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Abstract 
The interactions between transcription factors (TFs) and the target genes could provide a basis for constructing gene regulatory 
networks (GRNs) for mechanistic understanding of various biological complex processes. From gene expression data, particularly 
single-cell transcriptomic data containing rich cell-to-cell variations, it is highly desirable to infer TF–gene interactions (TGIs) using 
deep learning technologies. Numerous models or software including deep learning–based algorithms have been designed to identify 
transcriptional regulatory relationships between TFs and the downstream genes. However, these methods do not significantly improve 
predictions of TGIs due to some limitations regarding constructing underlying interactive structures linking regulatory components. 
In this study, we introduce a deep learning framework, DeepTGI, that encodes gene expression profiles from single-cell and/or bulk 
transcriptomic data and predicts TGIs with high accuracy. Our approach could fuse the features extracted from Auto-encoder with 
self-attention mechanism and other networks and could transform multihead attention modules to define representative features. 
By comparing it with other models or methods, DeepTGI exhibits its superiority to identify more potential TGIs and to reconstruct 
the GRNs and, therefore, could provide broader perspectives for discovery of more biological meaningful TGIs and for understanding 
transcriptional gene regulatory mechanisms. 

Keywords: self-attention mechanism; deep learning; transcription factor-gene interaction; gene regulatory networks; single-cell 
transcriptomic data 

Introduction 
Regulation of gene expression in eukaryotic cells is accomplished 
by different complex mechanisms, a set of interactions between 
transcription factors (TFs) and the downstream target genes in 
specific ways (activation or inhibition). The regulatory interac-
tions between TFs and genes provide primary information for 
reconstruction of gene regulatory networks (GRNs) that underlie 
various biological processes and functions. Therefore, identifica-
tion of the TF–gene interactions (TGIs) could assist in mechanistic 
understanding of gene regulations. Recently advanced single-cell 
sequencing technologies allow us to explore alterations of gene 
expression in single cell levels. The previous studies suggest that 
complex interrelations between TFs and genes linking regulatory 
factors to coordinate gene expression profiling could be proposed 
as a model for predicting TGIs and for inferring GRNs. 

A variety of traditional models or approaches have been devel-
oped for integrative analysis of gene expression profiling and for 
unraveling a transcriptional regulatory relationship from bulk 
transcriptomic data, for example, GENIE3 [1], WGCNA [2], and 

ARACNE [3], etc. In contrast, PIDC [4], PPCOR [5], and SCENIC [6] 
can use single-cell-based transcriptomic data for modelling pair-
wise mutation information between genes and then compute the 
ratio between the unique component and the mutation. However, 
these correlation-based methods cannot distinguish the direction 
of regulatory relationships because of the symmetry of the corre-
lation information. Machine learning–based GENIE3, GRNBoost2, 
and SCENIC utilize algorithms, such as Gradient Boosting Machine 
and Random Forest, to predict TGIs and infer GRNs as regression 
or classification problems in large scale, which require intensive 
computation, thus limiting the scope of applications of these 
algorithms. 

Different from these traditional methods above, deep learning– 
based models can assemble not only gene expression pro-
files but also known regulatory factor–gene interactions and 
organism/tissue- or cell-related information [7–9]. In general, they 
rely on classic deep learning algorithms, like artificial neural 
network (ANN), convolutional neural network (CNN), or gate 
recurrent unit, for inferring regulatory relationships between TFs
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and genes [10–12]. For example, CNN for coexpression encodes 
gene expression data into matrices and then extracts spatial 
features from it, which integrates prior knowledge and other 
information contained in expression data during the training 
of models [9]. Limited by such encoding, the CNN methods 
cannot efficiently capture the correlation information contained 
in transcriptomic data. An ANN-based gene network embedding 
assembles both expression data and gene interaction topology 
into embedded representations and then predicts gene regulatory 
interactions. However, it cannot extract effective features from the 
embedding vector limited to the ANN [13]. Most recently, a hybrid 
deep learning method, DGRNS, encodes the gene expression with 
Pearson correlation coefficient (PCC) and then extracts time-
dependent characteristics from the correlation vector with gate 
recurrent unit. Finally, it employs CNNs to learn spatial features 
from the matrices to reconstruct GRNs [14]. However, this method 
relies on time-related information, which affects its performance 
in processing data not in time series. 

To overcome the limitations described above, we newly devised 
a deep learning framework DeepTGI (Deep learning method 
for TF–Gene Interaction) that can integrate Auto-encoder with 
self-attention mechanism and other networks using correlation 
vectors of gene expression profile. By analysis of bulk or single-cell 
transcriptomic data, our model can identify potential interactions 
between TFs and genes with biological meanings. We carried 
out comprehensive evaluations on performance of DeepTGI 
by comparative analyses of various transcriptomic datasets 
from different cell lineages and species with other methods. 
The results demonstrate the advantages of DeepTGI in holding 
high accuracy to identify regulatory relationships between TFs 
and target genes and to infer GRNs and thus could provide 
a better solution for understanding of transcriptional gene 
regulation. 

Data and methods 
Data collection 
In this study, six mRNA expression datasets of mouse or human 
extracted from the National Center of Biotechnology Informa-
tion/Gene Expression Omnibus database were used for evalu-
ation, comparison, and application of models (Supplementary 
Table S1). There are also different sets of TFs selected for ana-
lyzing each dataset due to their involvement in the experiments. 
These data include the following three sets. 

1) Mouse embryonic stem cells (mESCs) were collected 
from three bulk transcriptomic data GSE16375, GSE31381, and 
GSE26520. A total of 222 TFs in three datasets were included in 
TGI prediction analysis. 

