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Abstract

Third-generation sequencing platforms, such as Oxford Nanopore Technology (ONT), have made it possible to characterize communities
through the sequencing of long amplicons. While this theoretically allows for an increased taxonomic resolution compared to short-
read sequencing platforms such as Illumina, the high error rate remains problematic for accurately identifying the community members
present within a sample. Here, we present and validate CONCOMPRA, a tool that allows the detection of closely related strains within
a community by drafting and mapping to consensus sequences. We show that CONCOMPRA outperforms several other tools for
profiling bacterial communities using full-length 16S rRNA gene sequencing. Since CONCOMPRA does not rely on a sequence database
for profiling communities, it is applicable to systems and amplicons for which little to no reference data exists. Our validation test
shows that the amplification of long PCR products is likely to produce chimeric byproducts that inflate alpha diversity and skew
community structure, stressing the importance of chimera detection. CONCOMPRA is available on GitHub (https://github.com/willem-
stock/CONCOMPRA).
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Introduction
Oxford Nanopore Technology (ONT) allows for the sequencing of
much longer amplicons than second generation sequencing plat-
forms. Several studies have attempted to leverage the increased
length of marker amplicons to increase the taxonomic resolu-
tion at which microbial communities can be characterized. For
instance, [1] sequenced a 3.5 Kb and a 6 Kb region, covering
multiple rRNA genes and internal transcribed spacer regions,
to classify fungi in clinical samples. [2] described a protocol to
characterize the bacterial communities associated with seaweeds
by sequencing the near full-length 16S rRNA gene.

Despite continuous improvements in sequencing chemistry,
flow cells and base calling algorithms, the quality of sequenc-
ing data is still markedly lower than that generated by second-
generation short-read sequencing platforms. Due to the relatively
high number of erroneous bases (modal read accuracy for the
R9.4.1 and R10.4 flow cells of >96% and > 99% [3];, the increased
amplicon length obtained with ONT sequencing is a challenge
in itself and does not necessarily translate in finer phylogenetic
resolution. For instance, direct taxonomic assignment of single

full-length 16S rRNA sequences at the subgenus level is prob-
lematic using established tools such as the EPI2ME platform [4].
One way to increase read accuracy is to ensure that the same
DNA strand and its complement or copies, are sequenced multiple
times. This can be achieved with unique molecular identifiers that
link daughter sequences to the original template DNA [5] or rolling
circle amplification [6, 7]. The downside of such approaches is
that they significantly complicate workflows, increase costs, and
reduce the number of unique reads that can be sequenced within
a run.

Given these complications, researchers have focused on devel-
oping post-sequencing solutions to achieve species-level reso-
lution with ONT amplicon data. Emu [8] employs an expecta-
tion–maximization algorithm to provide species-level taxonomic
assignments from full-length 16S rRNA reads. NanoCLUST classi-
fies consensus sequences rather than individual reads [9]. These
tools, as well as other commonly used tools for taxonomic assign-
ment of ONT amplicon sequencing data, including Kraken2 [10],
require a reference database such as SILVA [11], UNITE [12], or PR2
[13] to function. However, the databases available to date are far
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from exhaustive and often lack strain or even species-level infor-
mation, hampering finer taxonomic assignment of long amplicon
ONT sequencing with the available tools. This is, for instance,
the case for marine bacterioplankton, where many oligotrophic
bacteria are challenging to isolate [14, 15]. Moreover, databases are
only available for a few loci (ITS, rRNA genes), and might not be
suitable when working on an understudied group or in unexplored
habitats.

As with other sequencing technologies, ONT-generated
sequences can be chimeric. Chimeras in amplicon sequencing
data can easily make up one third of the data [16] although
the frequency of chimeric reads depends on the sequencing
protocol (i.e., primers used, PCR conditions) as well as the sample
composition itself [17, 18]. Chimeras are formed during the
PCR as well as post-amplification, during the ligation [19]. The
amplification of a longer region generally produces more by-
products [20] as template switching during DNA synthesis is more
likely to occur. Mapping of reads with chimeric sequences still
present is likely to result in false positive detection of species and
inflate diversity estimates. Several tools have been developed
to detect and remove chimeric reads in ONT sequencing data,
e.g., Liger2LiGer [21], https://github.com/rlorigro/Liger2LiGer, but
these are originally not designed to handle amplicon data and
are computationally demanding as they require all-against-all
mapping of reads.

