑n

j=1 mean
(
cell countscj ,g > 0

)

where cell counts = a vector of counts of gene g, for all cells from
cell type c, c = cell type, g = gene, and n = total number of cell types.

The decision to use regional input for all classic DEG meth-
ods meant that all cell types would have the same P-value. We
decided that we would only consider the cell type with the highest
specificity score since it has the highest chance of being a major
contributor to the result. This means that in the evaluation, each
gene was evaluated for only one cell type—if at all.

Subsequent to selecting an input datatype and a gene-selection
method, we tested the effects of gene specificity on the F1 scores
by selecting genes above a certain specificity threshold. Selection
was performed after DEG methods ran on the preprocessed count
matrix and affected the FDR correction only. We compared a total
of four configurations: C-SIDE and standard DEG analysis with
genes selected by: prior-based gene specificity (our method), C-
SIDE (C-SIDE selected genes only), and randomly selected genes.
We matched the number of genes used by C-SIDE to the number of
genes that we acquired by applying varying specificity thresholds
to ensure a fair comparison. Moreover, we randomly selected the
required number of genes out of the C-SIDE subset (without repe-
titions). If the desired amount was larger than the C-SIDE subset,

we used the entire C-SIDE subset and allowed genes to repeat.
Standard DEG analyses were performed as follows: SCTransform
normalization was used with t-test analysis on all genes, followed
by gene selection according to one of the approaches described
above, and lastly, P-values were corrected according to Benjamini–
Hochberg—with the selected number of genes.

Statistical evaluation
Ground truths are given by the simulation parameters and further
validated by robust criteria (see above). If a gene is categorized as
non-differentially expressed between the two conditions, it will be
treated as such. Throughout the paper, unless stated otherwise,
the evaluation per cell type is conducted on all the spots that
contain that cell type independently of the percentage of it from
the total cells in the spot. Sensitivity is calculated over a few steps,
first, by summing all of the genes that are significant according
to the DEG algorithm with a threshold of P ≤ .01 divided by
the number of tested hypotheses according to the Benjamini–
Hochberg correction. Subsequently, this sum is divided by the
number of true DEGs. The specificity is calculated similarly, but
rather, it sums the genes that are classified as non-DEGs and that
have a P-value over the threshold. The F1 score is a harmonic
mean of the sensitivity, also called recall, and the precision. The
precision is the ratio between the true positives to all of the
positive DEGs identified.

In order to make the comparison to the SC simulations fair, we
inflated the number of SCs to be in their thousands, similar to
the number of SCs that are contained in an ST simulation. Since
the number of cells in each ST simulation is different, we tested
configurations between 2000 and 10 000 cells. The configuration
with 5000 cells was chosen as it gives maximal F1 scores, along
with a 4000 cell configuration that resides at the point where
F1 scores begin to decrease (Supp Fig. 7). The SCs are randomly
selected from the pool of cells available in order to reach the
desired number of cells.

All code was run under R 4.2.2 or Python 3.6.9.

Key Points

• Common methods to detect differentially expressed
genes (DEGs) do not accurately recover DEGs in data
from spatial transcriptomic (ST) spot-based technolo-
gies.

• Cellular heterogeneity within spots is a primary contrib-
utor to the low performance of these methods.

• The high sparsity of ST data hinders the ability of decon-
volution and deconvolution-based methods to enhance
DEG recovery.

• Gene selection is a key step in improving DEG reliability
in ST data.

• Prior knowledge-based gene cell-type specificity scores
significantly enhance the ability to accurately call DEGs
in ST data while avoiding the need for complex steps
such as deconvolution.

Supplementary data
Supplementary data are available at Briefings in Bioinformatics
online.
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