2) Single-cell RNA-seq (scRNA-seq) data GSE103221 of different 
time-point reprogramming processes from mouse-induced 
pluripotent stem cells (miPSCs) [15]. As previously described [13], 
the scRNA-seq raw data were normalized, and the normalized 
counts of all genes were log2-transformed. The scRNA-seq 
data show dynamic change of gene expression during 8 days 
from 0 to 8. 

3) To compare different cell lineages/tissues or species, four 
scRNA-seq datasets similar to those proposed by Zhao et al. [14] 
were used, including two mouse hematopoietic stem cell (mHSC) 
datasets from two different lineages, progenitor cell transitions 
to erythroid (mHSC-E) or to lymphoid (mHSC-L), and two human 
datasets, of human embryonic stem cells (hESCs) derived from 758 
cells along the process of differentiation into definitive endoderm 
cells, and of hepatocyte-like lineage (hHEPs) from human induced 

pluripotent stem cells differentiating to hepatocyte-like cells in 
2D culture. 

Our method requires the known TGIs as input training data. 
When trained with mESC and miPSC datasets, we constructed 
the gold-standard GRNs of mESCs by using our ChIP-Array [16, 
17]. This method uses ChIP-seq/chip of a TF combined with gene 
expression change under perturbation of the same TF in mESCs 
to identify all targets of the TF. Each target of a TF in the network 
is evidenced by the in vivo cell-type-specific binding sites of the 
TF on its promoter/enhancer and the expression change in the 
perturbation experiment of the TF, which is well accepted as 
a true target of this TF. According to the true TGIs, the conse-
quential gold standard networks can be built. Based on the TGIs 
predicted by using bulk or single-cell transcriptomic data and the 
gold-standard GRNs, common genes are selected from all three 
datasets for further training, testing, and evaluation. The gold 
standard networks corresponding to two mouse datasets mHSC-
E and mHSC-L and two human datasets hESC and hHEP are also 
obtained from BEELINE [18]. 

DeepTGI overview 
In this study, we introduce DeepTGI, a self-attention mechanism– 
driven deep learning framework that aims to decode regulatory 
relations between TFs and genes and to reconstruct GRNs. 
Figure 1 illustrates the schematic diagram of DeepTGI consisting 
of three main steps. Firstly, single-cell and/or bulk transcriptomic 
data are used as input. DeepTGI calculates and sets up PCC 
similarity matrices by comparative analysis of expression profile 
between TFs and genes in the datasets. The model then extracts 
vector representations of TFs and genes within the similarity 
matrices and subsequently concatenates these vectors in a 
structured manner. Secondly, DeepTGI fuses features from 
various transcriptomic data through three network approaches, 
Auto-encoder, 2DCNN-1DCNN, and Siamese. Auto-encoders can 
perform representation learning on messenger RNA (mRNA) 
expression data and simultaneously fuse features from single-
cell and/or bulk data. The 2DCNN-1DCNN can learn the spatial 
features contained in the transcriptomic data, and the Siamese 
network can learn similar characteristics between TFs and target 
genes. Finally, after fusing the three features, multihead attention 
modules are applied to learn important information from the 
latent vectors. The final linear layers are utilized to predict 
all possible TGIs, and the potential interactions of main TFs 
and the target genes would provide a basis for reconstruction 
of GRNs. 

Feature representation 
Feature representation is essential for model construction. Here, 
we used both bulk and scRNA-seq data to train the models, which 
can learn more features from various datasets. The feature of 
each gene (including TFs) corresponds to a set of its expressions 
in all samples. To acquire the information containing internal 
correlations, we calculated PCCs of mRNA expression between 
TFs and genes, respectively, and two similarity matrices were gen-
erated. The PCC is a measure of the linear relationship between 
TFs and genes, enabling quantification of correlation degrees. The 
bulk and single-cell data generate two N × N similarity matrices, 
respectively, where N is the number of genes. The PCC of a pair of 
genes/TFs, gene/TF i and j is calculated as follows: 

ρi,j = 
Cov

(
i, j

)
σiσj 

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae639#supplementary-data


A deep learning framework for gene regulatory networks | 3

Figure 1. Overview of the self-attention-driven deep learning framework, DeepTGI. This model system establishes the GRNs according to interactions 
between TFs and genes in biological systems. The DeepTGI algorithm starts with profiling gene expressions to learn vector representations of TFs 
and their downstream genes within the PCC similarity matrix and to obtain a latent vector representation for TF–gene pairs. DeepTGI employs a fully 
connected layer to predict potential TGIs. 

where Cov(i,j) is the covariance of the pair of gene/TF i and j and σ i 
and σ j is the standard deviation of their expression, respectively. 
Each row of the similarity matrix represents the degree of similar-
ity between a TF and all other genes, and this information will be 
used for subsequent feature extraction. 

The single-cell datasets are sparse and have high dimension-
ality. As input data, such high sparsity may reduce the perfor-
mance of the model. In our method, PCCs play as the features 
to further decrease the sparsity of the input and enrich the 
features. 

Feature extraction 
DeepTGI first uses three machine learning models to extract 
different features from transcriptomics data, namely, Auto-
encoders, 2DCNN-1DCNN, and Siamese networks. In machine 
learning, Auto-encoder is an unsupervised learning model, which 
extracts the features from the input data. The output is a feature 
representation of the input data. 

