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Abstract

Despite significant advancements in single-cell sequencing analysis for characterizing tissue sample heterogeneity, identifying the
associations between cell subpopulations and disease phenotypes remains a challenging task. Here, we introduce scPAS, a new
bioinformatics tool designed to integrate bulk data to identify phenotype-associated cell subpopulations within single-cell data.
scPAS employs a network-regularized sparse regression model to quantify the association between each cell in single-cell data and a
phenotype. Additionally, it estimates the significance of these associations through a permutation test, thereby identifying phenotype-
associated cell subpopulations. Utilizing simulated data and various single-cell datasets from breast carcinoma, ovarian cancer, and
atherosclerosis, as well as spatial transcriptomics data from multiple cancers, we demonstrated the accuracy, flexibility, and broad
applicability of scPAS. Evaluations on large datasets revealed that scPAS exhibits superior operational efficiency compared to other
methods. The open-source scPAS R package is available at GitHub website: https://github.com/aiminXie/scPAS.
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Introduction
Single-cell RNA sequencing (scRNA-seq), with its ability to com-
prehensively characterize cells from complex tissues, has become
an essential method in biological research [1]. Unlike bulk RNA-
seq, scRNA-seq allows for the detailed cataloging of cell types,
states, and lineages within heterogeneous tissue ecosystems [2,
3]. Identifying key cell subpopulations associated with specific
phenotypes has become indispensable in disease research, par-
ticularly with advancements enabled by single-cell technology
[4–6]. Despite significant progress in developing computational
methods for different stages of scRNA-seq analysis, a bottleneck
remains in the accurate identification of molecular relationships
between phenotypes and cell populations. Large-scale cohort data
with sufficient phenotypic information are scarce because of
the high cost and labor associated with single-cell sequencing
[7, 8]. Consequently, small-scale datasets have limited statistical
power, making it challenging to establish statistically significant
associations between cell subpopulations and the phenotypes of
interest.

Fortunately, large-scale cohorts of bulk sequencing data,
enriched with clinical information, are available from publicly
accessible databases such as The Cancer Genome Atlas (TCGA)
[9] and the International Cancer Genome Consortium [10]. As an
alternative, many researchers leverage the available bulk RNA-seq

data from patients to link scRNA-seq-derived cell subpopulations
with clinical phenotypes by employing deconvolution or feature
gene scoring methods [11, 12]. However, these approaches assess
the association of disease phenotypes with predetermined cell
clusters rather than with individual cells. This dependency on
clustering results neglects transcriptional changes within cell
clusters.

Recently, computational methods such as Scissor [13], scAB
[14], and DEGAS [15] have systematically identified cell subpop-
ulations that are highly associated with specific phenotypes by
integrating bulk RNA-seq data. Unlike conventional methods,
these approaches couple bulk and scRNA-seq data through spe-
cific associations and construct computational models to directly
identify phenotype-associated cell subpopulations. Scissor and
scAB employ Pearson correlations at the whole-transcriptome
level to quantify similarities between cells and bulk samples.
Using the correlation coefficients of cells to samples as train-
ing features, they established associations between phenotypes
and cells using a sparse regression model and a knowledge-
and graphically guided matrix decomposition model, respectively.
DEGAS, on the other hand, leverages a combination of deep learn-
ing and transfer learning to transfer phenotypic information from
patients to cells. Although these methods are pioneering to some
extent, they exhibit several limitations: (i) similarity matrices

https://orcid.org/0000-0002-1387-8459

 2450 17054 a 2450 17054 a
 
mailto:xujinyuan@hrbmu.edu.cn
mailto:xujinyuan@hrbmu.edu.cn
mailto:xujinyuan@hrbmu.edu.cn

 14716 18105 a 14716
18105 a
 
mailto:xuyan@ems.hrbmu.edu.cn
mailto:xuyan@ems.hrbmu.edu.cn
mailto:xuyan@ems.hrbmu.edu.cn
mailto:xuyan@ems.hrbmu.edu.cn
https://github.com/aiminXie/scPAS
https://github.com/aiminXie/scPAS
https://github.com/aiminXie/scPAS
https://github.com/aiminXie/scPAS
https://github.com/aiminXie/scPAS


2 | Xie et al.

at the whole-transcriptome level may overlook the expression
changes of a few key genes. (ii) High spatiotemporal complexity
limits the use of these methods on large-scale datasets. (iii) They
cannot provide both quantitative and qualitative estimations of
the strength of association between each cell in the scRNA-seq
data and phenotype.

We introduce a novel tool named scPAS (Single-Cell Phenotype-
Associated Subpopulation identifier), designed to quantitatively
estimate the association strength between each cell in scRNA-
seq data and a given phenotype. This is achieved through the
construction of a network-regularized sparse regression model
that integrates bulk RNA-seq data, phenotype information, and
the gene–gene similarity network derived from single-cell data.
Additionally, scPAS can assess the statistical significance of these
associations, providing a qualitative classification based on this
evaluation. By applying scPAS to simulated data and various
single-cell datasets from breast carcinoma, ovarian cancer (OV),
and atherosclerosis, as well as spatial transcriptomics (ST) data
from multiple cancers, we demonstrated its accuracy, flexibility,
and broad applicability. Its application to large single-cell datasets
revealed the excellent operational efficiency of scPAS. An appli-
cation example incorporating ST effectively demonstrates the
transferability of the scPAS model, illustrating that scPAS can be
seamlessly applied to integrate bulk data, scRNA-seq, and ST data
in disease research. In summary, our results suggest that scPAS is
an efficient tool for exploring and analyzing single-cell data and
elucidating disease mechanisms.