Here, we present the tool CONCOMPRA, CONsensus approach
for COMmunity Profiling with nanopoRe Amplicon sequencing
data. This tool creates a consensus sequence database followed by
abundance profiling of amplicon ONT sequencing data. Our work-
flow is designed to be fast, customizable (implemented in bash
and python) and flexible (working from one-to-many samples).
We show that this workflow, using full-length 16S rRNA gene data,
allows for the discrimination of closely related species and works
with long amplicons for which no suitable reference database is
available.

Methods
CONCOMPRA workflow
The input data consists of basecalled ONT sequencing reads in
fastq format. CONCOMPRA (Fig. 1) processes all fastq files present
in the appointed working directory. On a file-per-file basis, a list
of consensus sequences is generated from the reads according
to the following steps. Reads outside of the user-defined length
window (based on the expected length distribution of the ampli-
con) are discarded. Forward reads with primers at the expected
positions are identified using primer-chop (https://gitlab.com/
mcfrith/primer-chop), which also trims the primers and bases
preceding the forward primer and trailing the reverse primer.
Simultaneously, the mapping of the primers to the sequences is
used to estimate the rates (probabilities) of insertion, deletion,
and substitution in the sequencing data [22], which are required
for the LAST alignment algorithm [23] implemented in primer-
chop and our consensus generation approach. To prevent highly
erroneous reads from influencing the downstream processing,
only the top 80% of the forward, trimmed reads, with the fewest
expected errors are retained using Filtlong (https://github.com/
rrwick/Filtlong). These sequences are used for unsupervised clus-
tering, similar to the NanoCLUST approach. The reads are clus-
tered with UMAP-OPTICS [24, 25] based on their 3mer (substrings
of length 3) composition. A consensus sequence is produced from
a subset of the reads (40 by default, user defined parameter)
within each cluster using lamassemble [26] with the previously

estimated insertion, deletion, and substitution rates. Potentially
chimeric sequences are flagged using the vsearch uchime_denovo
algorithm, taking into account the number of reads assigned to
the cluster from which the consensus sequence was generated.
Since this chimera detection step is performed for each sample,
these chimeric consensus sequences are referred to as ‘local
chimeric sequences’.

Vsearch [27] is used to deduplicate sequences and, optionally,
remove highly similar consensus sequences coming from the dif-
ferent samples. An abundance table of the consensus sequences
across samples is created by mapping the reads from the original
fastq files to the consensus sequences with minimap2 [28]. Reads
that fail to map to the consensus sequences are written to a
separate ‘unmapped’ fastq file. Consensus sequences that are
deemed chimeric based on the number of reads mapped to them
across samples (vsearch uchime_denovo) are considered ‘global
chimeric sequences’. The consensus sequences that have been
flagged as local chimeric sequences or global chimeric sequences
are removed in order to obtain a final, chimera-free consensus
sequence table.

Datasets
CONCOMPRA was compared to alternative tools on three
datasets: (1) the 16S rRNA gene sequences from a synthetic
bacterial community composed of 20 equally abundant bacteria
(16S MOCK), (2) the previously published 16S rRNA gene
sequences from the Gut Microbiome Standard, a microbial com-
munity mimicking the human gut microbiome (Gut Microbiome
Standard), and (3) low-quality 16S rRNA gene sequences from
natural planktonic bacterial communities (16S natural).