Auto-encoder with self-attention mechanism 
The Auto-encoder contains two parts: an encoder that encodes 
the input and extracts features from it and a decoder that aims 
to decode the features and acquire the fused representation of 
the input. In DeepTGI, the input data comprise two TF features 
and two gene features derived from single-cell and bulk transcrip-
tomics, respectively. Auto-encoder is a decent way to fuse those 
features into one latent representation for feature extraction. A 

high dimensionality can lead to extremely inferior performance of 
the model under certain circumstances. Thus, the Auto-encoder 
represents an appropriate module for dimension reduction and 
feature extraction [19]. The self-attention mechanism is derived 
from attention mechanism and is widely applied in multiple tasks, 
which can reduce dependence of models on internal informa-
tion and make models capture useful features from the internal 
correlation of data [20]. Moreover, the self-attention mechanism 
empowers models to focus on the critical information contained 
in internal correlations. We thus add a self-attention layer into the 
Auto-encoder that can make models extract critical information 
from gene expression profiles. In addition, an extra output of 
the Auto-encoder can be an auxiliary loss for improving the 
performance of the model. 

2DCNN-1DCNN 
The CNN is a deep learning algorithm that extracts features from 
the input. DeepTGI uses two types of CNNs: two-dimensional CNN 
(2DCNN) and one-dimensional CNN (1DCNN) to process single-
cell or bulk transcriptomic datasets. To extract the spatial charac-
teristics of transcriptomic data, the similarity vectors of TFs and 
genes go into 1DCNN vectors, and then, they are combined into 
a 2D matrix and become a 2DCNN that extracts their combined 
two-bit space features. The output of the 2DCNN represents a 1D 
vector as the latent feature vector. This vector is further inputted 
into the 1DCNN to obtain the final spatial latent vector that is 
finally fed into the feature fusion modules.
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Siamese networks 
A Siamese network contains two or more identical subnetworks 
used to find similarities between inputs by comparing feature 
vectors [21]. The twin network extracts the output by sharing 
weights into the similar characteristics of the dataset. Here, 
mRNA expression similarity matrices of TFs and genes are fed 
into two branches of the Siamese network: branch1 and branch2. 
Each branch of the twin network adopts the same structure, 
including a multihead attention mechanism layer, linear layer, 
and layer normalization. Through the attention mechanism, the 
model would extract important similar features. Specifically, 
each input vector is composed of a TF vector and a gene vector 
that are concatenated to form a vector, which is then fed into 
branch1 and branch2, respectively. After processing, the outputs 
of branch1 and branch2 are combined to form a feature vector 
that brings similar features extracted from the two datasets and 
is finally fused to the feature fusion modules for further fusion 
processing. 

Feature fusion 
Feature fusion is completed by the integration of multiple stages 
in the DeepTGI algorithm. We used the encoder structure of 
the transformer to perform latent feature fusion. Through three 
different gene fusion methods and network structures, Auto-
encoder, 2DCNN-1DCNN, and Siamese network, we can obtain 
three different latent vectors of TF–gene pairs. Then, we element-
wise add the three latent vectors to get the four hidden vectors 
through a multihead attention mechanism. Finally, we concate-
nate these four hidden vectors as the new features of the TF– 
gene pair and transform such features into the encoder structure 
of the transformer (Fig. 1). Additionally, the multihead attention 
mechanism is used afterward to assign different weights to the 
fused features based on their importance, enhancing the final 
representation. 

Multihead attention mechanism 
Self-attention mechanism, a supervised deep learning model, 
calculates the attention score of the input with each other. The 
model can detect the important features that we should pay 
attention to. By contrast, the multihead attention mechanism is 
a variant of sell-attention. Different from self-attention, multi-
head attention collects different attention scores of the input by 
deploying multiple attention heads [22]. After obtaining the latent 
feature extracted by the Auto-encoder, the information contained 
in the four expressions’ similarity vectors contribute differently to 
TGI prediction since some features extracted by the Auto-encoder 
are redundant and less important [23]. The multihead attention 
modules can help models to identify features that are critical to 
the model and give those features with high weights for inferring 
GRNs. Since gene expression profiles are highly dimensional, we 
calculate the PCCs to decrease the sparsity of expression data, 
which makes the latent vector become more informative for the 
model to learn features from it. Here, we apply a multihead 
attention mechanism to predict TGIs that can learn essential fea-
tures from the latent similarity vector. Recognizing the increased 
complexity and diversity of features within the gene expression 
data, we have expanded the number of modules in the multi-
head attention mechanism from two to four. This adjustment 
allows for a more nuanced and comprehensive analysis of the 
latent similarity vectors, significantly enhancing their capability 
to identify pivotal TGIs in GRNs. The augmented equation for 
the multihead attention, accommodating this enhancement, is 

defined as follows: 

Qi = X • WQ 
i 

Ki = X • WK 
i 

Vi = X • WV 
i 

headi = softmax

(
Qi • KT 

i√
dk

)

XMH_attn = Concat
(
head1, head2, . . .  , headn

)
where X is the feature vector attained from the Auto-encoder, 
and WQ 

i , Wk 
i , and  Wv 

i are the ith weight matrices. Qi, Ki, and  Vi 

are the ith matrices obtained from the linear transformation of 
X, respectively. 

Residual module & layer normalization module 
Two modules, residual and layer normalization, are used in 
DeepTGI. The residual module can partially prevent the problem 
of gradient disappearance in neural networks and enables 
DeepTGI’s network to be designed deeper. Also, by standardizing 
the output of features, layer normalization can stabilize the 
internal covariant shift of the model and at the same time speed 
up the convergence speed of the model during training. In our 
model, layer normalization is utilized in the output of the self-
attention layer and of the feed-forward neural network. 

