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and divergent responses to immunotherapy, even suggesting
potential immune evasion in cases of high TMB. These findings
question the adequacy of a unidimensional TMB metric and
advocate for clonal heterogeneity-adaptive modifications of the
biomarker-based framework.

Second, most TMB analyses simplify statistical models by con-
centrating on a single efficacy endpoint, such as the Keynote-
158 trial, which underpinned TMB’s FDA approval based solely
on response rates [22]. The ICI impact on varied endpoints, such
as objective response rate (ORR) and time-to-event (TTE) mea-
sures like overall survival (OS) and progression-free survival (PFS),
often differs substantially [23–27]. ORR assesses immediate tumor
shrinkage, while TTE gauges long-term therapeutic effects. The
lack of assessment of survival endpoints inadequately reflects
the multifacetedness of ICI treatments [28, 29]. An integrated
approach that merges these co-primary endpoints could signif-
icantly enhance statistical power and is essential for captur-
ing the full spectrum of responses to advanced cancer thera-
pies, thereby maximizing the utility of TMB in immunotherapy
evaluations [30, 31].

Accordingly, we ideally seek to develop robust statistical mod-
els that manage multiple co-primary endpoints while captur-
ing interactions among clonal variables. By refining the TMB
framework to encompass both clonal and endpoint heterogeneity,
we significantly augment the prognosis and tailor ICI decision-
making to individual tumor profiles. However, this enhancement
leads to the third considerable challenge. Due to substantial costs
and potential adverse effects, ICI trials often have limited sample
sizes. Statistical inference is hindered by differing levels of data
availability across diverse molecular sub-types and treatment
responses [32–35]. Traditional methods that pool data using an
identical regression model, such as meta-analyses aggregating
several published studies, might introduce artifacts from batch
effects and tend to yield inaccuracies [7]. While models cus-
tomized for specific groups struggle with sparse data, complicat-
ing parameter estimations [36]. The variability of observational
data across different subgroups necessitates the development of
flexible, efficient, and scalable statistical models.

Therefore, this work presents a TMB Heterogeneity-Optimized
Regression (THOR) model, an innovative approach that integrates
clonality mutational profiles from immunotherapy cohort-
structured patients. Under the generalized linear mixed model
(GLMM) framework, THOR navigates multiple clinical endpoints
and uncovers potential associations through random effects
[37]. The heterogeneity-adaptive penalty terms can effectively
address multicollinearity within clonal features, facilitating
the identification of pivotal variables that enhance efficacy
[38], while accommodating small sample sizes by considering
coefficient differences across subgroups, thus promoting data
sharing and adaptability across varied cohorts. To validate the
clinical utility, we assembled 238 samples covering non-small cell
lung cancer (NSCLC), melanoma, and nasopharyngeal carcinoma
(NPC) from the Second Affiliated Hospital of Xi’an Jiaotong
University and Sun Yat-sen University Cancer Center (SYUCC) to
form group-structured data. Additionally, 2212 samples, including
genomic mutational profiles and clinicopathologic data, were
collected from public studies. The effectiveness of THOR has been
rigorously validated through statistical simulations and clinical
experiments, demonstrating exceptional patient stratification
and prediction accuracy capabilities. To foster wider adoption
and continuous improvement of this modeling technique, we
have made the THOR freely available on https://github.com/
YixuanWang1120/THOR_project.

Methods
THOR is an advanced computational framework that predicts
immunotherapy response based on genomic mutational pro-
files in group-structured data. This model captures endpoint
heterogeneity through random effects to illuminate the dynamic
relationships. Additionally, THOR incorporates a penalty term
within its joint likelihood to manage the intricate covariance
observed in tumor clonal heterogeneity, along with a fusion
operator to account for coefficient differences across specific
patient subgroups, significantly enhancing data integration
across heterogeneous cohorts. THOR improves statistical valid-
ity and interpretability by synthesizing multiple endpoints,
addressing covariances, and optimizing for limited sample sizes,
strengthening data-driven support for immunotherapy decision-
making. A flowchart depicting the specification of THOR can be
found in Fig. 1.

Endpoint heterogeneity-adaptive model
The extension of GLMM to encapsulate endpoint heterogeneity
across K ∈ N grouped cohorts delineates a nuanced approach
to analyzing complex biomedical data. Each patient within these
cohorts harbors genomic mutations derived from M ∈ N subclones
containing p ∈ N features. That is, we consider subgroup-specific
regression indexed by k.