16S MOCK: The full-length 16S rRNA genes from 1 μl of
a synthetic bacterial community, consisting of evenly mixed
genomic DNA from 20 bacterial strains, (ATCC MSA-1002), was
amplified with the primer set 27F_Bctail-FW (TTTCTGTTGGT-
GCTGATATTGC_AGAGTTTGATCMTGGCTCAG) and 1492R_Bctail-
RV (ACTTGCCTGTCGCTCTATCTTC_CGGTTACCTTGTTACGACTT)
using the Phire Tissue direct PCR Master Mix (Thermo Fisher)
as previously described [2]. Approximately 100 ng DNA (Qubit,
ThermoFisher, Massachusetts, United States) of each PCR
product was barcoded using the Oxford Nanopore PCR Barcoding
Expansion Pack 1–96 (EXP-PBC096) and pooled equimolarly with
various other samples. The pooled DNA was purified using the
Agencourt AMPure XP system. Amplification and barcoding of
the synthetic bacterial community DNA extract was performed
four times independently, resulting in four different barcoded PCR
products. The library was prepared for two different nanopore
flow cell chemistries (two barcoded PCR products each), R9.4.1
and R10.4.1 flow cells, using the ONT SQK-LSK109 and SQK-
LSK114 (V14) ligations kits respectively, with the ‘Amplicon by
Ligation’ protocol. Approximately 1 μg of pooled and purified
DNA was used to prepare the library. 560 ng of the library were
loaded on a flow cell. Sequencing on the R9.4.1 flow cell was
halted after 48 h and on the R10.4.1 flow cell after 72 h. The
neural network-based tool Guppy [29] was used for super-accurate
basecalling (v6.3.8 for the R9.4.1 flow cell data; v6.5.7 for the
R10.4.1 flow cell). The minimum data quality threshold was
set to Q10. Data quality was assessed with NanoPlot v1.42.0
[30]. The first 10 000 reads of each sequence file were blasted
(BLAST 2.2.29+) against the reference sequences (retrieved from
the genomes provided by ATCC) to estimate sequence similarity
of the data to the ground truth. An Illumina MiSeq system
(300 bp paired end) sequenced dataset, restricted to the V1-V3
region of the same mock community, was generated using the pA
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Figure 1. CONCOMPRA workflow. Consensus sequences are generated per sample and then concatenated across samples. Sequences are mapped to
the consensus sequence table to generate a count table with the number of sequences mapped to each consensus sequence per sample. Chimeric
sequences are detected and removed.

(5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGAGTTTGAT
CCTGGCTCAG-3′) and BKL1 primer pair (5′-GTCTCGTGGGCTCGG
AGATGTGTATAAGAGACAGGTATTACCGCGGCTGCTGGCA-3′) as in
[NO_PRINTED_FORM] [31].

Gut Microbiome Standard: A microbial mock community,
produced by Zymo Research (California, United States). The nearly
complete 16S rRNA gene sequences (Sequence Read Archive:
ERR10318834) were previously generated and published by [32]
The community is comprised of 21 different strains to mimic the
human gut microbiome, including three non-bacteria. The the-
oretical relative abundance of the members in the mock ranges
from 14% to 0.0001%. Five different strains of Escherichia coli are
present within the mock, each at a theoretical relative abundance
of 2.8%. There were minor differences in the forward primer (5′-
TTTCTGTTGGTGCTGATATTGC-AGRGTTYGATYMTGGCTCAG-3′,
differences in bold) as well as the PCR mix and protocol used
by [32] compared to the ONT 16S rRNA gene data generated in
this study. The library containing the 16S rRNA gene PCR product
from the mock and various other samples, was prepared using
the Nanopore Ligation Sequencing Kit SQK-LSK112 sequenced on
an R9.4.1 flow cell.

16S natural: Three independent water samples (50-100 ml),
collected in different months at different locations in the Belgian
part of the Schelde river were filtered through a 0.22 μm MF-
Millipore Membrane filter (Merck Millipore). DNA was extracted
using the Dneasy PowerLyzer Microbial Kit (Qiagen). For Illumina
sequencing, the V1-V3 region of the 16S rRNA gene was amplified

and sequenced as described above. The full-length 16S rRNA
gene for the three communities was amplified and sequenced
on a R9.4.1 flow cell as described for the synthetic bacterial
community. Base calling was performed using Guppy v 4.3.4. Since
the resulting basecalled data was of low quality (less than 3% of
the data was above Q10 quality threshold that was used for the
other datasets; Table 1), no quality threshold was set for the 16S
natural sequencing data prior to using it for community profiling.