Loss function 
We infer GRNs as a prediction task. Each TF–gene pair corresponds 
to two results, interact or not interact, so the prediction task is 
a binary classification. The datasets used in the analysis are all 
balanced. The binary cross entropy loss is applied to train the 
model, and the formulas are listed as follows: 

BCE loss = −  
1 
N 

N∑
i=1 

yi· log
(
pi

) + log
(
1 − pi

) · (1 − yi
)

where yi and pi represent the label and prediction corresponding 
to the ith data, and N is the number of the training sample. 
Besides, mean squared error loss is also employed to be an auxil-
iary loss that regularizes the extra output of the Auto-encoder. 

MSE loss = 
1 
N

∑n 

i=1

(
yi − pi

)2 

Data augmentation 
Data augmentation aims to improve performance of a model in 
the process of training as it increases the number of training 
samples when the model tries to learn more information from 
the limited original data without substantially enlarging the size 
of the dataset [24]. Mixup aims to increase the size of samples by 
mixing different samples from the training data. Thus, the aug-
mented dataset can improve the generalization of the model and 
increase the robustness in the process of training. The formula for 
the Mixup is listed as follows: 

λ = Beta (α, β ) 

Batch_datax = λ • Batchx1 + (1 − λ) • Batchx2 

Batch_datay = λ • Batchy1 + (1 − λ) • Batchy2 
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where Batch_datax is a set of batch data augmented by the Mixup 
method, and Batch_datay is a set of labels corresponding to the 
augmented batch data. λ is the mixing coefficient that is calcu-
lated from the Beta distribution with the specific hyper-parameter 
α and β. Batchx1 is a set of batch data; Batchx2 is the shuffled batch 
samples derived from the Batch_datax1. Batchy1 and Batchy2 are 
the corresponding labels of the Batchx1 and Batchy2. 

Training and validation of models 
We conducted training and testing of model performance by 
using different cell sizes/cell lineages and in different species. The 
positive samples are TF–gene pairs whose regulatory relationship 
is present in the gold standard network and gives label “1.” By 
contrast, in the negative samples, the regulatory relationship is 
not in the standard network and gives label “0.” Here, all the 
datasets are constructed as balanced as there are no reliable 
negative samples in gene regulatory inference, and the negative 
samples may be the false negative samples. 

We then apply 5-fold cross-validation to evaluate the perfor-
mance of models. All the metrices are calculated as the mean 
value in five folds. Each dataset is divided into a training set and 
testing set according to the ratio of 4:1, and the positive sample 
and negative sample are consistent with the whole dataset. As 
hyper-parameters play an important role in the training process, 
we introduce the parameter settings. The optimizer is the RAdam 
(Rectified Adam Optimizer) optimizer, and the activation function 
is Gaussian error linear unit. For the setting of network layers, 
every fully connected layer is followed by an activation layer, 
a batch normalization layer, and a dropout layer. The dropout 
rate is 0.3, and the learning rate is 1e-5. All the predicted results 
provided in the figures are based on the testing set. The models 
mentioned in this study are trained and tested on the Linux 
platform Ubuntu-20.04 with configurations Intel(R) Xeon(R) Silver 
4114 CPU @ 2.20GHz Graphics Processing Unit (GPU) @ Nvidia 
Quadro RTX 8000. 

According to all the predicted scores, an optimal threshold is 
calculated to determine the regulatory relationship of the TF– 
gene pair, and then, the predicted GRN can be constructed by 
comparing the predicted scores to the threshold. The threshold 
is computed from the Youden index [25]. As the datasets we 
constructed are all balanced, the number of positive samples is 
equal to negative samples. Thus, the data for training and testing, 
which are randomly sampled from the datasets, are balanced too. 
We calculate six metrices with TPR (true positive rate), FPR (false 
positive rate), TNR (true negative rate), and FNR (false negative 
rate), and then use AUROC (area under a receiver operating char-
acteristic curve), AUPR (area under precision–recall curve), ACC 
(Accuracy), and F1-scores to make a comprehensive evaluation of 
the performance of the model. The ROC curve is drawn by TPR 
and FPR, whereas the PR curve is according to Recall and Preci-
sion. These corresponding indicators are defined as the following 
equations: 

TPR = 
TP 

TP + FN 

FPR = 
FP 

FP + TN 

Precision = 
TP 

TP + FP 

Recall = 
TP 

TP + FN 

Similar to the AUPR, F1-score is also an assessment metric 
constructed based on the Precision and Recall values, calculated 
by the following formula: 

F1 = 2 × TP 
2 × TP + FP + FN 

= 2 × 
Recall × Precision 
Recall + Precision 

ACC is the percentage of samples that the model can predict 
accurately from the total input samples, calculated as follows: 

ACC = TP + TN 
TP + FP + TN + FN 

TP (true positive) refers to the predicted results existing in 
both the predicted TGIs and the golden standard networks, but 
FP (false positive) to those in the predicted but not in the golden 
standard networks. TN (true negative) represents those neither in 
the predicted nor in the gold standard and FN (false negative) for 
those not in the predicted but in the gold standard. 

Statistical analysis 
We calculated differences of the metrices between DeepTGI and 
other models/methods by using ANOVA and t-test. P-values ≤.05 
indicate significant differences of the metrices. We used DAVID 
online software (https://david.ncifcrf.gov) to analyze the enrich-
ment of Gene Ontology biological processes and Kyoto Encyclope-
dia of Genes and Genomes pathways among the target genes of 
TFs predicted by DeepTGI. Based on Fisher’s exact test, statistical 
scores were then assigned to significantly enriched biological 
functions with P-values ≤.01. We calculated PCCs between expres-
sion values of TFs and genes. The P-values of PCCs ≤.05 are 
considered significant. 