Materials and methods
scPAS workflow
Input data and data preprocessing
As illustrated in Fig. 1, scPAS requires the input of a single-cell
expression matrix, a bulk expression matrix, phenotype labels for
bulk samples, and an optional set of genes of interest. Phenotype
data should correspond to the samples in the bulk expression
profile and can be continuous variables, binary variables, or clin-
ical survival data. scPAS processes the single-cell data using the
Seurat [16] pipeline to obtain results suitable for visualization and
extracts log-transformed expression values for subsequent anal-
ysis. For bulk data, it is recommended to use a log-transformed
Transcripts Per Kilobase Million (TPM) or Fragments per Kilobase
Million (FPKM) matrix as the input data. To mitigate potential
batch effects, scPAS preprocesses bulk data using quantile nor-
malization and z-score normalization. Subsequently, the bulk
data expression submatrix Bn×t and single-cell data submatrix
Sm×t are extracted for model construction. This step can optionally
utilize a gene set of interest. Highly variable genes from the single-
cell data are used by default. If the single-cell data have been
well characterized, we recommend using marker genes that are
specifically expressed in different cell subpopulations or clusters
as input.

Construction and optimization of the regression model
Next, scPAS trains and optimizes a network-regularized sparse
regression model using the bulk expression profile Bn×t. The opti-
mization model is formulated as follows:

β̂ = argmin
β

− 1
n

l (β) + λ

[
α‖β‖1 + 1 − α

2
βTLβ

]
(1)

where β is the regression coefficient vector of genes, and l(β)
corresponds to the log-likelihood function. The specific form of

l(β) depends on the input phenotype Y: linear regression for con-
tinuous variables, logistic regression for binary variables, and Cox
regression for clinical survival data (more details at next section).

The scPAS incorporates two penalty terms into the regres-
sion model. The first is a sparse penalty (L1-norm) applied to
select high-confidence genes relevant to the given phenotype.
The second is a network-based penalty that encourages similar
coefficients for tightly connected nodes (genes) in the network,
thereby enhancing the consistency and interpretability of phe-
notype–gene associations. To achieve this, a gene–gene similarity
network G is constructed in single-cell data using the shared
nearest neighbor method (see next section). λ and α are two
tunable optimization parameters, where λ controls the overall
strength of the penalty terms and α balances the effects of the
L1-norm and the network-based penalties.

Within the network-based penalty term (βTLβ), L is a symmetric
normalized Laplacian matrix defined by the following formula:

L = D− 1
2 (D − A) D− 1

2 = I − D− 1
2 AD− 1

2 (2)

where A = (
aij

)
t×t is a binary adjacency matrix derived from a

gene–gene similarity network graph G. The value of aij is either 0 or
1, indicating whether the existence of a connecting edge between
gene i and gene j in the network. The degree matrix D = (

dij
)

t×t is
a diagonal matrix, where dii = ∑t

j=1aijand dij = 0 when i �= j.

Log-likelihood functions
The likelihood function used in the network-regularized sparse
regression model varies depending on the type of phenotypic
data. There are three options: (i) linear regression for continuous
phenotype; (ii) logistic regression for binary phenotype; and (iii)
Cox regression for survival. Specifically, for expression data from
n patients, if the given phenotypeY = (

y1, y2, y3, ..., yn
)T is contin-

uous, the following linear regression likelihood function will be
selected:

l (β) = −
n∑

i=1

(
yi − βTBi

)2
(3)

where Bi = (
bi1, bi2, bi3, · · · , bit

)T represents the expression profile
of the i-th patient in the bulk dataset.

If Yis a binary group indicator vector, e.g. yi ∈ {0, 1}, the logistic
regression log-likelihood function will be used:

l (β) =
n∑

i=1

[
yiβ

TBi − log
(
1 + exp

(
βTBi

))]
(4)

When the phenotype is given as a two-column survival data
containing survival time t and survival state s, Cox regression will
be considered:

l (β) =
n∑

i=1

⎡
⎣βTBi − log

⎛
⎝∑

k∈Ri

exp
(
βTBk

)⎞⎠
⎤
⎦ (5)

where Ri = {
k : tk ≥ ti

}
represents the set of samples that are still

alive at time ti.

Construction of gene–gene similarity network
To introduce network-based penalties in the regression model, we
need to construct a gene–gene similarity network. This process
involves two steps: first, we calculate the Pearson correlation
coefficients for all pairs of genes to construct a correlation matrix.
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Figure 1. Overview of scPAS. (A) The inputs for scPAS were the scRNA-seq data, the bulk expression data, and phenotype labels corresponding to the
bulk expression data. (B) Preparation of bulk and single-cell data and construction of a gene–gene similarity network based on single-cell data. (C) scPAS
optimizes a graph-regularized sparse linear regression model by integrating bulk expression profiles and the gene–gene similarity network from single-
cell data. This model comprises three components: the likelihood function, the regularization sparsity penalty, and the network penalty. (D) Based on the
optimized model, scPAS calculated the risk score for each cell to quantify its potential association with the phenotypes. (E) scPAS employs a permutation
test program to classify qualitative cells. (F) Cell subpopulations identified by scPAS were used for downstream analysis.

The distance between each pair of genes is defined as 1 minus the
Pearson correlation coefficient. Using this distance, the K nearest
neighbors for each gene are identified. The Jaccard coefficient is
then computed based on the number of shared neighbors between
gene pairs. This coefficient is ultimately used to measure the
similarity between gene pairs. This process is implemented using
the FindNeighbors function from the Seurat package, with K set
to 20 by default.