For each patient i ∈ {1, . . . , nk} in subgroup k, the response
variable R(k)

i indicates tumor remission, classified by the Response
Evaluation Criteria in Solid Tumors (RECIST) 1.1 [39], where
response and non-response are recorded as 1 or 0. The observed
event (tumor recurrence, disease progression, or death, etc.)
time T(k)

i takes the minimum of the actual event time T(k)∗
i and

censoring time C(k)
i , with an indicator δ

(k)

i = I(T(k)∗
i ≤ C(k)

i )

signifying whether censoring has occurred. We consider the
individual feature matrix X(k)

i ∈ R
M×p, with each row X(k)

i,m denoting
the feature from the mth subclone. The integration of binary
outcomes, ORR, and continuous survival times, TTE, is given by
the parametric functional:
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where α and β represent the fixed-effects coefficients; h(t) sym-
bolizes the instantaneous risk; h0(t) denotes the baseline hazard;
ω

(k)

i denotes the patient-specific random effect. ORR and TTE
endpoints are interconnected through the shared random effect,
ω, which adheres to a zero-mean normal distribution N(0, σ 2).
This configuration captures the intra-individual variability and
the correlation of endpoints, thus maintaining conditional inde-
pendence given ω. The sophistication of this model is highlighted
in the joint likelihood, which aggregates contributions across
different patients and endpoints:
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Figure 1. Flow of THOR methodology.

and the specific likelihood contribution for the ith individual is
given by:

l(�) =
∫

ω
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eη

1 + eη

]R [ 1
1 + eη

]1−R [
h0(T)eζ

]δ
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[−H0(η)eζ
]

[
1

σ
√

2π
e− ω2

2σ2

]}
dω (3)

where H0(t) = ∫ t
0 h0(s)ds is the cumulative baseline risk; η and ζ

represent the sum of linear predictors over different endpoints,
respectively. GLMM typically eliminates the unknown baseline
hazards to retain the cancelation property in the parameters esti-
mation. Thus, the partial likelihood for the TTE data is structured
as:

fpl(T, �) =
[

eζ∑
s∈R(ti)

eζs

]δ

(4)

where R(t) is defined as {s : Ts ≥ t}, representing the risk set at time
t−.

Integration over random effects is challenging and requires
numerical integration methods such as Laplace Approximation
and Gaussian Hermite Quadrature. Optimization algorithms,
notably the Newton–Raphson and the Expectation Maximization
algorithm, are then applied.

Clonal heterogeneity-adaptive penalty
Next, we explore the implementation of clonal heterogeneity-
adaptive penalties within the joint likelihood. Tumors feature
genetically varied subclones that evolve through cell division.
These subclones adapt to the tumor microenvironment, enhanc-
ing survival and proliferation and engaging in symbiotic interac-
tions that may modify this environment. Mutational correlations
in clonality data can cause considerable covariance, destabilizing

parameter estimations and reducing predictive accuracy. There-
fore, we apply regularization to improve model output stabil-
ity and interpretability and analyze complicated biological data
more robustly. For illustration, we consider the model formulation
under a single cohort (K = 1).

LASSO applies an 	1 penalty to the loss function, boosting
model coefficient sparsity. This is especially effective when the
feature space has more dimensionality than samples, resulting in
zero non-predictive coefficients. The likelihood incorporating the
LASSO penalty is given by:

Lp(�) = log L(�) − λ [‖α‖1 + ‖β‖1] (5)

where λ is a hyperparameter that controls the shrinkage degree,
aiding in model simplification and enhancing interpretability.
The selection of λ generally requires computationally demanding
cross-validation (CV) for meticulous tuning. However, a limita-
tion of LASSO is its potential to omit relevant correlated vari-
ables and underestimate non-zero coefficients, introducing bias—
particularly problematic in complex tumor analyses.

Ridge regression, an 	2 variant, does not promote sparsity but
offers continuous differentiability and smoothness in optimiza-
tion, contrasting with the non-convex nature of LASSO. The Ridge
penalized likelihood is:

Lp(�) = log L(�) − λ2

2

[‖α‖2
2 + ‖β‖2

2

]
(6)

With the penalties, parameter estimation via maximum like-
lihood estimates (MLE) necessitates using iterative algorithms
such as coordinate descent or gradient-based optimization meth-
ods. Based on the observed dataset D = {R, T, �, X}, the process
involves a sequence of steps to iteratively estimate the unknown
parameters � = [

α�
1 , . . . , α�

M, β�
1 , . . . , β�

M, σ
]�

. The Lasso penalty’s
non-convex likelihood function is a major computing barrier in
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optimization, thus it is updated via a soft-thresholding operation
to promote sparsity. When substituting the Lasso penalty with
Ridge, the non-convex character of the 	1 norm is replaced with
the 	2 norm’s continuous derivability and smoothness, simplify-
ing the optimization process. Here’s a pseudo-code representation
providing a structured description of the penalized MLE process
for a joint model:

Algorithm 1 Penalty for tumor clonal heterogeneity

Input: Observed dataset D = {R, T, �, X}, ε, niter

Output: Penalized MLEs, �̂p

1: Step 1: Joint Model for Clinical Endpoints
2: Lp(�) = (∏∫

f (R | ω; �)f (T, � | ω; �)f (ω; �) dω
) − penalty

(�)

3: Step 2: Numerical Integration Using Gauss-Hermite
Quadrature

4:
∫∞
−∞ f (x)e−x2

dx ≈ ∑n
d=0 wdf (xd), where wd are weights and

xd are nodes of the quadrature.
5: Step 3: Iterative Estimation
6: Initialize: iter ← 0
7: while |�(j+1)

p − �
(j)
p | > ε and iter < niter do

8: �
temp
p ← DescentUpdate(Lp(�

(j)
p ))