Data analysis
CONCOMPRA was run on the datasets with sequence length
window set to 1400–1700 bp for the inhouse sequenced samples
and 1500–1800 bp for the Gut Microbiome Standard sample,
based on the mean expected sequence length of the amplicons
(including flanking sequences). The mock samples were analyzed
individually, and the natural samples were analyzed in batch.
Taxonomic annotations of the CONCOMPRA-generated consen-
sus sequences for the 16S MOCK and 16S natural datasets were
obtained using the IdTaxa function from the DECIPHER package
v2.28.0 [33]with the SILVA_SSU_r138 reference database [34].
NGSpeciesID v0.3.0 [35]and amplicon_sorter (version Feb 20, 2024)
[36] were used to compare the quality of the obtained consensus
sequences obtained for both mock datasets. NGSpeciesID was
run with an abundance ratio threshold of 0.002 and Racon as
polisher with three iterations. Chopper v0.7.0 [30] was used to
retain only ≥ Q12 reads prior to using amplicon_sorter setting the
same size window as above. Consensus sequences generated by
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Table 1. Summary of the ONT 16S rRNA gene data used in this study.

sample ID sequencing chemistry read count mean read quality Mean read length

16S_R9_1 R9 41,195 13 1544.5
16S_R9_2 R9 119,342 12.8 1576.5
16S_R10_43 R10 51,157 15.4 1556.4
16S_R10_60 R10 171,686 15.3 1538.7
Gut Microbiome Standard R9 181,006 16.2 1584.2
natural sample (id4) R9 25,441 7.8 1885.9
natural sample (id26) R9 48,129 7.8 1996.6
natural sample (id47) R9 33,823 7.8 1949.3

CONCOMPRA, NGSpeciesID, and amplicon_sorter were compared
to the reference sequences using BLAST 2.2.29+. Only reference
sequences with a > 95% match to a consensus sequence were
considered to be represented by the consensus sequences.
The F1 score [37] was calculated to compare the performance
of the three consensus sequence building approaches, where
true positives (TP) were defined as the number of consensus
sequence that uniquely matched a reference sequence with
>99% sequence identity. False negatives were defined as reference
sequences that did not have a uniquely matching (>99% sequence
identity) consensus sequence, and false positives as the total
number of consensus sequences minus TP. The F1 scores were
compared between consensus sequence building approaches
across the four 16S mock communities using a Repeated
Measures ANOVA (ezANOVA, ez v4.4) followed by a pairwise
t-test with Holm-Bonferroni p-value correction for multiple
testing.

The 16S MOCK data and 16S natural data were also analyzed
with the reference-based tools Emu v3.4.5 and Kraken2 v2.1.2.
SILVA_SSU_r138 was set as reference database. The Gut Micro-
biome Standard was only analyzed with Emu. The 16S MOCK data
was analyzed with both of these tools (1) as is, (2) after length
(1400–1700 bp) filtering with Chopper, and (3) after removal of
putative chimeric sequenced regions (scrubbing) with yacrd v1
[21] on an all-to-all file generated by mm2-fast v2.24 [38]. As
scrubbing failed for one of the R10 datasets, this single sample was
excluded from the calculation of filtering and scrubbing statistics.

The Illumina data was processed with DADA2 (v1.28.0) [39]. The
primer regions as well as the trailing ends of low quality were
trimmed prior to applying the default DADA2 workflow (v1.16).
The IdTaxa function from the DECIPHER package v2.28.0 with
the SILVA_SSU_r138 reference database was used for taxonomic
annotation of the sequence variants (SVs).

To compare the taxonomic annotations between approaches,
taxonomic tables were aggregated at the genus level using Phy-
loseq (1.44.0; R 4.3.1) [40]. Only bacterial reads were retained in
the samples by removing reads assigned to mitochondria, chloro-
plasts, or not assigned to the domain Bacteria. Reads that could
not be annotated at the phylum level were also removed. The
accuracy of the different methods was quantified by summing
the absolute values of the observed relative abundances minus
the expected relative abundances across genera.