Parameter tuning and implementation
Using the algorithm proposed by Li et al. [17], we solved the
network-regularized sparse regression described above and
implemented it using the APML0 R package. In scPAS, there
are only two parameters to determine: λ and α. The parameter
λ controls the overall strength of the penalty terms. Its value
is determined through model optimization. For a fixed α, we
considered 100 possible λ values and applied 10-fold cross-
validation to select the optimal λ that minimizes the average
error (for more details, please refer to the supplemental method).
The hyperparameter α ∈ [0,1] is used to balance the amount of
regularization for sparsity and smoothness. A larger α emphasizes
the L1-norm to encourage sparsity, whereas a smaller α gives
more weight to the network-based penalty term, encouraging the
selection of similar features. In practical applications, the optimal

λ tends to decrease gradually as α increases. A fixed α value is
not suitable for all models because different datasets can have
different sensitivities to changes in α. To select as many similar
features as possible, we recommend setting α to a gradient of
values from small to large and choosing the value where the rate
of decrease in λ starts to slow down for the final model (refer to
the supplemental materials; Fig. S2).

Quantitative risk score
The application of the model-trained coefficient β to single-cell
data allows the calculation of a risk score (RS) for each cell with
respect to the phenotype. The formula used is as follows:

RSi =
∑t

j=1
βjSij (6)

The RS value was used to quantify the association between each
cell and the phenotype of interest. A higher score indicates a
positive association between the cell and phenotype, whereas a
lower score indicates a negative association.

In addition to calculating the risk scores at the single-cell level,
this approach can also be applied to bulk data to derive sample-
level risk scores. This facilitated the validation of the robustness
of the trained scPAS model on independent bulk datasets.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data


4 | Xie et al.

Permutation test and qualitative identification of cells
To qualitatively assess phenotype-related cells, we perform a per-
mutation test program based on random perturbations. First, for
the trained coefficient vector β, we randomly perturbed its gene
labels f times to obtain a randomized coefficient matrix (βb)f×t.
Next, we calculated the random risk score (RSb)f×m = βbST for
cells as the empirical background. When f is sufficiently large, it is
assumed that the scores for each cell follow a normal distribution.
Therefore, we constructed the following distribution:

(RSb)i ∼ N
(
μi, σi

2)

where μi =
∑f

j=1 (RSb)ji

f is the average background score for cell

i after f random perturbations, and σi =
√ ∑f

j=1 [(RSb)ji−μi]
2

f−1 is the

standard deviation of the background scores for cell i. Based on
this distribution, we calculated the empirical P-value for the risk
score of each cell:

pi = P (|RSi| > μi) = 1 − 1√
2πσi

∫ |RSi |

−∞
e
− (t−μi)

2

2σi
2 dt (7)

The original RS was normalized based on this distribution to
obtain a normalized risk score (NRS):

NRSi = RSi − μi

σi
(8)

The absolute value of NRS reflects the degree to which the cell’s
association with the phenotype deviates from a random event. A
positive and larger value indicates a higher likelihood of positive
association with the phenotype, whereas a negative value sug-
gests a higher likelihood of negative association.

Finally, based on the P-value and NRS, we discretized the risk
scores for each cell to achieve a qualitative assessment of phe-
notype associations. The specific criteria for this judgment are as
follows:

scPASi =

⎧⎪⎨
⎪⎩

1, NRSi > 0, pi ≤ 0.05
0, pi > 0.05

− 1, NRSi < 0, pi ≤ 0.05
,

where scPASi = 1 indicates that cell i is positively associated
with the phenotype. Conversely, scPASi = −1indicated that cell
i is negatively associated with the phenotype. Cells that were not
significantly associated with the phenotype were assigned a value
of 0.

Simulated datasets setup
To assess the performance of scPAS, simulated single-cell data
with 10 000 cells and 3000 genes were generated using Splatter
[18]. These cells were from five groups with group probabilities
of 0.2. The probabilities that a gene is differentially expressed
(de.prob) in each of the five groups were set at 0.05, 0.05, 0.8,
0.8, and 0.8. The factor location of a differentially expressed gene
(de.facLoc) in each of the five groups were set at 0.5, 0.5, 1, 1, and
1. Thus, these five groups of cells comprise four cell types, where
groups 1 and 2 are grouped into the same cell type in different
cell states [cell type 1(state 1) and cell type (1 state 2)], as they
exhibit similar gene expression patterns (Fig. S1A). Subsequently,
we randomly split these cells into two equal portions: one for
constructing bulk data and the other for single-cell data usage.
By assigning different proportions of cell-type composition, we
were able to artificially simulate bulk samples with a specific

phenotype. We conducted four simulation experiments, denoted
Simulation 1–4, where Simulations 1 and 2 constructed binary
phenotypes, and Simulations 3 and 4 constructed continuous
phenotypes. Each patient’s bulk tissue data were generated by
randomly combining 500–900 single cells using the proportions
shown in Fig. 2B. The specifics of each experiment were as follows:
Simulation 1: 250 samples with high proportions of cell type 4 cells
were selected as case phenotypes (Fig. S1B); Simulation 2: the two
groups of samples, predominantly composed of the two cell states
of cell type 1, were designated as the case and control phenotypes,
respectively (Fig. S1C); Simulation 3: the proportions of cells in
cell type 3 were utilized as continuous phenotypes (Fig. S1D); and
Simulation 4: the relative proportions of cells in the two cell states
of cell type 1 were utilized as continuous phenotypes (Fig. S1E).