9: �
(j+1)
p ← sgn(�

temp
p ) · max(|�temp

p | − λ, 0)

10: iter ← iter + 1
11: end while

Subgroup heterogeneity-adaptive fusion
Conventional immunotherapy study analyses assume observa-
tional sample consistency and use a singular model for inferential
statistics. Valid conclusions depend on this homogeneity assump-
tion. However, the intrinsic characteristics of immunotherapy,
such as high costs and notable side effects, often result in datasets
comprising heterogeneous cohorts with limited sample sizes.
These practical constraints necessitate a more nuanced approach
that accounts for subgroup diversity.

Therefore, we introduce the joint lasso, an innovative exten-
sion of the penalized joint likelihood framework designed for
cross-sub-cohort data fusion. In contrast to simple pooling, our
approach allows heterogeneous subgroups to have distinct spar-
sity patterns and regression coefficients, utilizing commonalities
and accommodating differences. This method effectively bal-
ances the need for subgroup-specific modeling with the advan-
tages of borrowing strength across similar subgroups. A penal-
ization operator is used to integrate coefficient discrepancies
between sub-cohorts into the likelihood:

Lpf (�) =
K∑

k=1

{
log Lk(�) − λ2

2

[‖α‖2
2 + ‖β‖2

2

]

+ γ
∑
k′>k

[
τk,k′

(
‖αk − αk′ ‖2

2 + ∥∥βk − βk′
∥∥2

2

)]}
(7)

where λ, γ , τ regulate penalized shrinkage, and τk,k′ controls the
degree of similarity for certain subgroup pairs.

By default, fusion parameters τ can be set uniformly to 1,
proposing a baseline unweighted fusion across all subgroups.
However, τ is dynamically modified to reflect a weighted fusion to
account for subgroup variability. While CV is commonly employed
to fine-tune, it can prove burdensome. Alternatively, a more inter-
pretable method involves setting τk,k′ based on a feature-based
distance metric d(k, k′), enhancing fusion among subgroups that

exhibit more remarkable feature similarity. This method pro-
motes coherence and efficiency in the model by directly linking
parameter adjustments to measurable subgroup similarities.

Choosing an efficient distance metric is critical for clonal
mutation features. Euclidean distance can be employed to gauge
superficial differences between the means of sample characteris-
tics within each subgroup. Mahalanobis distance, incorporating
the covariance, can reflect potential correlations among sub-
clones, providing deeper insight. Here, the symmetric Kullback–
Leibler (KL) divergence is introduced to compare subgroup feature
distributions. Its capacity to balance mutational feature probabil-
ity distribution disparities inspired this choice:

d
(
k, k′) = 1

2

∑
m

(
DKL

(
p̂k,m‖p̂k′ ,m

) + DKL
(
p̂k′ ,m‖p̂k,m

))

DKL(p‖q) =
∑

x

p(x) log
p(x)

q(x)

(8)

where p̂k,m and p̂k′ ,m denote the estimated distributions of muta-
tional features for the mth subclone in subgroup k and k′, whose
distributions are typically modeled as multivariate normal.

With the feature-based distance metric established, the fusion
parameter τk,k′ is set according to:

τk,k′ = 1 − d
(
k, k′) /dmax (9)

where dmax represents the maximum distance observed among all
subgroup pairs. This parameterization adjusts fusion parameters
proportionally based on subgroup similarities and differences.
Here’s a pseudo-code representation, providing a structured and
precise description of the fusion process for THOR:

Algorithm 2 Fusion MLE across subgroup heterogeneity

Input: Observed dataset for K subgroups Dk = {Rk, Tk, �k, Xk}, ε

and niter

Output: Fusion MLEs, �̂pf

Step 1: Fusion likelihood across subgroups

2: Lpf (�) = ∑K
k=1

{
log Lk(�) − λ2

2

[‖α‖2
2 + ‖β‖2

2

] + γ
∑

k′>k[
τk,k′

(
‖αk − αk′ ‖2

2 + ∥∥βk − βk′
∥∥2

2

)] }
Step 2: Set fusion parameters τk,k′ based on distance metric

4: τk,k′ = 1 − d
(
k, k′) /dmax

Step 3: Iterative Estimation
6: Initialize: iter ← 0

while |�(j+1)

pf − �
(j)
pf | > ε and iter < niter do

8: �
(j+1)

pf ← �
(j)
pf − H−1

pf (�pf ) · ∇Lpf

iter ← iter + 1
10: end while

Statistical analyses
We conducted all computational analyses using Python (version
3.10). The THOR model used existing libraries to facilitate data
processing, model fitting, and evaluation. We employed NumPy
(version 1.26.4) and Pandas (version 2.2.2) for numerical calcu-
lations and data handling. Optimization routines and statistical
functions were implemented using SciPy (version 1.12.0). Machine
learning algorithms and model evaluation metrics were managed
using scikit-learn (version 1.2.2), while XGBoost (version 2.0) was
employed for comparative analyses. Survival analyses and statis-
tical tests, such as the log-rank test, were conducted using the
Lifelines (version 0.27.4).
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The computational framework of the THOR model handles
group-structured data and captures TMB heterogeneity across