To compare taxonomic resolution in the absence of a
predefined taxonomic framework, the OTUs/SV assigned to the
understudied NS11–12 marine group (Sphingobacteriales) within
the natural 16S dataset were compared. An approximately-
maximum-likelihood phylogenetic tree (FastTree 2.1.11) [41] was
constructed from the OTU/SV sequences, which were aligned

with SSU-ALIGN 0.1.1 [42] Sphingobacterium multivorum OM-A8
(ENA accession: AB020205) was used as outgroup for rooting.

Results
16S mock community
The reads, generated by ONT sequencing (Table 1), had a median
sequence similarity to the reference sequences of 92.0% and
94.4% for the R9 and R10 datasets respectively. The number of
non-chimeric consensus sequences produced by CONCOMPRA
was close to the number of bacteria present in the mock (19.5 ± 2.4
sd) and the average sequence similarity between the consen-
sus sequences and the best-matching genome-derived 16S rRNA
gene sequences (https://www.atcc.org/products/msa-1002) was
≥99.9% for the four samples (Fig. 2). Over half of the reads were
assigned to chimeric OTUs (59.3% ±4.5% sd), which is in line with
the relatively low similarity of the reads to the actual reference
sequences (Fig. 2).

The consensus building tools NGSpeciesID and ampli-
con_sorter yielded 77.3 (±12.1 sd) and 36.5 (±8.3 sd) consen-
sus sequences, respectively. Both tools were consistently less
accurate than CONCOMPRA, obtaining an average sequence
similarity of 99.1% (±0.3 sd) and 99.5% (±0.3 sd; Fig. 2). The F1
score was significantly higher for CONCOMPRA (0.53 ± 0.3 sd)
than the other two methods (amplicon_sorter: 0.35 ± 0.03 sd;
NGSpeciesID: 0.25 ± 0.03 sd) (ezANOVA & paired t-tests: P <

0.01; Supplementary Fig. 1), mainly due to a higher precision
(fewer false positives). CONCOMPRA was also the only tool
that obtained consensus sequences that were identical to the
reference sequences. This was the case for over half the matching
sequences (Fig. 3).

No consensus sequences with more than 95% similarity were
recovered for Bifidobacterium adolescentis or Schaalia odontolytica
in any of the tests, suggesting that these 16S rRNA gene
sequences were not efficiently amplified (Fig. 3). In the R10
datasets, Cutibacterium acnes was missing once in a CONCOMPRA
consensus sequence set and Bacillus pacificus was missing in an
NGSpeciesID consensus sequence set. More bacteria remained
undetected in the R9 datasets: Cutibacterium acnes was absent
in both CONCOMPRA sets and E. coli, Enterococcus faecalis, and
Streptococcus agalactiae were each absent once in the CONCOMPRA
sets. Bacillus pacificus was missing in both amplicon_sorter sets,
and Cereibacter sphaeroides in one NGSpeciesID set. The two Strep-
tococcus strains were distinguished by all tools. CONCOMPRA was
the only tool that consistently distinguished the Staphylococcus
strains, although the consensus sequence for the S. agalactiae
in one of the R9 sets was only 95% identical to the reference
sequence.
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Figure 2. Similarity of the sequencing data and the consensus sequences to the reference 16S mock community. The blast-based percentage similarity
to the references is shown for the reads themselves (violin plots) and generated consensus sequences (box plots). The similarity to the references is
shown for each 16S mock sample in a different panel: A = 16S_R9_1; B = 16S_R9_2; C = 16S_R10_43; D = 16S_R10_60. The reads (dark grey; left side of each
panel) from the R10 sets (bottom row, C & D) were markedly more similar to the reference sequences (>20% of the reads were at least 98% similar
to the references) than the reads from the R9 sets (>5% of the reads were at least 98% similar to the references; top row, A & B). The alternative
consensus building tools (red) generated more consensus sequences, but these were less similar than the non-chimeric consensus sequences generated
by CONCOMPRA (green). The chimeric consensus sequences from CONCOMPRA were the least similar (97% on average) to the reference sequences.