Imputation
scPAS defaults to use the k-nearest neighbor (KNN)-smoothing
algorithm for imputation [19], which aggregates information from
similar cells based on the KNN idea. In simple terms, for each
cell, the gene expression values were replaced with the average
expression of its KNNs. The formula is as follows:

S′ =
(
STN

)T

k
(9)

where N = (
nij

)
m×m is the k-nearest neighbor matrix calculated in

Seurat. The value of nij is either 0 or 1, indicating whether cell j is
one of the top k neighbors of cell i.

The KNN-smoothing imputation method is akin to the con-
cept of metacells [20]. Metacells are a common approach used
to reduce the size and complexity of the data while preserving
biologically relevant information. Additionally, other imputation
methods, such as MAGIC [21], SAVER [22], and scImpute [23], can
also be integrated during the preprocessing of single-cell data and
included as input in the scPAS workflow. However, imputation
inevitably introduces some false-positive signals. Therefore, if the
data quality is reliable, it may be prudent to consider disabling
imputation.

Datasets and preprocessing
We analyzed scRNA-seq data from three diseases, breast cancer,
OV, and atherosclerosis, as well as 14 Visium spatial transcrip-
tomic datasets from five distinct tumor types to evaluate the
performance of scPAS. Detailed information on the datasets is
provided in Table S1. The scRNA-seq data were preprocessed using
the R package Seurat [16] (v4.0.2). Genes expressed in at least 10
cells were retained. Low-quality cells that have detected <200
feature genes and had a mitochondrial gene percentage >20%
were excluded. The count matrix was normalized using the Nor-
malizeData function with default parameters. Then, the highly
variable genes were identified by using the FindVariableGenes
function with the “vst” method. After transformation on these
data using the “ScaleData” function, the scaled data were used for
PCA dimension reduction. The top 30 principal components were
selected for graph-based clustering. Finally, cells were projected
into 2D spaces using the “RunUMAP” function. The same process
was used for spatial transcriptomic data, but low-quality spots
were not filtered out.

Benchmarking metrics
Precision (+), precision (−), and accuracy were used to evaluate
the performance of the scPAS. Precision (+) is defined as the
proportion of the scPAS-identified true-positive cells among all

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
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Figure 2. Simulation study and baseline comparisons of scPAS. (A) 10 000 simulated cells from Splatter with four cell types, where one of the cell types
has two cell states. In total, 5000 of these cells were used to generate the 500 simulated patients in (B), and 5000 were used as the single-cell input for
scPAS. (B) Four groups of simulated patients were generated by aggregating sets of 500–900 simulated cells with various proportions of the cell types.
(C–F) The visualization of the result of scPAS results for each simulation without imputation. (G–J) The visualization of the result of scPAS for each
simulation with imputation. (K) Comparison of the prediction performance of scPAS against different methods.

positive predictions. Precision (−) is defined as the proportion
of the scPAS-identified true-negative cells among all negative
predictions. Accuracy is defined as the proportion of the scPAS-
identified true cells among all predictions.

Identification of signature genes and
computation of signature scores
The FindAllMarkers function with the default Wilcoxon rank-
sum test method was employed to identify differentially
expressed genes in scPAS+ cell subpopulations versus scPAS−
cell subpopulations. Genes significantly upregulated in scPAS+
cells were defined as positive signatures (log2 fold change >1
and FDR < 0.001), whereas those significantly upregulated in
scPAS− cells were defined as negative signatures (log2 fold change
< −1 and FDR < 0.001). Subsequently, the Gene Set Variation
Analysis (GSVA) [24] was used to calculate the signature score
for each sample. When both sets of signatures were considered
simultaneously, the composite signature score was calculated
by subtracting the negative signature score from the positive
signature score.

Running time and memory requirements
We compared the running time and memory usage of scPAS and
Scissor using the large-scale breast carcinoma scRNA-seq dataset.
The experiments were performed on a Linux server equipped with

a 2.75 GHz AMD EPYC 7B13 64-core processor and 2003 GB RAM,
without employing parallel computing techniques. Specifically,
we randomly sampled 5000, 10 000, 20 000, 40 000, and 80 000
cells for both scPAS and Scissor. Additionally, for scPAS, we var-
ied the number of features from 1000 to 10 000. Each run was
repeated five times, and the Rprof function was used to measure
running time and memory usage. Notably, we excluded scAB and
DEGAS from the comparison because of their significantly longer
runtimes in the simulated data compared to scPAS and Scissor
(Table S2).

Results
Overview of scPAS
scPAS requires three types of input data: single-cell RNA-seq data,
bulk expression data, and phenotype data matched to the bulk
samples (Fig. 1A). Phenotype annotations of bulk samples can be
continuous variables, binary variables, or clinical survival data.
Upon receiving the input data, the scPAS initially performs data
preprocessing to obtain two normalized expression profiles with
shared genes. Additionally, a gene–gene similarity network was
constructed from the single-cell data using the shared nearest
neighbor method with Pearson correlation coefficients between
pairs of genes serving as the similarity or distance measures
(Fig. 1B).

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
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The key step in scPAS is the optimization of a network-
regularized sparse linear regression model by integrating bulk
expression profiles and the gene–gene similarity network derived
from single-cell data. This step incorporates sparse and network-
based penalties into the conventional regression model based
on bulk data to select and weigh phenotype-associated genes
(Fig. 1C). Subsequently, we directly applied the trained model
to single-cell data to calculate the risk score for each cell and
quantify its potential association with the phenotype (Fig. 1D).
To qualitatively identify phenotype-associated subpopulations, a
permutation test program was designed to calculate statistically
significant P-values. Cells with significantly higher or lower risk
scores than the background score are indicated as scPAS+ and
scPAS− cells, which are positively and negatively associated
with the phenotype of interest, respectively (Fig. 1E). Finally, the
utility of scPAS-selected cells was demonstrated in downstream
analyses, such as verification with independent data, signature
gene identification, and functional analysis (Fig. 1F).