Results 
Evaluating performance of DeepTGI by using 
bulk/single-cell transcriptomics data 
To evaluate the performance of our DeepTGI system, two types 
of real mRNA expression data derived from bulk and single-cell 
experiments were divided into training and testing sets. The train-
ing sets were subjected to input, and the information contained 
in the gene expression was trained with the known TGIs. Then, we 
predicted new interactions from the unknown part. The predicted 
result could be used to evaluate the performance of the model. 

We carried out the training–testing processes by using bulk 
and single-cell transcriptomic data, separately and together. Six 
metrices AUROC, AUPR, ACC, F1-score, Recall, and Precision were 
calculated for comparative analysis of different methods. Among 
unsupervised methods, GENIE3, ARACNE, and WGCNA utilized 
the expression profile of bulk transcriptomic data, while PPCOR, 
PIDC, and SCENIC used scRNA-seq data. We also compared the 
recently reported DGRNS, a supervised and deep learning method 
to infer GRNs from long short-term memory and CNN mod-
ules [14]. When either bulk or single-cell data were involved, 
the DeepTGI method held the highest levels of all six metrices 
with significant differences (Table 1). DGRNS achieved the second 
highest levels, supporting the robustness of deep learning algo-
rithms in prediction of TGIs. 

Next, we calculated TPR, FPR, TNR, and FNR using the 
combined data from bulk and single-cell experiments. DeepTGI 
obtained a higher TPR and TNR than other methods DGRNS, 
SCENIC, and GENIE3. On the contrary, the corresponding FPR and 
FNR of DeepTGI are the lowest (Supplementary Fig. S1A and B).

https://david.ncifcrf.gov
https://david.ncifcrf.gov
https://david.ncifcrf.gov
https://david.ncifcrf.gov
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae639#supplementary-data
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Table 1. Performance comparison of DeepTGI with other methods for prediction of TGIs in mESCs/miPSCs. 

Transcriptome data types Method Testing set 

AUROC ACC F1-score Recall Precision AUPR 

Bulk GENIE3 0.53 0.52 0.51 0.51 0.53 0.53 
ARACNE 0.50 0.49 0.03 0.01 0.63 0.55 
WGCNA 0.54 0.54 0.50 0.48 0.54 0.54 
DeepTGI 0.93 0.86 0.86 0.88 0.84 0.92 

Single cell PPCOR 0.50 0.50 0.35 0.31 0.52 0.51 
PIDC 0.51 0.51 0.43 0.38 0.52 0.51 
SCENIC 0.51 0.51 0.35 0.27 0.53 0.52 
DGRNS 0.63 0.59 0.59 0.59 0.59 0.62 
DeepTGI 0.94 0.87 0.87 0.90 0.85 0.91 

Combined bulk and single cell DeepTGI 0.94 0.87 0.88 0.90 0.85 0.93 

The bold values indicate the results obtained from DeepTGI. 

Table 2. Comparison of feature fusion with different approaches for prediction of TF-gene interactions (TGIs) in miPSCs by using 
DeepTGI. 

Fusion approaches AUROC ACC F1-score Recall Precision AUPR 

CNN 0.50 0.51 0.53 0.59 0.51 0.50 
CNN + Siamese 0.92 0.85 0.86 0.88 0.84 0.90 
CNN + Siamese + Auto-encoder 0.93 0.86 0.86 0.90 0.83 0.91 
CNN + Siamese + Auto-encoder + multihead attention 0.94 0.87 0.88 0.91 0.84 0.92 

The bold values indicate the results obtained from a model including all four approaches. 

About half of its prediction scores of TPR obtained from single-
cell data were distributed to a range of 0.9 to 1.0 ( Supplementary 
Fig. S1C). Thus, we gained a higher-level ROC curve generated 
by DeepTGI than other methods (Fig. 2A). Similarly, DeepTGI 
achieved the highest level of Precision–Recall curve (Fig. 2B). This 
finding supports the power of DeepTGI to identify new TGIs 
from both bulk and single-cell data. In addition, we measured 
the binary cross entropy loss that can describe how many 
losses cross different datasets during the training epochs of 
models. Supplementary Fig. S1D delineates the trajectory of 
training loss across bulk or single-cell transcriptomics alone 
and a combination of both during DeepTGI processing. DeepTGI 
converged to a loss below 0.007 on all three datasets before 80 
epochs. Especially, when single-cell data were incorporated, the 
convergence rate was much faster than that from bulk data. 

The DeepTGI framework is equipped with four network 
approaches to extract features obtained from transcriptomic 
data. We investigated the effect of Auto-encoder, 2DCNN-1DCNN, 
Siamese, and multihead attention by ablation experiments 
(Table 2). The result indicates that the integration of all four 
components could achieve the highest metrices. If two or three 
networks are combined, the performance of TGI prediction 
slightly declines. However, all metrices decrease if only the CNN 
was used. 

Because there are a large number and different sets of TFs 
included in TGI prediction, we examined the effect of different 
numbers of TFs on the evaluation. The order of top number TFs 
is defined according to their target gene numbers by descending 
order. For example, the top 40 TFs represent those that TFs have 
the largest number of the predicted target genes from 40 of all TFs. 
In Table 3, we observed an increase in most of the metrices as the 
number of top TFs becomes larger, like AUROC, ACC, and Recall. 
However, for AUPR and Precision, their levels slightly decrease. 