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae648#supplementary-data
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Figure 2. Comparative analysis of MSE in parameter estimation. (A) MSE variation by model and random effect intensity: box plots compare MSEs
across three models, THOR, Logistic Regression, and Cox Proportional Hazards Regression, under varying levels of random effect intensity. The plots
illustrate that THOR consistently maintains lower MSE in rising random effect scenarios, demonstrating its robustness in handling uncertainty. (B) MSE
across different regularizations: the box plot shows MSE outcomes for four regularization strategies: non-penalty, Lasso, Ridge, and elastic net. The bar
chart segments MSE contributions by relevant and non-relevant features, highlighting the effectiveness of regularizations in reducing error, specifically
through feature relevance. (C) Comparison of THOR and separate GLMM: the MSE comparisons between THOR and a separate GLMM are depicted. Box
plots delineate the lower MSE achieved by THOR, emphasizing its superior accuracy in parameter estimation compared to traditional GLMM approaches
in separate analyses.

baseline model exhibits a wide distribution of MSE, indicative of
increased volatility and a susceptibility to overfitting. In contrast,
implementing Lasso and Ridge regularizations substantially
narrows this MSE distribution, reflecting improved performance.
The Elastic Net strategy, merging the strengths of Lasso and
Ridge, attains a median MSE that aligns closely with these two
methods, ensuring balanced efficacy across diverse feature types
and establishing a holistic approach to regularization.

Figure 2C visually compares MSE in parameter estimation
between THOR and the Separate GLMM analysis. The Separate
GLMM involves conducting separate analyses of different
subgroups of data without accounting for potential correlations
between groups. THOR achieves a lower median MSE of approx-
imately 0.03, signaling higher precision and diminished error
variability compared to separate regressions, which display a
median MSE of roughly 0.042. The broader interquartile range and
heightened error variability associated with the Separate GLMM
analysis suggest its reduced effectiveness in capturing complex
data features, particularly in datasets with significant subgroup
heterogeneity.

Clinical cohorts application analysis
Participants and data production
In this research, we performed a retrospective analysis on group-
structured data consisting of 238 patients who received ICI
monotherapy. Participants included 64 patients diagnosed with
recurrent/metastatic nasopharyngeal carcinoma (R/M NPC) and
73 patients with NSCLC at SYUCC, as well as 75 patients with
NSCLC and 26 patients with melanoma from the Second Affiliated
Hospital of Xi’an Jiaotong University. Patients afflicted with R/M

NPC were enrolled in two Phase I clinical trials (NCT02721589
and NCT02593786). Protocols for NSCLC patients at SYUCC,
including dosage escalation and expansion phases, are detailed
in the references [40–42]. Additionally, 101 patients from the
Second Affiliated Hospital of Xi’an Jiaotong University underwent
analogous treatment protocols and were sequenced at the
Geneplus-Beijing Institute. Patient specifics are delineated in
Supplementary Table S2, with extended information on patient
enrollment, library preparation, sequencing, and bioinformatics
procedures available in the Supplementary Materials. This
synthesis of data from multiple clinical cohorts facilitates an
evaluation of the prognostic significance of clonal mutation
characterization, focusing on clinical endpoints such as ORR
and PFS. Four related but distinct experimental subgroups
were naturally identified based on disease type or treatment,
specifically Geneplus_Lung, Geneplus_SKCM, SYUCC_Lung, and
SYUCC_NPC.

To further verify the model’s clinical applications, we aug-
mented the dataset by collecting a total of 2212 samples, which
included both genomic mutational profiles and clinicopathologic
data [3, 43–51]. Based on the study source and disease type,
the validation assembly incorporated NSCLC cohorts with 467
patients structured into four subgroups, Melanoma cohorts with
720 patients structured into six subgroups, and Pan-caner cohorts
with 1025 patients structured into nine subgroups. Fig. 3A and B
illustrates the proportionate distribution of individuals within
each cohort and details the distribution of cancer types across
all clinical cohorts. The entirety of the clinical cohorts and
the corresponding grouping structure is briefly detailed in
Table 1.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae648#supplementary-data
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Figure 3. Analysis of patient cohorts and genomic mutation profiles. (A) Sample size distribution across cohorts. (B) Cancer type distribution. (C)
Distribution of CCF: Violin plots show the distribution of CCF across four experimental cohorts, providing insights into the clonal heterogeneity. (D)
CCF heatmap across genes and cohorts: the heatmap details the CCF for various mutations across genes within SYUCC experimental cohorts, with the
color gradient representing the extent of clonality.

Table 1. Summary of study cohort information.