Validating scPAS using simulated single-cell data
To evaluate the performance of scPAS, we conducted experiments
on a series of simulated datasets with known phenotypes. Our
approach involved generating a single-cell dataset comprising
10 000 cells using Splatter [18] (Fig. 2A). Half of these cells were
reserved to create simulated bulk samples. By aggregating sets of
500–900 simulated cells from this reserved group, we generated
500 simulated bulk samples. The phenotype of each sample was
determined by the proportion of cell types within the aggregated
cells. Four simulation experiments were designed as shown in
Fig. 2B. Simulations 1 and 2 were designed for binary phenotypes,
whereas Simulations 3 and 4 were designed for continuous
phenotypes.

The results demonstrated that scPAS accurately identified the
ground-truth phenotype-specific cell subpopulations (Fig. 2C–F).
The accuracy ranged from 83.69% to 100%, while the precision of
positive cells ranged from 78.73% to 100%, and the precision of
negative cells ranged from 80.48% to 100%. Despite the relatively
challenging task of distinguishing different cell states within the
same cell type (as seen in Simulations 2 and 4), the scPAS still
achieved satisfactory performance.

Furthermore, we evaluated scPAS’s performance before and
after imputation. The results indicated that imputation signif-
icantly enhanced scPAS’s performance (Fig. 2G–J). For instance,
in Simulation 2, more phenotype-associated cells were identified
after imputation (293 versus 903 for scPAS+ cells and 193 versus
736 for scPAS– cells), resulting in an improvement in accuracy
from 91.77% to 95.42% (Fig. 2K and Table S1). We also explored the
impact of optimizing parameter α on performance by varying its
gradient (refer to the supplementary materials; Fig. S2). Notably, λ
decreases with increasing alpha and quickly converges to a rela-
tively stable range. Once λ stabilized, the accuracy of phenotype-
associated cells identified by scPAS also reached a stable state,
depending on the proportion of true phenotype-associated fea-
tures favored by the model. This provides a basis for selecting
reasonable parameters for scPAS in practical applications.

To further assess scPAS’s performance, we compared it with
other previously reported methods, including Scissor, scAB, and
DEGAS. We tested these methods using their default parameters
as provided by tutorials (refer to the supplementary materials;
Fig. S3). The results indicated that both scPAS and Scissor
exhibited good prediction accuracy for binary phenotypes (Fig. 2K
and Fig. S3A). However, scAB and DEGAS could not distinguish

phenotype-associated cells from the two different cell states
within the same cell type. For continuous phenotypes, the
performance of Scissor was noticeably worse than that of
scPAS (Fig. 2K and Fig. S3F). Specifically, in Simulation 4, Scissor
identified 42.98% of the true background cells (unrelated to the
phenotype) as Scissor+ cells, resulting in an accuracy of only
43.42% and a false-positive rate >30% (Fig. S3D–F).

Capturing subpopulations related to breast
carcinoma
We applied scPAS to a large-scale breast carcinoma scRNA-seq
dataset that incorporated tissue phenotypes [25] (Fig. 3A and B).
Our approach leveraged tumor and normal phenotypes from
bulk breast carcinoma samples in TCGA for model training to
predict cells associated with either tumor (scPAS+ cells) or normal
(scPAS− cells) phenotypes within heterogeneous cell populations
(Fig. 3C and D). As a result, scPAS successfully identified 37 453
scPAS+ cells and 25 226 scPAS− cells from 106 469 cells spanning
diverse cell types. Notably, >99% of the scPAS+ cells originated
from tumor samples, predominantly consisting of epithelial cells,
myeloid cells, and fibroblasts (Fig. 3E, left panel). In concordance
with the cell types, scPAS exhibited nonrandom identification of
cells originating from tumor tissue (Table S3). Conversely, scPAS−
cells, 79.87% of which originated from normal tissue, predom-
inantly represented nonmalignant cell types, including fibrob-
lasts, basal cells, and endothelial cells (Fig. 3E, right panel). It is
plausible that tumor tissue−derived cells also include nonma-
lignant cells associated with normal phenotypes, accounting for
the presence of 37.54% scPAS− epithelial cells from tumor tissue.
Using inferCNV to infer copy number variation (CNV) scores,
we observed that scPAS− epithelial cells from tumor samples
exhibited lower CNV scores than those of other epithelial cells
from tumor samples (Fig. S5). The unsupervised clustering of
all epithelial-like cells shows that scPAS− epithelial cells from
tumor samples cluster together with those derived from normal
tissues (Fig. S6E). Additionally, their specific expression signature
is significantly upregulated in normal breast samples (Fig. S6F).
This suggests that the scPAS− epithelial cells from tumor samples
are more likely to be nonmalignant.

Furthermore, we systematically adjusted the scale of single-
cell data by downsampling and varied the number of highly
variable genes. This investigation aimed to assess their impact
on the runtime and memory requirements of scPAS. Notably,
while scPAS’s runtime and memory requirements increased
with cell count and number of features for training, the growth
trend remained significantly lower than that observed for Scissor
(Fig. 3F and G). In summary, scPAS can precisely identify the most
phenotype-associated cells from single-cell data with guidance
from phenotype information obtained from bulk data, and its
performance surpasses that of the existing algorithms.