Figure 3. Detection of the 20 different species in the bacterial mock community. The highest similarity to any of the 16S rRNA gene copy sequences to
each species (colors) is shown for the different consensus building tools (rows) for the different 16S mock datasets. Only non-chimeric sequences are
considered for CONCOMPRA. Species for which no consensus sequences with an identity above 99% was present are shown as hollow circles to the
left of the axis. The similarity to the references is shown for each 16S mock sample in a different panel: A = 16S_R9_1; B = 16S_R9_2; C = 16S_R10_43;
D = 16S_R10_60.
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Figure 4. Inferred composition of the mock communities. The beta diversity is visualized through non-metric multidimensional scaling (NMDS; A) using
Bray–Curtis dissimilarity on the relative abundances of the genera (2D stress = 0.037). Colors are used to indicate the data types and pipelines used and
the shape reflects the data treatment. The community composition (B) differed most between the Illumina data and the ONT data. Only the genera
present in the reference community are shown in the bar plots. Nomenclature from the SILVA_SSU_r138 reference database is used.

The two alternative, reference-based community profiling tools
returned a higher number of OTUs for the mock communities
than CONCOMPRA. Kraken2 predicted 500 (±78.7 sd) OTUs, and
Emu predicted 80.7 (±14.2 sd) OTUs. Filtering out the sequences
outside the size window removed ∼ 16% of the sequences and
reduced the predicted number of OTUs (Kraken2: 339.3 ± 48.3
sd; Emu: 68 ± 11.4 sd). Scrubbing the reads removed 0.2% of the
reads, but did not reduce the number of predicted OTUs (Kraken2:
505 ± 76.6 sd; Emu: 83.3 ± 13.4 sd).

Community profiles remained highly similar, regardless of
data treatment (Fig. 4). The Illumina data, processed with the
DADA2 pipeline, yielded 185 sequence variants (SVs) and was
distinct from any of the ONT datasets (Fig. 4). The Illumina
data were highly skewed, Clostridium making up over half the
community, while Streptococcus and Staphyloccoccus were present
at less than 1%. CONCOMPRA best approximated the true abun-
dance profile (summed deviation CONCOMPRA = 46.9 ± 6.2% sd;
Kraken2 = 52.7 ± 1.6% sd; Emu = 55.7 ± 1.7% sd; Illumina = 139.1%).
Filtering out the sequences outside of the set size window did not
reduce the deviation of the two alternative community profiling
tools (Kraken2 = 53.6 ± 2.5% sd; Emu = 55.7 ± 1.4% sd).

Gut microbiome standard
CONCOMPRA returned 21 non-chimeric consensus sequences
for the Gut Microbiome Standard. Twenty were highly sim-
ilar (99.9 ± 0.1% sd; Supplementary Fig. 2) to the reference
sequences. Each of these uniquely matched a single reference
sequence. Amplicon_sorter and NGSpeciesID yielded 11 consen-
sus sequences. All of the amplicon_sorter consensus sequences
were highly similar (99.6 ± 0.2% sd; Supplementary Fig. 2) to
the reference sequences. Nine of the NGSpeciesID consensus
sequences were highly similar (99.1 ± 1.0% sd; Supplementary Fig. 2)
to the reference sequences. Among the highly abundant taxa
(theoretical abundance >1.5%), CONCOMPRA failed to detect
Bacteroides fragilis and Faecalibacterium prausnitzii. Both were
detected by the other tools. While all consensus sequence building
approaches detected E. coli, only CONCOMPRA detected the
presence of multiple E. coli strains within the mock community
(three out of the four detected). Overall, CONCOMPRA had the

highest F1 score of the three approaches (0.36 versus 0.14 for
NGSpeciesID and 0.22 for amplicon_sorter).

CONCOMPRA and amplicon_sorter generated good consensus
sequences for the two taxa with a theoretical abundance of 1.5%
(100% and 99.7% similarity of the consensus sequences to the
reference sequence for Akkermansia muciniphila & 99.9% and 99.8%
for Clostridioides difficille, respectively; Fig. 5).