Subgroup ID Cohort overview Study source Num. Cancer type

1 Experiment Cohorts Geneplus_Lung 75 Non-small Cell Lung Cancer
2 Geneplus_SKCM 26 Melanoma
3 SYUCC_Lung 73 Non-small Cell Lung Cancer
4 SYUCC_NPC 64 Nasopharyngeal Carcinoma

1 NSCLC Cohorts Rizvi, Science 16 Non-small Cell Lung Cancer
2 Hellmann, Cancer Cell 68 Non-small Cell Lung Cancer
3 Rizvi, JCO 227 Non-small Cell Lung Cancer
4 Samstein, Nat Genet Lung 156 Non-small Cell Lung Cancer

1 Melanoma Cohorts Hugo, Cell 37 Metastatic Melanoma
2 Liu, Nat Med 140 Metastatic Melanoma
3 Riaz, Cell 70 Metastatic Melanoma
4 Roh, Sci Transl Med 48 Metastatic Melanoma
5 Van Allen, Science 105 Metastatic Melanoma
6 Samstein, Nat Genet SKCM 320 Metastatic Melanoma

1 Pan-cancer Cohorts Miao, Science 35 Renal Cell Carcinoma
2 Samstein, Nat Genet KIRC 151 Renal Cell Carcinoma
3 Samstein, Nat Genet BLCA 215 Bladder Cancer
4 Samstein, Nat Genet BRCA 44 Breast Cancer
5 Samstein, Nat Genet Unknown 110 Unknown Primary
6 Samstein, Nat Genet COAD 126 Colorectal Cancer
7 Samstein, Nat Genet ESCA 117 Esophagogastric Cancer
8 Samstein, Nat Genet GBMLGG 139 Glioma
9 Samstein, Nat Genet HNSC 88 Head and Neck Cancer
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The datasets we examined exhibited significant variations in
patient numbers across different groups, which could compro-
mise statistical robustness. For example, a smaller cohort from
Rizvi et al. [43] included only 16 patients, potentially introducing
significant bias and error if analyzed in isolation. Similar dispari-
ties are evident in other datasets. To circumvent these limitations,
we used a fusion framework to improve statistical validity and
allow even smaller subgroups to contribute effectively to the
inference.

Tumor clonal heterogeneity not only charts the evolutionary
trajectory of tumors but also influences patient responses to
immunotherapy. The PyClone algorithm [52] was utilized to accu-
rately identify and quantify clonal mutation signatures, revealing
potential relationships with immunotherapy outcomes. Below is
a detailed description of our bioinformatic pipeline:

• Collection: Raw sequencing data in FASTQ format were
sourced from corresponding platforms, with each dataset
undergoing rigorous checks for completeness and potential
corruption to ensure data integrity.

• Quality control: The FastQC was utilized to control the qual-
ity of each sample, scrutinizing reports for low sequenc-
ing quality, high contamination levels, or excessive adapters.
Following this analysis, data cleanup includes quality filter-
ing, removal of adapters via Cutadapt, and elimination of
low-quality reads, short reads, and duplicates to ensure accu-
racy in subsequent analyses.

• Alignment: Cleaned reads were aligned to the reference
genome GRCh38 using BWA-MEM, generating BAM files for
detailed examination.

• Variant calling: Variant calling was executed using Mutect2
for single nucleotide variants (SNVs) and small insertion-
s/deletions (Indels), along with CNVkit for copy number vari-
ation (CNV) analysis.

• Clonal analysis: Input files, including variant data, allele
frequencies, and coverage depth, were prepared for PyClone,
facilitating the inference of clonal populations and their pro-
portions.

Our bioinformatics pipeline enables precise tumor hetero-
geneity characterization, as illustrated in Fig. 3C and D. This
figure shows the distribution of the clonal cell fraction (CCF)
across experimental cohorts, allowing a visual comparison of
tumor cellular compositions and mutational profiles across
diverse patient groups. The comprehensive presentation allows
for a straightforward comparison of mutational profiles across
diverse patient groups, providing more profound insights into the
molecular mechanisms underlying tumor biology.

Effectiveness of THOR in group-structured data
We initiated our investigation by validating the clinical effi-
cacy of THOR against established predictive models—Logistic
Regression, XGBoost, and NN—utilizing two distinct analytic
strategies: pooled analysis and separate analysis. These models
were assessed for their ability to predict clinical outcomes based
on genomic mutational profiles and clinicopathologic data. THOR
leverages a fusion penalty to facilitate information exchange
across tumor clones and patient subgroups, effectively identifying
both shared and subgroup-specific patterns. Logistic Regression,
a traditional classification approach widely used in ICI prediction
[53]; XGBoost, an ensemble learning method based on gradient
boosting; and NNs, a multilayer perceptron classifier, served as
comparative benchmarks.

Our analysis strategies diverged as follows: pooled analysis
amalgamated all subgroup data into a single dataset, training
one model across the board, thus neglecting subgroup distinc-
tions. Separate analysis treated each subgroup as an independent
dataset, training dedicated models to enhance specificity with-
out sharing information between subgroups, except in the case
of THOR. Performance was rigorously evaluated using stratified
K-fold cross-validation (CV) to preserve subgroup distribution.
Metrics including log-loss, accuracy, and area under the curve
(AUC) were calculated, and receiver operating characteristic (ROC)
curves were visualized to compare model performance.