Identification of cell subpopulations associated
with atherosclerosis and normal arterial tissue
In this case study, we meticulously annotated a single-cell
expression dataset of atherosclerosis comprising 49 393 cells [26]
(Fig. 4A). These cells were derived from calcified atherosclerotic
core (AC) plaques and patient-matched proximal adjacent (PA)
portions of the carotid artery, collected from three patients
undergoing carotid endarterectomy. Guided by 104 bulk samples
(comprising 69 atherogenesis patients and 35 healthy controls),
scPAS identified 6824 scPAS+ cells associated with atherogenesis
patients and 7689 scPAS− cells associated with healthy controls

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
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Figure 3. scPAS validation in the breast carcinoma scRNA-seq dataset. For peer review. (A, B) The Uniform Manifold Approximation and Projection (UMAP)
visualization of 106 469 cells from the breast carcinoma samples and normal breast samples for their cell type annotation and tissue phenotypes.
(C, D) The UMAP visualization of the scPAS-calculated risk scores and the scPAS selected cells. (E) The pie chart of the sample tissue phenotypes for the
scPAS+ cells (left) or scPAS+ cells (right) with the corresponding bar plots showing the detailed constitutions in each cell type. (F, G) Curve of runtime
and memory requirements of scPAS and Scissor with increasing cell number.

(Fig. 4B–D). Notably, scPAS+ cells predominantly originated
from clusters annotated as immune cells, including T cells,
macrophages, and B cells. In contrast, the scPAS− cells were
primarily derived from vascular smooth muscle cells. This
observation aligns with existing knowledge that atherosclerosis is
a chronic inflammatory disease of the arterial wall, where a sig-
nificant number of immune cells are recruited to atherosclerotic
plaques by chemokines [27–29]. Consequently, compared with
normal arterial walls, plaque tissues are enriched with immune
cells.

The trained scPAS model can be directly applied to independent
data to validate its robustness. Validation results revealed that the
risk scores calculated for three independent bulk datasets could
significantly distinguish advanced atherosclerosis samples from
early atherosclerotic plaque samples [30–32] (Fig. 4E). To further
elucidate the phenotypic associations of the cell subpopulations
identified by scPAS, we conducted differential expression analysis
between scPAS+ and scPAS− cells, constructing two molecular
signatures: a positive signature for 213 upregulated genes and
a negative signature for 272 downregulated genes (Fig. 4F). Sub-
sequently, we calculated the GSVA score [24] for each sample
to evaluate the predictive effectiveness of these signatures. As
shown in Fig. 4G, the enrichment scores of the positive signature
were significantly higher in advanced atherosclerosis and lesions
with intraplaque hemorrhages, whereas the negative signature
exhibited significantly lower scores.

We also applied Scissor to the atherosclerosis dataset (refer to
the supplementary materials; Fig. S8). A notable difference was
that Scissor identified a large number of T cells and macrophages
as normal arterial-related cells (Scissor− cells). Validation with
independent data revealed that the negative signature con-
structed from Scissor results did not show significant predictive
effectiveness (Fig. S8E). When focusing on macrophages, we found
that the signature up-regulated in Scissor− macrophages was sig-
nificantly upregulated in atherogenesis samples (Fig. S8F and H).
This indicates that Scissor incorrectly identified macrophages,
which are positively associated with atherogenesis, as negatively
associated cells.

Identifying prognosis-related cell subpopulations
in ovarian cancer
To explore the ability of scPAS to identify cell subpopulations
associated with prognosis, we applied it to a single-cell dataset
containing 59 604 cells from 12 OV tumors [33] (Fig. 5A). By lever-
aging TCGA-OV bulk gene expression data and corresponding
survival information, scPAS predicted the prognostic risk scores
for each cell (Fig. 5B). Our results revealed that B/plasma cells
confer a favorable prognosis in OV, whereas stromal cells, includ-
ing fibroblasts and endothelial cells, were associated with poorer
outcomes (Fig. 5C). Furthermore, qualitative analysis enabled the
identification of phenotype-associated cells (Fig. 4D). Among the
1760 scPAS-captured cells, 18.52% (326/1760) were associated with
poor survival, whereas 81.48% (1434/1760) were associated with
good survival (Fig. 5E). Specifically, the 326 scPAS+ cells were pre-
dominantly localized to fibroblasts and epithelial cells, whereas
the 1434 scPAS− cells were primarily immune cells, including
plasma cells, myeloid cells, and T cells (Fig. 5E).

We evaluated the trained scPAS model using three independent
bulk datasets [34–36], and the results consistently demonstrated
that the bulk-level scPAS score significantly predicts OV survival
(Fig. S9A). This validation underscores the robustness of this
model in assessing OV prognosis risk. To delve into the underlying
transcriptional patterns of scPAS-captured cells, we conducted
differential gene expression analysis between scPAS+ cells and
scPAS− cells to identify 142 down-regulated and 262 up-regulated
signature genes (Fig. 5F and Table S5). Among these signature
genes, those upregulated in scPAS+ cells are primarily associated
with mesenchymal functions (Fig. 5G and H and Table S6), such as
extracellular matrix organization, focal adhesion (involving genes
such as COL1A1, COL1A2, THBS1/2, VWF, and MYL9), response
to growth factors (including EGR1, FBN1, FOS, ZFP36, IER2, and
POSTN), and angiogenesis (such as CYR61, CTGF, CALD1, FLNA,
FN1, and NR4A1). Epithelial–mesenchymal transition (EMT) is a
critical process in the malignant progression of tumors and is
strongly associated with tumor metastasis and treatment resis-
tance [37]. Conversely, the upregulated genes in scPAS− cells
were predominantly related to immune cell activation functions