It is well known that Pou5f1, Sox2, and Nanog are three key TFs 
to maintain the pluripotency and stemness of embryonic stem 

cells [26]. By focusing on the three TFs with biological significance, 
as shown in Supplementary Table S2 and Fig. 2C, we predicted 
a total of 284 and 216 target genes of Pou5f1 by DeepTGI and 
DGRNS, respectively. Both of the results suggested Pou5f1 as the 
top one hub TF in the mESC network. Other methods like SCENIC 
and GENIE3 only predicted 124 and 134 targets of Pou5f1 (Fig. 2C), 
which is much less than DeepTGI or DGRNS. Noticeably, >99% of 
target genes of Pou5f1 predicted by the other methods can be cov-
ered by the prediction of DeepTGI. There were 140 and 126 target 
genes of Sox2 and Nanog predicted by DeepTGI that are more 
than twice as much as the predictions of SCENIC and GENIE3. 
Similar to Pou5fl target genes, DeepTGI can capture >98% of Sox2 
or Nanog target genes predicted by other methods (Fig. 2C). This 
result suggests that DeepTGI holds higher sensitivity than other 
methods, as well as its capability to recover GRN of biological 
meanings. We next calculated the correlation of TGIs predicted by 
DeepTGI from different cell numbers and found a slow increase 
in ACC of the predictions when the cell number is >200 (Fig. 3C). 
Moreover, we randomly selected a certain number of cells to reach 
the final numbers of the 17 groups. We also randomly sampled 
the single-cell transcriptomic data. In each group, sampling was 
repeated 10 times, and DeepTGI predicted 10 sets of TGIs. The 
predicted ACC from randomly selected cells increased as the cell 
number increases, indicating that our approach captures more 
accurate TGIs as cell number increases (Supplementary Fig. S2). 

Validation and evaluation of DeepTGI under 
different factors 
Through a 5-fold cross-validation by using the mESCs/miPSCs 
combined dataset, DeepTGI shows stable and high AUROC and 
ACC levels on every fold (Fig. 3A), indicating a similar performance 
among different folds. It is expected that many factors may 
affect the performance of deep learning models, for example, the 
number of cells from single-cell data and input features. Here, 
we examined the effect of cell numbers and input features on

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae639#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae639#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae639#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae639#supplementary-data
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Figure 2. Comparisons of performance between DeepTGI and other benchmarking algorithms or methods. The combination of bulk transcriptomics of 
mESCs and single-cell transcriptomics of miPSCs were used as input data. (A) ROC curves and AUROC. (B), Precision–recall curves and AUPR. (C) Venn 
diagram of the predicted target genes of three key TFs Pou5f1, Sox2, and Nanog by using DeepTGI, DGRNS, SCENIC, and GENIE3. 

Table 3. Performance comparison of different numbers of top TFs used to predict TF-gene interactions (TGIs)a. 

Number of TFs includedb 
AUROC ACC F1-score Recall Precision AUPR 

Top 40 TFs 0.70 0.69 0.81 0.70 0.96 0.97 
Top 60 TFs 0.75 0.73 0.83 0.74 0.95 0.96 
Top 80 TFs 0.78 0.75 0.84 0.76 0.94 0.95 
Top 100 TFs 0.80 0.75 0.83 0.75 0.94 0.95 
All TFs 0.94 0.87 0.87 0.90 0.85 0.91 

aTGIs were predicted by DeepTGI using mESC-miPSC combined data. bNumber of TFs from all TFs were included in calculation of the metrices. 

the DeepTGI function. Figure 3B displays an increasing trend of 
ACC when the number of cells increased from 10 to all, forming 
17 groups containing 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 
300, 400, 500, 600, and all cells, regardless of whether the input 
feature is expression profiles or PCCs. DeepTGI shows stable 
and satisfactory performance >0.8 when the cell number is 
>200, although the ACC drops when the cell numbers are small. 
Using PCCs as input features instead of single-cell expression 
profiles significantly reduces the sparsity of data matrices, 
which is known to be detrimental to the performance of deep 

learning models. In Fig. 3B, the ACC derived from DeepTGI 
using PCCs were compared with using expression value without 
PCCs as input features. In general, DeepTGI achieved a higher 
ACC when using PCCs in all experiments of different cell 
numbers. 

We next calculated the correlation of TGIs predicted by 
DeepTGI from different cell numbers and found a slow increase 
in ACC of the predictions when the cell number is >200 (Fig. 3C). 
Moreover, we randomly selected a certain number of cells to reach 
the final numbers of the 17 groups. We also randomly sampled
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Figure 3. Validation for the robustness of the newly developed DeepTGI algorithm. (A) Through a 5-fold cross-validation. The consistency in AUROC 
and ACC across different partitions between training and testing sets. (B) Comparison of performance of DeepTGI across varying cell counts within 
single-cell transcriptomic data and under inclusion or noninclusion of PCCs in the model. (C) A heatmap of PCC regulatory networks from different cell 
count groupings, further emphasizing the influence of cell quantity on prediction accuracy. (D) Randomly picked up 10 sets, from 10%, 20%, 30%, . . . to 
100% of the known TGIs, and kept the TGIs for testing the same as the previous set. 

the single-cell transcriptomic data. In each group, sampling was 
repeated 10 times, and DeepTGI predicted 10 sets of TGIs. The 
predicted ACC from randomly selected cells increases as the 
cell number increases, indicating that our approach captures 
more accurate TGIs as the cell number increases ( Supplementary 
Fig. S2). 

Furthermore, we examined the robustness of DeepTGI when 
different numbers of known TGIs were selected for model train-
ing. We randomly took 1 from 10 sets, i.e., 10%, 20%, 30%, 40%, 
50%, 60%, 70%, 80%, 90%, and 100% of the known interactions and 
meanwhile kept the TGIs for testing the same as the previous set. 
A slight increase of ACC from 0.81 to 0.87 was observed as percent-
ages of the known interactions increased in single-cell data, while, 
for bulk data, from 0.74 to 0.85 (Fig. 3D). It is possible that single-
cell data contain more factors such as diversity of gene expression 
in different cells, cell numbers, or cell type characteristics and so 
achieves higher ACC than using bulk data. 