The findings in Fig. 4 and Table 2 first illustrate THOR’s supe-
rior performance across the experimental cohorts.

Figure 4A presents the ROC curves under pooled analysis,
where our model achieves a superior AUC of 0.77, outperforming
logistic (AUC = 0.63), XGBoost (AUC = 0.71), and NN (AUC = 0.75).
The pooled analysis approach may obscure subgroup-specific
patterns crucial for precise predictions, yet THOR successfully
captures these patterns, leading to superior predictive perfor-
mance.

Figure 4B depicts THOR’s consistent superiority under separate
analysis, outperforming logistic (AUC = 0.72), XGBoost (AUC =
0.69), and NN (AUC = 0.72). This underscores THOR’s effectiveness
in leveraging subgroup-specific information to enhance predictive
accuracy. The experimental cohorts consisted of patient data
from four distinct subgroups, and response predictions for each
cohort are illustrated in Supplementary Fig. S1. THOR’s ability
to share information across subgroups enhances performance,
particularly in data-limited subgroups, whereas the comparison
models are prone to overfitting or underfitting due to insufficient
subgroup data.

The Kaplan-Meier survival curves in Fig. 4C and D compare the
PFS for patients categorized into high- and low-risk groups based
on THOR-calculated hazards and Cox-calculated hazards. The
log-rank test results reveal significant differences between these
groups, illustrating THOR’s ability to utilize subgroup-specific
information and individual genetic markers effectively.

Table 2 quantitatively reinforces THOR’s prognostic precision
compared to traditional markers such as TMB, emphasizing
its advanced capability in prognostic categorization. Within
the SYUCC&Geneplus cohorts, THOR consistently outstripped
its counterparts, achieving a lower log-loss (0.4848) and a
higher accuracy rate (76.36%) across both analysis strategies.
A notable decline in performance metrics was observed when
switching from multi-dimensional clonal mutation features
to a unidimensional TMB marker, validating our hypothesis
that integrating clonal heterogeneity significantly enhances
immunotherapy decision-making, thus advocating for THOR’s
innovative approach.

This comprehensive evaluation not only fortifies THOR’s appli-
cability in clinical predictions but also highlights its potential to
significantly refine immunotherapy strategies through detailed
clonal analysis, offering a substantial enhancement over existing
models.

Extended validation of THOR across diverse cancer types
Further validation of THOR’s efficacy was conducted across
multiple cancer settings, including NSCLC, melanoma, and pan-
cancer cohorts. The results, summarized in Fig. 5 and Table 2,
consistently demonstrate superior performance compared to
alternative models.

In the NSCLC cohorts (Fig. 5A), the ROC curves from both
pooled and separate analyses indicate that THOR consistently

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae648#supplementary-data
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Figure 4. Comparative prognostic analysis across experimental cohorts using THOR, Logistic Regression, XGBoost, and NN under pooled and separate
analysis. (A) ROC curves for group-structured cohorts under pooled analysis (5-Fold CV): These curves display the diagnostic accuracy of the THOR model

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae648#supplementary-data
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Table 2. Quantitative performance metrics of THOR versus Logistic, XGBoost and nerual network (NN) under pooled and separate
analysis for different predictive features.

Cohort type Metric & model THOR Pooled logistic Pooled XGBoost Pooled NN

Experimental Log-Loss 0.4848 0.5426 0.5133 0.5445
Accuracy 76.36% 75.96% 75.98% 75.96%

NSCLC Log-Loss 0.5854 0.6316 0.6465 0.5917
Accuracy 69.47% 65.73% 63.79% 66.56%

Melanoma Log-Loss 0.6127 0.6758 0.6700 0.6800
Accuracy 66.17% 57.32% 58.79% 58.34%

Pan-cancer Log-Loss 0.6174 0.6608 0.6538 0.6359
Accuracy 62.11% 59.17% 63.22% 64.54%

Cohort type Metric & model Separate logistic Separate XGBoost Separate NN

Experimental Log-Loss 0.663 0.5093 0.4989
Accuracy 75.94% 75.51% 77.01%

NSCLC Log-Loss 0.6351 0.6589 0.6033
Accuracy 64.86% 61.83% 68.99%

Melanoma Log-Loss 0.6611 0.6767 0.6442
Accuracy 65.28% 63.36% 65.88%

Pan-cancer Log-Loss 0.6691 0.6372 0.6415
Accuracy 65.04% 63.02% 65.55%

Cohort type Metric & model THOR for TMB Pooled logistic for TMB Pooled XGBoost for TMB Pooled NN for TMB

Experimental Log-Loss 0.5904 0.5452 0.5779 0.5441
Accuracy 75.53% 75.96% 75.12% 75.96%

NSCLC Log-Loss 0.6954 0.6434 0.6547 0.6392
Accuracy 61.85% 65.73% 63.99% 65.94%

Melanoma Log-Loss 0.6855 0.6858 0.6917 0.6829
Accuracy 55.39% 55.24% 58.49% 55.24%

Pan-cancer Log-Loss 0.6814 0.676 0.6655 0.6672
Accuracy 63.22% 59.17% 61.80% 60.89%

in clinical decision-making. The consistent outperformance in
subgroup-specific analyses and broader cohort validations high-
lights its potential as an essential tool in precision oncology.