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
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Figure 4. scPAS identification results on atherosclerosis. (A) The UMAP visualization of 49 393 cells derived from AC plaques and patient-matched PA
portions of the carotid artery. (B) The UMAP visualization of the scPAS-selected cells. (C) The UMAP visualization of the scPAS-calculated risk scores. (D)
The pie chart of the scPAS-selected cells with the corresponding bar plots shows the detailed constitutions in each cell type. (E) Boxplots display the
comparison of the risk scores calculated by the trained scPAS model between advanced atherosclerosis samples and early atherosclerotic plaque samples
from two independent validation datasets, as well as between lesions with and without intraplaque hemorrhage from one independent validation
dataset. The Wilcoxon rank-sum test was used to assess the differences. (F) The volcano plot of differentially expressed genes in scPAS+ cells versus
scPAS− cells. (G, H) Boxplots display the comparison of the GSVA scores of positive (G) and negative (H) signature genes, as defined in (F), between
advanced atherosclerosis samples and early atherosclerotic plaque samples on three independent validation datasets.

(Fig. 5G and H and Table S6), including B-cell activation (involv-
ing genes such as CD27, CD38, CD74, and MZB1), T-cell activa-
tion (including SLAMF7, CD2, CD3D, LAG3, NKG7, and PTPRC),
and inflammatory responses (such as AIF1, CD68, IFNG, CXCL10,
CXCL9, CXCL13, CCL3/4/5, CXCR4, STAT1, and ISG15). This sug-
gests that the favorable survival of patients with OV is related to
an antitumor immune microenvironment.

To further assess the prognostic impact of these signature
genes, we computed GSVA scores for the prognostic signature
across three independent bulk datasets. Subsequent Cox survival
analysis demonstrated a notable impact of our signature on sur-
vival across all three datasets (Fig. 5I–K). We also applied Scissor
to these three validation cohorts (refer to the supplementary
materials; Fig. S9B–E); however, we observed good performance in
only one of the validation cohorts.

Application of scPAS to spatial transcriptomic
data
To evaluate the applicability of scPAS in spatial transcriptomic
data, we utilized scPAS to infer the locations of malignant cells

across 13 Visium spatial slides from five distinct tumor types
(Fig. 6A and Table S1), using disease phenotypes and bulk tran-
scriptomic data from TCGA as references. To establish a gold
standard for evaluation, the initial classification of malignant
and nonmalignant spots was based on annotations from origi-
nal research, which were subsequently refined by pathologists.
In cases where slide annotations were unavailable, pathologists
annotated the spots directly. As a result, scPAS demonstrated
excellent performance in predicting malignant spots within ST
data, achieving an area under the receiver operating charac-
teristic curve (ROC-AUC) ranging from 0.815 to 0.968. (Fig. 6B
and Fig. S12A). For instance, in a 10x Visium dataset of invasive
ductal carcinoma, which encompassed 22 953 genes across 4727
spots, scPAS effectively identified tumor regions with elevated
malignant risk (Fig. 6D, ROC-AUC = 0.815). These regions corre-
sponded to predominantly invasive carcinoma, carcinoma in situ,
and benign hyperplasia, as originally annotated by pathologists
[38] (Fig. 6C). However, it is important to acknowledge that our
reliance on TCGA bulk data as a reference may have blurred the
distinction between benign hyperplasia and carcinoma regions.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
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Figure 5. scPAS identification results of survival-relevant cells in OV. (A) The UMAP visualization of 59 604 cells from OV samples for their cell type
annotation. (B) UMAP visualization of the scPAS-calculated risk scores. (C) The violin plot shows a comparison of the scPAS-calculated risk scores
for cells from different cell types. (D) UMAP visualization of scPAS-selected cells. (E) Pie chart of the scPAS-selected cells with corresponding bar plots
showing the detailed constitutions in each cell type. (F) Volcano plot of differentially expressed genes in scPAS+ cells versus scPAS− cells. (G) Violin plots
of the expression levels of selected dysregulated genes in scPAS+ versus scPAS− cells. (H) Enrichment bar plot of selected pathways in the Reactome
and Gene Ontology (GO) biological process domains. (I–K) Forest plots show the hazard ratios, 95% confidence intervals, and P-value for multivariate
Cox survival analysis of our signature score on three independent datasets.

Achieving a more sensitive classification could necessitate the
incorporation of finer-grained phenotypic labels from bulk data.

Advancements in technology have propelled high-definition
spatial transcriptomics (HD-ST) into the forefront [39]. The
analysis of extensive expression data from a single tissue section
has become an inevitable task. Consequently, it is imperative
to rigorously evaluate the performance of the computational
tools designed to handle such substantial data volumes. In
this context, we applied scPAS to HD-ST data from a colorectal
cancer sample (Fig. 6E–G), comprising 137 051 bins. We used
scPAS to perform two tasks on this dataset, aiming to identify
bins enriched with malignant cells and those associated with
survival outcomes, respectively. The results demonstrated that
when leveraging tumor and normal phenotype information from
TCGA bulk samples as a reference, scPAS effectively discriminated
between regions enriched with malignant cells and those
containing normal mucosal cells within the HD-ST data (Fig. 6H
and Fig. S12B). Furthermore, when survival data served as the
reference, scPAS successfully pinpointed stromal cell–enriched
areas adjacent to malignant tumor cells (such as fibroblasts and
endothelial cells) as poor survival-associated regions. Conversely,
regions enriched with normal mucosal cells were identified as
good survival-associated regions (Fig. 6I and Fig. S12C). Notably,
we observed that both the runtime and memory usage of the
scPAS were lower than those observed when running the Seurat

pipeline on the same data (Fig. 6J). In fact, since the training of
the regression model is independent of the size of the single-cell
data, scPAS can theoretically process any expression profile that
completes the Seurat pipeline with ease.