All three consensus sequence building approaches failed to
generate a sequence for the three taxa with a theoretical abun-
dance below 0.1% in the Gut Microbiome Standard (Fig. 5). Emu
detected Salmonella enterica (observed rel. Abundance of 0.0002%;
theoretical abundance of 0.01%) but also failed to detect E. fae-
calis (theoretical abundance of 0.001%) and Clostridium perfringens
(theoretical abundance of 0.0001%).

Natural bacterial samples
CONCOMPRA identified 64 nonchimeric OTUs across the three
samples, assigned to 15 different bacterial genera. Kraken2
assigned the ONT reads to 1894 different bacterial genera (2585
taxa). This was substantially less with Emu, namely 265 different
bacterial genera (506 taxa). Using the paired-end Illumina data,
DADA2 identified 948 SVs assigned to 81 different bacterial
genera. Although CONCOMPRA identified the fewest genera out of
the three ONT-based workflows, 81.7 (± 4.7 sd) % of the assigned
reads in CONCOMPRA were assigned to genera that were also
found in the Illumina-based DADA2 dataset. This was much
lower for the reads analyzed with Kraken2 and Emu (Kraken2:
16.6 ± 2.6% sd; Emu: 40.6 ± 7.3% sd). The reverse is also true, as the
majority (67.4 ± 10.7% sd) of the reads from the DADA2 datasets
were assigned to the genera found by CONCOMPRA.

The Illumina-DADA2 and CONCOMPRA analyses captured
a similar trend in community composition (Fig. 6), although
differences between communities were more pronounced for
Illumina-DADA2 datasets. The accumulated compositional
difference between Illumina data and ONT-based approaches was
largest for Kraken2 (Kraken2: 116.7 ± 7.6% sd; Emu: 83.0 ± 6.9% sd;
CONCOMPRA 81.7 ± 17.6% sd).

The NS11–12 marine group (Sphingobacteriales) was detected
in all three samples, with all methods (Fig. 7), although their
relative abundance differed between the methods. Kraken2 and

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae642#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae642#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae642#supplementary-data
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Figure 5. Sensitivity of the different consensus sequence building approaches. The highest similarity to any of the 16S rRNA gene copy sequences to each
species (colors) is shown for the different consensus building tools (rows) for the gut microbiome standard. The theoretical abundance of each species
(in %) in the community is shown in brackets, next to the species’ name and as the size of the circles. Only non-chimeric sequences are considered for
CONCOMPRA. Species for which no consensus sequences with an identity above 99% was present are shown as hollow circles to the left of the axis.

Figure 6. The differences in community composition between natural
samples are most pronounced based on Illumina sequencing but the
overall trends are conserved across sequencing approaches and analy-
ses. Beta diversity is visualized by non-metric multidimensional scaling
(NMDS) using Bray–Curtis dissimilarity. Symbols are used to indicate the
different natural bacterial communities and colors are used to represent
the different types of analyses. Stress = 0.04.

Emu datasets only had a single taxonomic ID associated with the
NS11–12 marine group, whereas CONCOMPRA and DADA2 drafted
four and six different SVs assigned to this group, respectively.
These different sequences could be assigned to two different
clades (Fig. 7). CONCOMPRA identified predominantly members
of the first NS11–12 clade in the first two samples and of the
second clade in the third sample. This is in line with the results of
DADA2.

Discussion
We have presented a novel tool that, starting from ONT amplicon
sequencing data, generates a de novo, consensus-based sequence
database which is then used for abundance profiling of microbial
communities. This tool, CONCOMPRA, proved to be more sensitive
and generally more precise than the other consensus sequence
generation tools tested here. CONCOMPRA performed well in
samples with low diversity (20 strains) and was able to capture
the diversity of abundant taxa in natural samples.