Overall impact of clonal composition on clinical endpoints
The four subplots in Fig. 6 represent the clonal tumor muta-
tion burden (cTMB) coefficients for various groups within differ-
ent cancer cohorts: experimental, NSCLC, melanoma, and pan-
cancer. The coefficients quantify the effect of cTMB on two clinical
outcomes: ORR and TTE.

In the experimental cohort (Fig. 6A), Clone 1, the master
clone with the largest cancer cell fraction (CCF), has the
highest absolute coefficient values for ORR and TTE across
multiple groups. This emphasizes the major clone’s dominance
in treatment response and survival. Dashed lines show cTMB’s
effect on TTE, with negative coefficients showing that larger
levels reduce hazard and improve survival. The stronger effect
on TTE, relative to ORR, suggests the greater impact of cTMB on
long-term survival compared to short-term treatment response.
Negative effects observed for certain groups (e.g. Group 3) on
ORR also indicate that specific clones can adversely impact ICI
outcomes, highlighting the importance of clonal composition in
predicting both response and progression.

In the NSCLC cohorts (Fig. 6B), despite variations observed
between different groups, the data further corroborate the trend
where Clone 1 consistently exerts the greatest influence on clin-
ical outcomes. This suggests that in NSCLC, the primary clone
maintains its dominant role, while subclonal contributions are
secondary. This trend underscores the importance of the master

clone in shaping treatment response and survival trajectories,
reaffirming a pattern of clonal dominance as reported previously
[19].

The melanoma cohorts (Fig. 6C) deviate significantly from the
other cohorts, with the effect of the primary clone (Clone 1) being
diluted by substantial contributions from subclones, particularly
Clone 2 and Clone 3. This dynamic may partly explain why TMB
is less reliable as a predictive marker for melanoma compared
to other cancer types. Melanoma tumors exhibit a complex sub-
clonal structure where secondary clones play a substantial role,
thereby diminishing the predictive influence of the primary clonal
mutation burden. This observation underscores the necessity for
more clonality-aware metrics to accurately predict outcomes in
melanoma, as traditional TMB may fail to fully capture the intri-
cate subclonal interactions and their impact on patient prognosis.

Although subclones do contribute to clinical outcomes, their
effects are less pronounced compared to those of the primary
clone. In the pan-cancer analysis (Fig. 6D), the consistency of
this trend further emphasizes the significance of the clones
with larger CCF in overall prognostic assessments, though it also
implies that cancer-specific nuances may sometimes be obscured
by generalized analytical approaches.

The visualized coefficients underscore the importance of cTMB
in predicting clinical outcomes such as ORR and TTE across differ-
ent cancer types and subgroups. The variability across subgroups
suggests that a one-size-fits-all prediction or treatment strategy
could be ineffective or even detrimental. Understanding the spe-
cific contributions of different clones to ORR and TTE facilitates
more informed clinical decision-making, potentially enhancing
both initial treatment responses and long-term outcomes. THOR’s
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Figure 5. Comparative prognostic analysis across validation cohorts using THOR, Logistic Regression, XGBoost, and NN under pooled and separate
analysis. (A) NSCLC cohorts: ROC curves indicate that THOR achieves the highest AUC (0.70), surpassing all other models and demonstrating superior
predictive accuracy. Kaplan–Meier survival curves (PFS) show significant separation between high and low-risk groups under THOR, with a log-rank
test P-value of 0.0003, compared to 0.0072 under pooled analysis. (B) Melanoma cohorts: ROC curves show THOR achieves the highest AUC (0.73),
outperforming all alternative models. Kaplan–Meier survival curves for PFS further affirm THOR’s superior predictive precision, achieving a log-rank test
P-value of 0.0000, underscoring its strong prognostic capability in melanoma cohorts. (C) Pan-cancer cohorts: ROC curves demonstrate THOR’s superior
prognostic accuracy, with an AUC of 0.70, outperforming other models across diverse cancer types. Kaplan-Meier survival curves (OS) demonstrate the
effectiveness of THOR in universally applicable cancer prognostics, with consistently low log-rank test P-values, indicating significant differentiation
between risk groups.

ability to capture these variations across subgroups and clones
demonstrates its utility in providing tailored risk stratification,
surpassing the capacity of traditional models. This capability
is particularly critical in precision oncology, where therapeutic
decisions must consider subtle differences across diverse patient
subgroups and cancer types.