Additionally, we attempted to apply the pretrained models
on single-cell data to HD-ST data to observe the portability of
scPAS (refer to the supplementary materials; Fig. S13). The results
showed that the pretrained model had highly consistent pre-
dictive results with the model trained from scratch on the HD-
ST data. This characteristic highlights the advantage of scPAS
in integrating single-cell data and ST data to explore disease
mechanisms.

Discussion
The core of scPAS is a network-regularized sparse regression
model. This model utilizes the expression profiles and phenotype
information from bulk data and integrates the gene–gene
similarity network from single-cell data to optimize a weighted
regression model for predicting phenotype-associated risks. Based
on the scoring of the model, scPAS provides each cell with a
continuous metric that quantifies its phenotype-associated risk.
Subsequently, a permutation test program was used to assess the
significance of these risk scores, providing a qualitative distinction
for identifying phenotype-associated cells. Throughout the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae655#supplementary-data
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Figure 6. Expansion of scPAS to spatial transcriptomic annotation. (A) Multiple tumor ST datasets were used for the performance evaluation. Annotations
from the pathologists were used to determine which spots were malignant. (B) Receiver operating characteristic curves of malignant spot prediction risk
scores. (C) An example of immunofluorescent imaging of a tissue section and histopathological annotations of invasive ductal carcinoma (BRCA3). (D)
Risk scores of malignant cells for each spot predicted using scPAS. (E) Hematoxylin and eosin staining of a tissue section from a colorectal cancer sample.
(F) Unbiased clustering of HD-ST bins and defining cell types in each cluster of the HD-ST colorectal cancer data. (G) The dot plot shows the average
expression of known markers in each cell type defined in (F). (H) Risk scores of malignant cells for each bin predicted by scPAS on the colorectal cancer
HD-ST data. (I) Survival-related risk scores for each bin predicted by scPAS in the colorectal cancer HD-ST data. (J) The bar plots of the runtime and
memory usage for running scPAS to identify bins enriched with malignant cells or associated with survival outcomes and running the Seurat pipeline
on the same data.

process, single-cell data and bulk data remained independent,
with connections established through the optimized feature
genes. This approach avoids the subjective determination of
cluster numbers in scRNA-seq datasets [40] and enhances the
scalability of preprocessing single-cell data.

Unlike Scissor and scAB, which train models on a sample-cell
similarity matrix and identify phenotype-associated cells through
feature selection, scPAS directly uses genes as the features for
model training. This approach avoids the potential impact of
different similarity measures on the model and highlights the
key phenotype-associated genes. In addition, gene-based models
offer enhanced portability, enabling the direct transfer of trained
models to other independent datasets. For instance, pretrained
models can be applied to other bulk data to validate model

robustness or to independent spatial transcriptomic data to iden-
tify phenotype-associated regions without necessitating model
retraining from scratch. This characteristic enables scPAS to be
seamlessly applied in studies integrating bulk data, single-cell
data, and ST data to explore disease mechanisms.

Furthermore, the spatiotemporal complexity of the model opti-
mization process is not influenced by single-cell data, enabling its
easy application to large single-cell datasets. For instance, when
applied to the large-scale breast carcinoma scRNA-seq dataset,
as the number of cells increases, the running time and mem-
ory usage of scPAS are significantly lower than those of Scissor
(Fig. 3F and G). Similarly, in the application to HD colorectal can-
cer ST data, the running time and memory usage of scPAS are also
lower than those of the conventional Seurat pipeline (Fig. 6J).



scPAS | 11

Certainly, the scPAS methodology presents several limitations.
First, as a linear regression model, its capacity to accommodate
nonlinear relationships remains to be rigorously evaluated. Sec-
ond, scPAS is currently limited to the analysis of three types
of phenotypes and lacks the capability to address multiclass
classification challenges. Developing effective strategies for ana-
lyzing cells associated with multiclass phenotypes represents
a significant challenge that we intend to tackle in our subse-
quent research. Finally, although scPAS demonstrates strong per-
formance on scRNA-seq data, its applicability and efficacy across
other modalities of single-cell data, such as scATAC-seq and
single-cell proteomics, have yet to be thoroughly validated. This
will serve as a focal point for investigation in our future work.

Key Points

• We present scPAS, a bioinformatics tool designed to iden-
tify phenotype-associated cell subpopulations in single-
cell data by integrating bulk data and bulk phenotypic
information.

• scPAS provides both quantitative and qualitative esti-
mates of the association between cells and phenotypes.

• scPAS was rigorously validated using simulated and
real datasets, demonstrating its superior performance in
phenotype-associated cell subpopulation identification.

• scPAS exhibits excellent computational efficiency, sig-
nificantly outperforming Scissor in terms of processing
speed on large single-cell datasets.

• As a gene-based training model, scPAS boasts high trans-
ferability. The trained model can be easily applied to
other independent datasets, including bulk data, scRNA-
seq data, and spatial transcriptomics data.
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Supplementary data are available at Briefings in Bioinformatics
online.
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