In addition, the multihead attention mechanism may increase 
computational complexity and running times of DeepTGI. We 
examined the effect of sample sizes on processing time and 

compared the times to run different models. Even with GPU 
acceleration, the processing time increases as the dataset size 
grows (Supplementary Table S3A). From Supplementary Table 
S3B, we found a large variety of running times among different 
methods. Comparatively, DeepTGI does not require the longest 
time. Moreover, there are substantial computational demands for 
DeepTGI based on Supplementary Table S3C, including a total of 
124 840 395 floating point operations. Also, the model comprises 
108 284 328 parameters, which not only affect memory usage but 
also increase processing times. 

Performance in different biological systems 
The findings described above indicate the effectiveness of 
DeepTGI in inferring regulatory interactions between TFs and 
genes in mESCs/miPSCs. To further evaluate its performance 
in different species and cell lineages, we analyzed scRNA-seq 
data from two mouse mHSC-E or mHSC-L and two human hESCs 
and hHEPs by DeepTGI and obtained the target gene number 
of top TFs (Supplementary Table S4). Supplementary Table S5 
shows the predicted target genes of the top 20 TFs from the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae639#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae639#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae639#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae639#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae639#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae639#supplementary-data
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four datasets. We compared the result between DeepTGI and 
other methods DGRNS, PIDC, GENIE3, and PPCOR. Considering 
different numbers of TFs included, respectively, in these datasets, 
we also examined the effects of all or half of the TFs on the 
prediction. The 50% of TFs were chosen based on their target 
gene numbers in descending order. DeepTGI displays the highest 
levels of AUROC and ACC in all these human and mouse datasets 
whatever different amounts of TFs are included (Fig. 4A and B). 
Especially in hESC, DeepTGI produced AUROC (0.93–0.94) and 
ACC (0.86–0.89) with at least 30% higher than other methods, 
respectively. 

Regarding deep learning–based methods, DeepTGI outper-
forms DGRNS on all four datasets and achieves better metrices 
than DGRNS. However, DGRNS is better than all other traditional 
methods, which further demonstrates that the deep learning 
model could extract more effective information and can be 
applied to predict TGIs and infer GRNs. 

Application of DeepTGI to construct gene 
regulatory networks 
To further demonstrate the capability of DeepTGI in the inference 
of TGIs, we trained the model with 50% of total interactions and 
then made predictions for the entire dataset to explore hub TFs 
and potential regulations. The predictions of TF–gene pairs that 
are higher than 0.5 are considered for further investigation, and 
the inferred GRNs are visualized. We first organized the DeepTGI 
predicted TGIs and built a GRN corresponding to reprogramming 
of miPSCs. Overall, as shown in Fig. 5A, these top 26 TFs were 
considered as hub TFs, and the GRN controlled by the TFs related 
to stem cell differentiation can be observed. A set of 151 inter-
actions in the inferred network can be confirmed by the cell 
type–specific network. The target genes of the top TFs are found 
significantly associated with biological processes and signaling 
pathways of pluripotency, stem cell differentiation, cell fate deter-
mination & commitment, cell differentiation, Wnt, MAPK, and 
Bmp pathways, etc. (Fig. 5B). Thus, we connected the main TFs 
that play critical roles in pluripotency and stemness with the 
downstream target genes predicted by our model (Fig. 5C). It is 
noticed that three key TFs Pou5fl, Sox2, and Nanog form a core 
GRN by cooperating with other TFs or factors, like Klf4, Suz12, etc., 
and would modulate the major biological functions and signal-
ing pathways that are beneficial for pluripotency and stemness 
maintenance. 

Similarly, we constructed GRNs of mHSC-E and mHSC-L 
(Supplementary Fig. S3), where the target genes of the top 
30 TFs were associated with cell cycle, apoptosis, and cell 
proliferation, but with DNA replication for mHSC-E and immune 
& inflammation responses, MAPK for mHSC-L. DeepTGI can 
identify hub TFs, recover known regulations, and explore potential 
TGIs based on available information, which offers essential 
biological information for researchers to explore the GRNs in the 
massive data. Moreover, we described human GRNs from hESC 
and hHEP datasets (Supplementary Fig. S4A), respectively. Among 
the top 30 TFs, the GRN of hESC is significantly associated with 
stem cell development, such as stem cell pluripotency, Polycomb 
complex, chromatin remodeling & development, etc. GRNs of 
hHEPs are related to cell cycles, DNA replication, RNA splicing, 
etc. (Supplementary Fig. S4B). There are many predictions that are 
not confirmed by the biological experimental means yet, but these 
predicted regulatory factor–gene interrelations provide essential 
information for the regulatory network and are necessary for 
further research. 

Discussion 
The newly developed DeepTGI shows its power for prediction of 
TGIs and reconstruction of GRNs. The remarkable performance 
of DeepTGI is possibly because of its multisource information 
fusion strategy. This approach integrates multisource input data 
into the model. As scRNA-seq data are sparse and noisy, DeepTGI 
converts the original expression profile into a series of PCC vec-
tors. Combined information of single-cell and bulk data allows 
the model to simultaneously process different gene expression 
profiles at individual cell and tissue levels. As a result, DeepTGI 
thereby will discover more potential and truer TGIs. Moreover, in 
terms of feature extraction, DeepTGI effectively fuses key infor-
mation from transcriptomics data by using various approaches 
Auto-encoder, 2DCNN-1DCNN, and Siamese networks. The com-
bination of this information enables DeepTGI to comprehen-
sively capture the characteristics of transcriptomic data from 
multiple resources. Finally, the multihead attention mechanism 
introduced in DeepTGI further optimizes the feature fusion from 
the three networks. By processing multiple attention “heads” in 
parallel, the mechanism could focus on different aspects of differ-
ent features separately and assign appropriate weights to them. 
This designing not only improves the efficiency of feature fusion 
but also enables the model to focus on more information when 
making predictions, thus improving the accuracy and efficiency 
of predictions. The application of the multihead attention mech-
anism makes the model more flexible when processing complex 
and high-dimensional data. 