Discussion
This research has presented THOR, a heterogeneity-optimized
regression model designed to predict immunotherapy responses
by analyzing clonal genomic features within group-structured
data. The model effectively addresses challenges related to inte-
grating multi-endpoint data, managing high covariance levels,
and limited sample sizes, thereby strengthening statistical infer-
ence for personalized immunotherapy. By leveraging a GLMM
framework, THOR unites various clinical outcomes, such as ORR
and PFS, into a cohesive analytical approach.
THOR distinguishes itself by mitigating multicollinearity among
clonal mutations using a penalized likelihood approach that
emphasizes crucial variables. This method, combined with
a fusion strategy across data subgroups, preserves model
specificity while enhancing adaptability and predictive accuracy
through efficient information sharing. Simulations underscore
the model’s proficiency in parameter estimation and its ability to
handle nonconvex optimizations, which are often encountered in
complex models. When applied to a clinical dataset of nearly a

thousand patients with conditions such as NSCLC and melanoma,
THOR demonstrated enhanced risk stratification and superior
predictive performance compared to conventional methods.

Despite these promising outcomes, several limitations warrant
discussion. First, THOR relies heavily on the availability of high-
quality genomic and clinical data, which are not consistently
accessible across different healthcare systems and research
environments. This reliance could hinder the model’s widespread
applicability, especially in scenarios where genomic sequencing
is incomplete or unavailable, limiting its use to well-funded
research settings or specialized cancer centers. Additionally,
THOR requires substantial computational resources, particularly
for model fitting, which involves penalized likelihood estimation
and complex optimization procedures. These computational
demands may restrict its feasibility in environments with limited
computing infrastructure.

The current implementation of THOR utilizes GLMMs, which,
although powerful, are computationally intensive and present
challenges related to nonconvex optimization. Future work will
explore reducing these computational barriers, potentially incor-
porating efficient approximation algorithms, or leveraging dis-
tributed computing frameworks to enhance scalability. Address-
ing these challenges is crucial to making the model more accessi-
ble for broader clinical application.

To address these limitations, future work will focus on refining
THOR by incorporating more comprehensive and diverse datasets,
thereby broadening the model’s scope. This effort includes
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Figure 6. Analysis of cTMB coefficients by clone and group across different cancer cohorts. Figure depicts the estimated coefficients for cTMB on clinical
endpoints, represented as the effect on ORR and TTE, across various clones and patient subgroups in different cancer types. The coefficient values are
derived from THOR and visually depict how clonal structures influence distinct clinical outcomes. (A) cTMB coefficients for the experimental cohorts.
The panel illustrates coefficient estimates for four subgroups across five distinct clones (Clone 1 to Clone 5). The solid lines indicate the estimated
effect of cTMB on ORR, while the dashed lines represent the effect on TTE. The primary clone (Clone 1) consistently shows the largest coefficient values
in absolute terms, particularly on TTE, suggesting that higher cTMB levels reduce the survival hazard and improve prognosis. (B) cTMB coefficients
for the NSCLC cohorts. This panel shows the effect of cTMB across four subgroups. Clone 1 generally retains the largest effect on both ORR and TTE.
The influence of subclones, especially Clone 3 in Group 2, is also evident, although their effect does not exceed that of the master clone. (C) cTMB
coefficients for the melanoma cohorts. The panel illustrates coefficient values across six groups and five clones. Notably, the influence of the primary
clone is diluted by the substantial contributions from subclones (Clone 2 and Clone 3). Dashed lines, representing the cTMB effect on TTE, are largely
negative across the subclones, implying that higher cTMB levels are associated with reduced hazard and improved survival. (D) cTMB coefficients for
the pan-cancer cohorts. Coefficients are shown for nine groups across four clones. Clone 1 consistently displays the highest coefficient values across
both endpoints. The dashed lines for TTE indicate a negative relationship between cTMB and survival hazard, showing a generally consistent effect.

acquiring richer genomic and clinical data, extending the analysis
to additional clinical endpoints—such as adverse event rates—
and integrating a broader range of gene mutation signatures
across various tumor types. We also plan to explore advanced
machine learning techniques, including deep learning-based
feature extraction, to effectively manage the inherent complexity
and high dimensionality of genomic data.

Conclusion
THOR represents a significant advancement in predictive oncol-
ogy, with substantial potential to improve patient-specific out-
comes in cancer immunotherapy. By effectively addressing the
challenges of endpoint integration, subgroup fusion, and high-
dimensional data, THOR has demonstrated its capacity for per-
sonalized response prediction. Future research aimed at enhanc-
ing clinical applicability and computational efficiency is expected

to significantly advance the field toward more precise and individ-
ualized therapeutic strategies, ultimately improving patient care
and outcomes in oncology.

Key Points

• We introduced a heterogeneity-optimaized regression
(THOR), an advanced computational framework that
predicts immunotherapy response based on genomic
mutational profiles in group-structured data.

• THOR enhances the predictive capabilities of TMB by
integrating tumor clonality and clinical co-primary end-
points, further augmented by fusion techniques across
subgroups, improving the statistical power and prompt-
ing data sharing.

• THOR’s effectiveness is demonstrated through simu-
lations and clinical application on a cohort of 238
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cancer patients, supplemented by data from 2212
patients, showing significant improvements in patient
stratification and prognostic accuracy.
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