In natural, more diverse samples, the bacterial diversity
reported by CONCOMPRA was lower than the output returned
by Emu and substantially lower than the diversity results from
Kraken2. Based on the diversity reported by DADA2, the real

bacterial diversity within those samples, at least in terms of
number of genera present, is likely in between the CONCOMPRA
and Emu results. As both CONCOMPRA and Emu resulted in
datasets that were compositionally similar to the DADA2 datasets,
the differences between CONCOMPRA and Emu reflect the trade-
off between sensitivity and specificity.

Reference databases, even of established marker genes such as
the 16S rRNA gene that was used in this study, are incomplete.
This is the case for the NS11–12 marine group (Bacteroidota),
which is important for structuring planktonic bacterial commu-
nities in coastal and estuarine waters [43, 44]. As this group is
only represented by a single taxon ID in the SILVA_SSU_r138
database, Kraken2 and Emu could not distinguish the different
clades present in the natural samples. CONCOMPRA on the other
hand, was able to assign the reads to two clades within the NS11–
12 marine group, in line with the output from the DADA2 work-
flow. This example illustrates the benefit of being independent of
an existing reference database for assigning reads to OTUs

Our results showed that the bulk of the ONT sequencing data
was less similar to references than would be expected based
on reported base calling error rates [3]. This is in line with the
expected high frequency of chimeric reads in the data. The preva-
lence of chimeras made it difficult for tools such as NGSpeciesID
to generate accurate consensus sequences and inflated the esti-
mated richness by the Emu and Kraken2. This warrants the inclu-
sion of extensive chimera detection and removal steps in long-
read amplicon sequencing data workflows. Yacrd was developed
for chimera removal during genome assembly rather than han-
dling amplicon sequencing data [21], and it failed to remove most
chimeras, while the vsearch uchime_denovo algorithm, as imple-
mented in CONCOMPRA, removed a substantial proportion of
likely chimeric reads. By removing chimeric consensus sequences
only after mapping the reads in our workflow, we aimed to
increase mapping accuracy. This approach is only feasible in a
workflow that relies on drafting de novo consensus sequences.
The use of a de novo drafted reference database, as is also the
case in most Illumina processing workflows [27, 39, 45] can there-
fore be considered an advantage over mapping to an existing
reference database, as is now implemented in most Kraken2 or
Emu workflows. Modifications to the sequencing protocol such as
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Figure 7. The relative abundance of the NS11–12 marine group in the natural 16S samples. The different clades within the NS11–12 marine group
are indicated in the bar plots and cladogram by grey and black. There is no fill (white) if no distinction can be made. The community and data type
are indicated in the bar plot by the color and shape of the symbol. The sequences from the DADA2 and CONCOMPRA dataset are indicated in the
phylogenetic tree with a ‘D’ and a ‘C’ in the tip labels, respectively.

the optimization of PCR conditions [46], are likely to reduce the
number of chimeric reads and are important to consider as well.

Many workflows have been developed to process ONT-
sequenced (long) amplicon data, most of which rely on mapping
reads to existing databases [8, 10, 47, 48]. Here, we argued
that there are important benefits to breaking free from ref-
erence databases and using a de novo approach instead. We
introduced and validated a novel tool, CONCOMPRA, that
drafts and maps to consensus sequences, thus allowing the
distinction of closely related strains without any external
reference database. Although we demonstrated CONCOMPRA
on various 16S rRNA gene datasets, its independence of a
database makes it particularly suitable for less commonly used
amplicons.

Continued improvements in base calling models (e.g., the
Dorado v0.7.3 sup model) and error correction tools [49] have
improved the accuracy of nanopore sequencing data to the
point where nearly flawless bacterial genome assemblies can
be obtained [50, 51]. We can expect that similar improvements
will soon enable us to detect single base pair differences between
closely related strains in ONT-sequenced amplicon data without
relying on consensus sequences. This will be an essential step in
taking advantage of the long amplicon capability specific to the
ONT platforms.

Key Points

• We introduce a reference-free tool for processing (long)
amplicon Oxford Nanopore sequencing data.

• We show that it is capable of achieving a higher accuracy
than existing tools.

• Chimera detection and removal is an essential step
in the processing of long amplicon Oxford Nanopore
sequencing data.
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Supplementary data are available at Briefings in Bioinformatics
online.
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