As a supervised method, DeepTGI encodes the correlation 
vectors with Auto-encoder and applies a self-attention mecha-
nism that extracts critical features from the latent vectors. It 
makes effective predictions of regulatory interactions and the 
formed GRNs. We have evaluated DeepTGI with comprehensive 
experiments on different expression datasets involving different 
scales, cell types, and species. The comparative analysis on the 
performance of various unsupervised and supervised methods 
shows that DeepTGI achieves the best results in all cases, demon-
strating its superiority in predicting the TF–gene relationship and 
capturing more potential interactions. For the GRNs inferred by 
DeepTGI, many interactions can be validated from existing gold 
standard networks, such as GRNs inferred from miPSC data. These 
identified potential interactions provide a broader perspective for 
the discovery of more gene–gene relationships that may form 
more biologically meaningful networks. 

Deep learning-derived methods show their advantage of TGI 
identification and GRN reconstruction because they can integrate 
multiple information of gene expression data and known gene 
interaction, such as gate recurrent unit [10–12] and DGRNS [14]. 
Our result indicates that DeepTGI performs better than DGRNS in 
predicting TGIs. It is possibly because of DeepTGI’s optimization 
of its overall architecture design, such as the addition of the 
self-attention layer and the improvement of the feature fusion 
strategy. This not only improves the efficiency of the algorithm 
in processing data but also enhances its adaptability to different 
biological backgrounds and experimental conditions. The opti-
mization of this design ensures the model with good generaliza-
tion ability and prediction accuracy on different datasets, prov-
ing the effectiveness and practicality of DeepTGI in a variety of 
biological application scenarios. However, there are substantial 
computational demands for DeepTGI, which not only affect mem-
ory usage but also contribute to increasing processing times. For 
example, the multihead attention mechanisms in DeepTGI can 
obtain the latent features extracted from multisources; however,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae639#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae639#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae639#supplementary-data
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Figure 4. Comparison of AUROC and ACC values achieved by DeepTGI with other supervised or unsupervised methods. All 100% or 50% of TFs were 
included in the calculation of AUROC (A) and ACC (B), respectively. Four datasets represent different scales and cell lineages of human and mouse (see 
Supplementary Table S1). 

it would increase computational complexity and extend running 
time. This challenges its scalability when applied to analyze large-
scale datasets. The increased complexity necessitates careful con-
sideration of computational resources, particularly in contexts 
involving extensive single-cell RNA profiles and transcriptional 
gene regulation. 

In conclusion, the excellent performance of the DeepTGI algo-
rithm describes predicting TGI and inferring GRNs stems from its 
series of innovations in multisource information fusion, advanced 

feature extraction technology, and the application of multihead 
attention mechanisms. Overall, DeepTGI is more accurate than 
the unsupervised and other deep learning methods and exhibits 
better performance in large-scale network inference. This method 
can incorporate crucial information contained in the gene expres-
sion profile and prior knowledge of the known interactions to 
make more effective TGI prediction and GRN inference. These 
advantages not only deepen our understanding of the complexity 
of GRNs but also provide new perspectives and powerful tools for

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae639#supplementary-data
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Figure 5. GRNs of miPSCs inferred by DeepTGI. (A) The GRN controlled by top 26 TFs during reprogramming of miPSCs. (B) The GRN controlled by the 
26 TFs associated with biological processes and signaling pathways of pluripotency and stemness. The red edges with varying darkness and thickness 
represent enrichment (−log2 P-values) of overlaps between TF target genes and biological processes/pathways based on hypergeometric distribution. 
In (A, B), the node size of a TF corresponds to the number of TF target genes. (C) A GRN represents regulatory interactions among major TFs and targets 
that regulate pluripotency and stemness. The red edges indicate the TGIs of three pluripotency TFs Pou5f1, Sox2, and Nanog. 

research and applications in the field of bioinformatics. However, 
there are still some factors that might limit the efficiency of our 
model because of various datasets from broad types of single-
cell experiments, high computational demands, and complexity 
of regulatory mechanisms. Thus, in the future study, we will 
improve the model by coordinating other learning algorithms to 
establish a broad deep learning system that can process larger 
and diverse biomedical data for constructing GRNs. It is expected 
that the developed model system can integrate multiple regula-
tory layers from NEAT-seq [ 27], ATAC-seq [28], ChIP-seq, and the 

gene expression profile. We believe that this would extend the 
function of DeepTGI or other models and to capture TF–target 
GRNs efficiently. 

Key Points 
• Introduce a novel deep learning model system with 

superior ability to predict interactions between tran-
scription factors and target genes and infer gene 
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regulatory networks from bulk and single-cell transcrip-
tomic data. 

• Integrate multiple vectors with self-attention mecha-
nism and transform multi-head attention modules to 
capture representative features. 

• Provide broader perspectives for the discovery of more 
biological meaningful networks and for understanding 
gene regulatory mechanisms. 

Supplementary data 
Supplementary data are available at Briefings in Bioinformatics 
online. 
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